1
|
Ahmed W, Feng J, Zhang Y, Chen L. SARS-CoV-2 and Brain Health: New Challenges in the Era of the Pandemic. Microorganisms 2023; 11:2511. [PMID: 37894169 PMCID: PMC10609574 DOI: 10.3390/microorganisms11102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory viral infections have been found to have a negative impact on neurological functions, potentially leading to significant neurological impairment. The SARS-CoV-2 virus has precipitated a worldwide pandemic, posing a substantial threat to human lives. Growing evidence suggests that SARS-CoV-2 may severely affect the CNS and respiratory system. The current prevalence of clinical neurological issues associated with SARS-CoV-2 has raised significant concerns. However, there needs to be a more comprehensive understanding of the specific pathways by which SARS-CoV-2 enters the nervous system. Based on the available evidence, this review focuses on the clinical neurological manifestations of SARS-CoV-2 and the possible mechanisms by which SARS-CoV-2 invades the brain.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
- Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Yifan Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China
| |
Collapse
|
2
|
Allam AM, Elbayoumy MK, Ghazy AA. Perspective vaccines for emerging viral diseases in farm animals. Clin Exp Vaccine Res 2023; 12:179-192. [PMID: 37599803 PMCID: PMC10435774 DOI: 10.7774/cevr.2023.12.3.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
The world has watched the emergence of numerous animal viruses that may threaten animal health which were added to the perpetual growing list of animal pathogens. This emergence drew the attention of the experts and animal health groups to the fact that it has become necessary to work on vaccine development. The current review aims to explore the perspective vaccines for emerging viral diseases in farm animals. This aim was fulfilled by focusing on modern technologies as well as next generation vaccines that have been introduced in the field of vaccines, either in clinical developments pending approval, or have already come to light and have been applied to animals with acceptable results such as viral-vectored vaccines, virus-like particles, and messenger RNA-based platforms. Besides, it shed the light on the importance of differentiation of infected from vaccinated animals technology in eradication programs of emerging viral diseases. The new science of nanomaterials was explored to elucidate its role in vaccinology. Finally, the role of Bioinformatics or Vaccinomics and its assist in vaccine designing and developments were discussed. The reviewing of the published manuscripts concluded that the use of conventional vaccines is considered an out-of-date approach in eliminating emerging diseases. However, these types of vaccines are considered the suitable plan especially in countries with few resources and capabilities. Piloted vaccines that rely on genetic-based technologies with continuous analyses of current viruses should be the aim of future vaccinology. Smart genomics of emerging viruses will be the gateway to choosing appropriate vaccines, regardless of the evolutionary rates of viruses.
Collapse
Affiliation(s)
- Ahmad Mohammad Allam
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed Karam Elbayoumy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| | - Alaa Abdelmoneam Ghazy
- Parasitology and Animal Diseases Department, Veterinary Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Genomic diversity of SARS-CoV-2 can be accelerated by mutations in the nsp14 gene. iScience 2023; 26:106210. [PMID: 36811085 PMCID: PMC9933857 DOI: 10.1016/j.isci.2023.106210] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/23/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), encode a proofreading exonuclease, nonstructural protein 14 (nsp14), that helps ensure replication competence at a low evolutionary rate compared with other RNA viruses. In the current pandemic, SARS-CoV-2 has accumulated diverse genomic mutations including in nsp14. Here, to clarify whether amino acid substitutions in nsp14 affect the genomic diversity and evolution of SARS-CoV-2, we searched for amino acid substitutions in nature that may interfere with nsp14 function. We found that viruses carrying a proline-to-leucine change at position 203 (P203L) have a high evolutionary rate and that a recombinant SARS-CoV-2 virus with the P203L mutation acquired more diverse genomic mutations than wild-type virus during its replication in hamsters. Our findings suggest that substitutions, such as P203L, in nsp14 may accelerate the genomic diversity of SARS-CoV-2, contributing to virus evolution during the pandemic.
Collapse
|
4
|
Kumar M, Roy A, Rawat RS, Alok A, Tetala KKR, Biswas NR, Kaur P, Kumar S. Identification and structural studies of natural inhibitors against SARS-CoV-2 viral RNA methyltransferase (NSP16). J Biomol Struct Dyn 2022; 40:13965-13975. [PMID: 34766876 DOI: 10.1080/07391102.2021.1997821] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pathogenic RNA viruses are emerging as one of the major threats and posing challenges to human community. RNA viruses have an exceptionally shorter generation time and easy to adapt in host cells. The recent emergence of SARS-CoV-2, a long RNA virus, has shown us how difficult it is to overcome this kind of pandemic without understanding the viral infection and replication mechanisms. It is essential to comprehend replications of the viral genome, including RNA polymerization and the final capping process. The mRNAs of SARS-CoV-2 coronaviruses are protected at their 5'-ends by cap structure. The cap-like system plays a significant role in viral translational process, viral RNA stability, and scatting in detecting innate immune recognition in host cells. Two coronavirus enzymes, Nsp14 and Nsp16, critically help in the formation of capping and are considered as potential drug targets for antiviral therapy. Natural and herbal medicines have a past record of treating various acute respiratory diseases. In this work, we have exploited 56000 natural compounds to screen potential inhibitors against NSP16. In silico virtual screening, docking and Molecular Dynamics (MD) simulation studies were performed to understand how these potential inhibitors are bound to NSP16. We observed that the most highly screened compound binds to protein molecules with a high dock score, primarily through hydrophobic interactions and hydrogen bonding, as previously reported for NSP16. Compound-13 (2-hydroxy-N-({1-[2-hydroxy-1-(hydroxymethyl)ethyl]piperidin-3-yl}methyl)-5-methylbenzamide) and compound-51 (N-(2-isobutoxybenzyl)-N,2-dimethyl-2,8-diazaspiro[4.5]decane-3-carboxamide) occupied in active site along with good pharmokinetices properties. In conclusion, the selected compounds could be used as a novel therapeutic against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Anik Roy
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ravindra Singh Rawat
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Amit Alok
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine & Allied Sciences, Timarpur, Delhi, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Nihar Ranjan Biswas
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.,Department of Pharmacology, Indira Gandhi Institute of Medical Science (IGIMS), Patna, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Som A, Sharma AK, Kumari P. Recombination in sarbecovirus lineage and mutations/insertions in spike protein are linked to the emergence and adaptation of SARS-CoV-2. Bioinformation 2022; 18:951-961. [PMID: 37693920 PMCID: PMC10492515 DOI: 10.6026/97320630018951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 09/12/2023] Open
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan city, China in December 2019 and thereafter its spillover across the world has created a global pandemic and public health crisis. Right after, there has been intense interest in understanding how the SARS-CoV-2 originated and evolved. This paper also aims to shed light on the origin and evolution of SARS-CoV- 2. A consensus result based on whole genome phylogeny, gene tree analysis, and genetic similarity study revealed that SARS-CoV-2 evolved from Bat-CoV-RaTG13. Furthermore, recombination analysis indicated that probable origin of SARS-CoV-2 is the results of ancestral intra-species recombination events between bat coronaviruses belonging to Sarbecovirus sub-genus. Multiple sequence alignment (MSA) revealed the insertion of four amino acid residues "PRRA" (Proline-Arginine-Arginine-Alanine) to the S1/S2 site in the spike protein of SARS-CoV-2, and structural modeling of spike protein of bat-CoV-RaTG13 also shows a high number of mutations at one of the receptor binding domains (RBD). Acquisition of the furin cleavage sites ("PRRA") along with high number of mutations at one of its RBD is probably responsible for the adaptation of SARS-CoV-2 into human systems. Furthermore, the codon adaptation index (CAI) was used to quantify the magnitude of adaptive efficacy of SARS-CoV-2 in human host in comparison with SARS-CoV. The CAI result showed a relatively less adaptive efficacy of the newly emerged SARS-CoV-2 to the human systems, which might be an indication of its mild clinical severity and progression compared to SARS-CoVs.
Collapse
Affiliation(s)
- Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| | - Amresh Kumar Sharma
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| | - Priyanka Kumari
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
6
|
Goto K, Komatsu K, Sekizuka T, Ebisawa H, Ootake M, Honda M, Nagata N, Yoshida D, Yanaoka T, Kimura H, Kuroda M. Detection of SARS-CoV-2 Genome for over 100 Days after COVID-19 Onset. Jpn J Infect Dis 2022; 75:620-622. [PMID: 35908868 DOI: 10.7883/yoken.jjid.2021.841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019, is spreading globally. In general, the viral genome becomes undetectable within a couple of weeks after infection. Herein, we report a case of long-term detection of the SARS-CoV-2 genome from the same individual for 106 days. Whole genome sequencing was performed on specimens taken at the onset of the disease and at 2 months after onset, and the B.1.1.7 lineage was detected in both samples. Comparison of the full-length sequences revealed a single-base difference and no amino acid mutations. This is the first case in Japan where the virus was detected over a long time, and the full-length sequences were compared.
Collapse
Affiliation(s)
- Keiko Goto
- Department of Virology, Ibaraki Prefectural Institute of Public Health, Japan
| | - Kenichi Komatsu
- Department of Internal Medicine, Ibaraki Western Medical Center, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Japan
| | - Hiromi Ebisawa
- Department of Internal Medicine, Ibaraki Western Medical Center, Japan
| | | | | | - Noriko Nagata
- Department of Virology, Ibaraki Prefectural Institute of Public Health, Japan
| | - Daisuke Yoshida
- Department of Virology, Ibaraki Prefectural Institute of Public Health, Japan
| | - Toshikazu Yanaoka
- Department of Virology, Ibaraki Prefectural Institute of Public Health, Japan
| | - Hirokazu Kimura
- Department of Health Science, Gunma Paz University Graduate School, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Japan
| |
Collapse
|
7
|
Zhang D, Zhu L, Wang Y, Li P, Gao Y. Translational Control of COVID-19 and Its Therapeutic Implication. Front Immunol 2022; 13:857490. [PMID: 35422818 PMCID: PMC9002053 DOI: 10.3389/fimmu.2022.857490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/19/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19, which has broken out worldwide for more than two years. However, due to limited treatment, new cases of infection are still rising. Therefore, there is an urgent need to understand the basic molecular biology of SARS-CoV-2 to control this virus. SARS-CoV-2 replication and spread depend on the recruitment of host ribosomes to translate viral messenger RNA (mRNA). To ensure the translation of their own mRNAs, the SARS-CoV-2 has developed multiple strategies to globally inhibit the translation of host mRNAs and block the cellular innate immune response. This review provides a comprehensive picture of recent advancements in our understanding of the molecular basis and complexity of SARS-CoV-2 protein translation. Specifically, we summarize how this viral infection inhibits host mRNA translation to better utilize translation elements for translation of its own mRNA. Finally, we discuss the potential of translational components as targets for therapeutic interventions.
Collapse
Affiliation(s)
- Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Lei Zhu
- College of Basic Medical, Qingdao Binhai University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Azhar A, Khan WH, Al-Hosaini K, Kamal MA. miRNAs in SARS-CoV-2 Infection: An Update. Curr Drug Metab 2022; 23:283-298. [PMID: 35319361 DOI: 10.2174/1389200223666220321102824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 02/08/2023]
Abstract
Coronavirus disease-2019 (COVID-19) is a highly infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the inception of SARS-CoV-2 from Wuhan, China, the virus has traveled to more than 200 countries globally. The role of SARS-CoV-2 in COVID-19 has been thoroughly investigated and reviewed in the last 22 months or so; however, a comprehensive outline of miRNAs in SARS-CoV-2 infection is still missing. The genetic material of SARS-CoV-2 is a single-stranded RNA molecule nearly 29 kb in size. RNA is composed of numerous sub-constituents, including microRNAs (miRNAs). miRNAs play an essential role in biological processes like apoptosis, cellular metabolism, cell death, cell movement, oncogenesis, intracellular signaling, immunity, and infection. Lately, miRNAs have been involved in SARS-CoV-2 infection, though the clear demonstration of miRNAs in the SARS-CoV-2 infection is not fully elucidated. The present review article summarizes recent findings of miRNAs associated with SARS-CoV-2 infection. We presented various facets of miRNAs such as miRNAs as the protagonist in viral infection, the occurrence of miRNA in cellular receptors, expression of miRNAs in multiple diseases, miRNA as a biomarker, and miRNA as a therapeutic tool discussed in detail. We also presented the vaccine status available in various countries.
Collapse
Affiliation(s)
- Asim Azhar
- Aligarh College of Education, Aligarh, UP, India
| | - Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Khaled Al-Hosaini
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Post Box 2457, Riyadh 11451, Kingdom of Saudi Arabia
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- Enzymoics, NSW; Novel Global Community Educational Foundation, Australia
| |
Collapse
|
9
|
Marini S, Mavian C, Riva A, Prosperi M, Salemi M, Rife Magalis B. Optimizing viral genome subsampling by genetic diversity and temporal distribution (TARDiS) for phylogenetics. Bioinformatics 2022; 38:856-860. [PMID: 34672334 PMCID: PMC8756195 DOI: 10.1093/bioinformatics/btab725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 02/03/2023] Open
Abstract
SUMMARY TARDiS is a novel phylogenetic tool for optimal genetic subsampling. It optimizes both genetic diversity and temporal distribution through a genetic algorithm. AVAILABILITY AND IMPLEMENTATION TARDiS, along with example datasets and a user manual, is available at https://github.com/smarini/tardis-phylogenetics.
Collapse
Affiliation(s)
- Simone Marini
- Department of Epidemiology, University of Florida, Gainesville, FL 32611, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Carla Mavian
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Alberto Riva
- Bioinformatics Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Mattia Prosperi
- Department of Epidemiology, University of Florida, Gainesville, FL 32611, USA
| | - Marco Salemi
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, University of Florida, Gainesville, FL 32611, USA
| | - Brittany Rife Magalis
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Tsikouras P, Kourti V, Gerede A, Kiosse E, Panopoulou M, Zervoudis S, Bothou A, Iatrakis G, Gaitatzi F, Vatsidou X, Chalkidou A, Nikolettos K, Alexiou A, Peitsidis P, Lambropoulou M, Michalopoulos S, Nikolettos N, Rafailidis P. Impact of SARS-CoV-2 on pregnancy outcomes (Review). MEDICINE INTERNATIONAL 2021; 1:19. [PMID: 36698529 PMCID: PMC9829087 DOI: 10.3892/mi.2021.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/25/2021] [Indexed: 01/28/2023]
Abstract
The impact of the pandemic outbreak associated with coronavirus 2019 disease (COVID-19) on pregnant women is of interest to obstetricians and gynecologists due to the vulnerability of this target group. In pregnant women and their infants, an exceptional clinical management is warranted. Current epidemiological findings provide information regarding the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pregnant patients and potential adverse perinatal outcomes. Overall, these findings are a strong indication that an increased antenatal surveillance for pregnant patients infected with COVID-19 is warranted. The aim of the present narrative review was to summarize the data obtained to date regarding the health of women during pregnancy, as well as that of the fetus associated with the risk of severe infection due to COVID-19. The present review aimed to provide further insight into the effects of this pandemic on pregnancy, also providing the experience of the authors on this matter as an example.
Collapse
Affiliation(s)
- Panagiotis Tsikouras
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Vasiliki Kourti
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Aggeliki Gerede
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Eleni Kiosse
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Panopoulou
- Laboratory of Clinical Microbiology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Stefanos Zervoudis
- Technological Educational Institute of Athens and Rea Maternity Hospital, 175 64 Athens, Greece
| | - Anastasia Bothou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George Iatrakis
- Technological Educational Institute of Athens and Rea Maternity Hospital, 175 64 Athens, Greece
| | - Fotini Gaitatzi
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Xanthi Vatsidou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Anna Chalkidou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Konstantinos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Alexis Alexiou
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Panagiotis Peitsidis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Maria Lambropoulou
- Department of Histology and Embryology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Spyridon Michalopoulos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Nikolaos Nikolettos
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Petros Rafailidis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
11
|
Guaman-Bautista LP, Moreta-Urbano E, Oña-Arias CG, Torres-Arias M, Kyriakidis NC, Malcı K, Jonguitud-Borrego N, Rios-Solis L, Ramos-Martinez E, López-Cortés A, Barba-Ostria C. Tracking SARS-CoV-2: Novel Trends and Diagnostic Strategies. Diagnostics (Basel) 2021; 11:1981. [PMID: 34829328 PMCID: PMC8621220 DOI: 10.3390/diagnostics11111981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The COVID-19 pandemic has had an enormous impact on economies and health systems globally, therefore a top priority is the development of increasingly better diagnostic and surveillance alternatives to slow down the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In order to establish massive testing and contact tracing policies, it is crucial to have a clear view of the diagnostic options available and their principal advantages and drawbacks. Although classical molecular methods such as RT-qPCR are broadly used, diagnostic alternatives based on technologies such as LAMP, antigen, serological testing, or the application of novel technologies such as CRISPR-Cas for diagnostics, are also discussed. The present review also discusses the most important automation strategies employed to increase testing capability. Several serological-based diagnostic kits are presented, as well as novel nanotechnology-based diagnostic methods. In summary, this review provides a clear diagnostic landscape of the most relevant tools to track COVID-19.
Collapse
Affiliation(s)
- Linda P. Guaman-Bautista
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Erick Moreta-Urbano
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Claudia G. Oña-Arias
- Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador; (L.P.G.-B.); (E.M.-U.); (C.G.O.-A.)
| | - Marbel Torres-Arias
- Immunology and Virology Laboratory, Department of Life Science and Agriculture, Universidad de las Fuerzas Armadas, Quito 171103, Ecuador;
| | - Nikolaos C. Kyriakidis
- Grupo de Investigación en Biotecnología Aplicada a Biomedicina (BIOMED), Universidad de Las Américas, Quito 170125, Ecuador;
- One Health Research Group, Faculty of Medicine, Universidad de Las Américas (UDLA), Quito 170125, Ecuador
| | - Koray Malcı
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Nestor Jonguitud-Borrego
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh EH8 9LE, UK; (K.M.); (N.J.-B.); (L.R.-S.)
- Centre for Synthetic and Systems Biology (SynthSys), University of Edinburgh, Edinburgh EH8 9LE, UK
| | - Espiridion Ramos-Martinez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 4510, Mexico;
| | - Andrés López-Cortés
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170147, Ecuador;
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
12
|
Nova N. Cross-Species Transmission of Coronaviruses in Humans and Domestic Mammals, What Are the Ecological Mechanisms Driving Transmission, Spillover, and Disease Emergence? Front Public Health 2021; 9:717941. [PMID: 34660513 PMCID: PMC8514784 DOI: 10.3389/fpubh.2021.717941] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent pandemic, caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2, is taking a heavy toll on society and planetary health, and illustrates the threat emerging coronaviruses can pose to the well-being of humans and other animals. Coronaviruses are constantly evolving, crossing host species barriers, and expanding their host range. In the last few decades, several novel coronaviruses have emerged in humans and domestic animals. Novel coronaviruses have also been discovered in captive wildlife or wild populations, raising conservation concerns. The evolution and emergence of novel viruses is enabled by frequent cross-species transmission. It is thus crucial to determine emerging coronaviruses' potential for infecting different host species, and to identify the circumstances under which cross-species transmission occurs in order to mitigate the rate of disease emergence. Here, I review (broadly across several mammalian host species) up-to-date knowledge of host range and circumstances concerning reported cross-species transmission events of emerging coronaviruses in humans and common domestic mammals. All of these coronaviruses had similar host ranges, were closely related (indicative of rapid diversification and spread), and their emergence was likely associated with high-host-density environments facilitating multi-species interactions (e.g., shelters, farms, and markets) and the health or well-being of animals as end- and/or intermediate spillover hosts. Further research is needed to identify mechanisms of the cross-species transmission events that have ultimately led to a surge of emerging coronaviruses in multiple species in a relatively short period of time in a world undergoing rapid environmental change.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
13
|
Khan WH, Hashmi Z, Goel A, Ahmad R, Gupta K, Khan N, Alam I, Ahmed F, Ansari MA. COVID-19 Pandemic and Vaccines Update on Challenges and Resolutions. Front Cell Infect Microbiol 2021; 11:690621. [PMID: 34568087 PMCID: PMC8461057 DOI: 10.3389/fcimb.2021.690621] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease (COVID-19) is caused by a positive-stranded RNA virus called severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), belonging to the Coronaviridae family. This virus originated in Wuhan City, China, and became the cause of a multiwave pandemic that has killed 3.46 million people worldwide as of May 22, 2021. The havoc intensified with the emergence of SARS-CoV-2 variants (B.1.1.7; Alpha, B.1.351; Beta, P.1; Gamma, B.1.617; Delta, B.1.617.2; Delta-plus, B.1.525; Eta, and B.1.429; Epsilon etc.) due to mutations generated during replication. More variants may emerge to cause additional pandemic waves. The most promising approach for combating viruses and their emerging variants lies in prophylactic vaccines. Several vaccine candidates are being developed using various platforms, including nucleic acids, live attenuated virus, inactivated virus, viral vectors, and protein-based subunit vaccines. In this unprecedented time, 12 vaccines against SARS-CoV-2 have been phased in following WHO approval, 184 are in the preclinical stage, and 100 are in the clinical development process. Many of them are directed to elicit neutralizing antibodies against the viral spike protein (S) to inhibit viral entry through the ACE-2 receptor of host cells. Inactivated vaccines, to the contrary, provide a wide range of viral antigens for immune activation. Being an intracellular pathogen, the cytotoxic CD8+ T Cell (CTL) response remains crucial for all viruses, including SARS-CoV-2, and needs to be explored in detail. In this review, we try to describe and compare approved vaccines against SARS-CoV-2 that are currently being distributed either after phase III clinical trials or for emergency use. We discuss immune responses induced by various candidate vaccine formulations; their benefits, potential limitations, and effectiveness against variants; future challenges, such as antibody-dependent enhancement (ADE); and vaccine safety issues and their possible resolutions. Most of the current vaccines developed against SARS-CoV-2 are showing either promising or compromised efficacy against new variants. Multiple antigen-based vaccines (multivariant vaccines) should be developed on different platforms to tackle future variants. Alternatively, recombinant BCG, containing SARS-CoV-2 multiple antigens, as a live attenuated vaccine should be explored for long-term protection. Irrespective of their efficacy, all vaccines are efficient in providing protection from disease severity. We must insist on vaccine compliance for all age groups and work on vaccine hesitancy globally to achieve herd immunity and, eventually, to curb this pandemic.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Department of Biotechnology, Host Pathogen Interaction and Molecular Immunology Laboratory, Jamia Hamdard, New Delhi, India
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Zohra Hashmi
- Department of Biotechnology, Host Pathogen Interaction and Molecular Immunology Laboratory, Jamia Hamdard, New Delhi, India
| | - Aditya Goel
- Department of Biotechnology, Host Pathogen Interaction and Molecular Immunology Laboratory, Jamia Hamdard, New Delhi, India
| | - Razi Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Kanisha Gupta
- Department of Biotechnology, Host Pathogen Interaction and Molecular Immunology Laboratory, Jamia Hamdard, New Delhi, India
| | - Nida Khan
- Department of Biotechnology, Host Pathogen Interaction and Molecular Immunology Laboratory, Jamia Hamdard, New Delhi, India
| | - Iqbal Alam
- Department of Physiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Faheem Ahmed
- Department of Community Medicine, Hamdard Institute of Medical Sciences and Research, New Delhi, India
| | - Mairaj Ahmed Ansari
- Department of Biotechnology, Host Pathogen Interaction and Molecular Immunology Laboratory, Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Abstract
To investigate the evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the immune population, we coincupi bated the authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for seven passages, but, after 45 d, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed, at day 80, by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom, South Africa, Brazil, and Japan of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed.
Collapse
|
15
|
Paidas MJ, Mohamed AB, Norenberg MD, Saad A, Barry AF, Colon C, Kenyon NS, Jayakumar AR. Multi-Organ Histopathological Changes in a Mouse Hepatitis Virus Model of COVID-19. Viruses 2021; 13:1703. [PMID: 34578284 PMCID: PMC8473123 DOI: 10.3390/v13091703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with SARS-CoV-2, the virus responsible for the global COVID-19 pandemic, causes a respiratory illness that can severely impact other organ systems and is possibly precipitated by cytokine storm, septic shock, thrombosis, and oxidative stress. SARS-CoV-2 infected individuals may be asymptomatic or may experience mild, moderate, or severe symptoms with or without pneumonia. The mechanisms by which SARS-CoV-2 infects humans are largely unknown. Mouse hepatitis virus 1 (MHV-1)-induced infection was used as a highly relevant surrogate animal model for this study. We further characterized this animal model and compared it with SARS-CoV-2 infection in humans. MHV-1 inoculated mice displayed death as well as weight loss, as reported earlier. We showed that MHV-1-infected mice at days 7-8 exhibit severe lung inflammation, peribronchiolar interstitial infiltration, bronchiolar epithelial cell necrosis and intra-alveolar necrotic debris, alveolar exudation (surrounding alveolar walls have capillaries that are dilated and filled with red blood cells), mononuclear cell infiltration, hyaline membrane formation, the presence of hemosiderin-laden macrophages, and interstitial edema. When compared to uninfected mice, the infected mice showed severe liver vascular congestion, luminal thrombosis of portal and sinusoidal vessels, hepatocyte degeneration, cell necrosis, and hemorrhagic changes. Proximal and distal tubular necrosis, hemorrhage in interstitial tissue, and the vacuolation of renal tubules were observed. The heart showed severe interstitial edema, vascular congestion, and dilation, as well as red blood cell extravasation into the interstitium. Upon examination of the MHV-1 infected mice brain, we observed congested blood vessels, perivascular cavitation, cortical pericellular halos, vacuolation of neuropils, darkly stained nuclei, pyknotic nuclei, and associated vacuolation of the neuropil in the cortex, as well as acute eosinophilic necrosis and necrotic neurons with fragmented nuclei and vacuolation in the hippocampus. Our findings suggest that the widespread thrombotic events observed in the surrogate animal model for SARS-CoV-2 mimic the reported findings in SARS-CoV-2 infected humans, representing a highly relevant and safe animal model for the study of the pathophysiologic mechanisms of SARS-CoV-2 for potential therapeutic interventions.
Collapse
Affiliation(s)
- Michael J Paidas
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Adhar B Mohamed
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Michael D Norenberg
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ali Saad
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ariel Faye Barry
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Cristina Colon
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| | - Norma Sue Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL 33136, USA
| | - Arumugam R Jayakumar
- Departments of Obstetrics, Gynecology and Reproductive Sciences, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
16
|
Vale FF, Vítor JMB, Marques AT, Azevedo-Pereira JM, Anes E, Goncalves J. Origin, phylogeny, variability and epitope conservation of SARS-CoV-2 worldwide. Virus Res 2021; 304:198526. [PMID: 34339772 PMCID: PMC8323504 DOI: 10.1016/j.virusres.2021.198526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses innumerous challenges, like understanding what triggered the emergence of this new human virus, how this RNA virus is evolving or how the variability of viral genome may impact the primary structure of proteins that are targets for vaccine. We analyzed 19471 SARS-CoV-2 genomes available at the GISAID database from all over the world and 3335 genomes of other Coronoviridae family members available at GenBank, collecting SARS-CoV-2 high-quality genomes and distinct Coronoviridae family genomes. Additionally, we analyzed 199,984 spike glycoprotein sequences. Here, we identify a SARS-CoV-2 emerging cluster containing 13 closely related genomes isolated from bat and pangolin that showed evidence of recombination, which may have contributed to the emergence of SARS-CoV-2. The analyzed SARS-CoV-2 genomes presented 9632 single nucleotide variants (SNVs) corresponding to a variant density of 0.3 over the genome, and a clear geographic distribution. SNVs are unevenly distributed throughout the genome and hotspots for mutations were found for the spike gene and ORF 1ab. We describe a set of predicted spike protein epitopes whose variability is negligible. Additionally, all predicted epitopes for the structural E, M and N proteins are highly conserved. The amino acid changes present in the spike glycoprotein of variables of concern (VOCs) comprise between 3.4% and 20.7% of the predicted epitopes of this protein. These results favors the continuous efficacy of the available vaccines targeting the spike protein, and other structural proteins. Multiple epitopes vaccines should sustain vaccine efficacy since at least some of the epitopes present in variability regions of VOCs are conserved and thus recognizable by antibodies.
Collapse
Affiliation(s)
- Filipa F Vale
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa 1649-003, Portugal.
| | - Jorge M B Vítor
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa 1649-003, Portugal; Pharmacy, Pharmacology and Health Technologies Department, Faculty of Pharmacy, Universidade de Lisboa, Lisbon 1649-003, Portugal
| | - Andreia T Marques
- Pathogen Genome Bioinformatics and Computational Biology, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa 1649-003, Portugal
| | - Joao Goncalves
- Molecular Microbiology and Biotechnology Department, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon 1649-003, Portugal
| |
Collapse
|
17
|
Nikonova AA, Faizuloev EB, Gracheva AV, Isakov IY, Zverev VV. Genetic Diversity and Evolution of the Biological Features of the Pandemic SARS-CoV-2. Acta Naturae 2021; 13:77-88. [PMID: 34707899 PMCID: PMC8526184 DOI: 10.32607/actanaturae.11337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
The new coronavirus infection (COVID-19) represents a challenge for global health. Since the outbreak began, the number of confirmed cases has exceeded 117 million, with more than 2.6 million deaths worldwide. With public health measures aimed at containing the spread of the disease, several countries have faced a crisis in the availability of intensive care units. Currently, a large-scale effort is underway to identify the nucleotide sequences of the SARS-CoV-2 coronavirus that is an etiological agent of COVID-19. Global sequencing of thousands of viral genomes has revealed many common genetic variants, which enables the monitoring of the evolution of SARS-CoV-2 and the tracking of its spread over time. Understanding the current evolution of SARS-CoV-2 is necessary not only for a retrospective analysis of the new coronavirus infection spread, but also for the development of approaches to the therapy and prophylaxis of COVID-19. In this review, we have focused on the general characteristics of SARS-CoV-2 and COVID-19. Also, we have analyzed available publications on the genetic diversity of the virus and the relationship between the diversity and the biological properties of SARS-CoV-2, such as virulence and contagiousness.
Collapse
Affiliation(s)
- A. A. Nikonova
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia
| | - E. B. Faizuloev
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia
| | - A. V. Gracheva
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia
| | - I. Yu. Isakov
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia
| | - V. V. Zverev
- Mechnikov Research Institute for Vaccines and Sera, Moscow, 105064 Russia
| |
Collapse
|
18
|
Maple PAC. Population (Antibody) Testing for COVID-19-Technical Challenges, Application and Relevance, an English Perspective. Vaccines (Basel) 2021; 9:550. [PMID: 34073985 PMCID: PMC8225097 DOI: 10.3390/vaccines9060550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
In the UK, population virus or antibody testing using virus swabs, serum samples, blood spots or oral fluids has been performed to a limited extent for several diseases including measles, mumps, rubella and hepatitis and HIV. The collection of population-based infection and immunity data is key to the monitoring of disease prevalence and assessing the effectiveness of interventions such as behavioural modifications and vaccination. In particular, the biological properties of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its interaction with the human host have presented several challenges towards the development of population-based immunity testing. Measuring SARS-CoV-2 immunity requires the development of antibody assays of acceptable sensitivity and specificity which are capable of accurately detecting seroprevalence and differentiating protection from non-protective responses. Now that anti-COVID-19 vaccines are becoming available there is a pressing need to measure vaccine efficacy and the development of herd immunity. The unprecedented impact of the SARS-CoV-2 pandemic in the UK in terms of morbidity, mortality, and economic and social disruption has mobilized a national scientific effort to learn more about this virus. In this article, the challenges of testing for SARS-CoV-2 infection, particularly in relation to population-based immunity testing, will be considered and examples given of relevant national level studies.
Collapse
Affiliation(s)
- Peter A. C. Maple
- Clinical Neurology Research Group, Department of Neurology, Division of Clinical Neuroscience, University of Nottingham School of Medicine, Queen’s Medical Centre, Nottingham NG7 2UH, UK;
- Molecular (COVID) Department, UK Lighthouse Laboratory, Cheshire SK10 4TG, UK
| |
Collapse
|
19
|
Borkotoky S, Banerjee M, Modi GP, Dubey VK. Identification of high affinity and low molecular alternatives of boceprevir against SARS-CoV-2 main protease: A virtual screening approach. Chem Phys Lett 2021; 770:138446. [PMID: 33623170 PMCID: PMC7892318 DOI: 10.1016/j.cplett.2021.138446] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV-2 has posed global challenge for healthcare due to COVID-19. The main protease (Mpro) of this virus is considered as a major target for drug development efforts. In this work, we have used virtual screening approach with molecular dynamics simulations to identify high affinity and low molecular weight alternatives of boceprevir, a repurposed drug currently being evaluated against Mpro. Out of 180 compounds screened, two boceprevir analogs (PubChem ID: 57841991 and 58606278) were reported as potential alternatives with comparable predicted protease inhibitor potential and pharmacological properties. Further experimental validation of the reported compounds may contribute to the ongoing investigation of boceprevir.
Collapse
Affiliation(s)
- Subhomoi Borkotoky
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India
| | - Manidipa Banerjee
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, UP 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, UP 221005, India,Corresponding author
| |
Collapse
|
20
|
Afrin SZ, Paul SK, Begum JA, Nasreen SA, Ahmed S, Ahmad FU, Aziz MA, Parvin R, Aung MS, Kobayashi N. Extensive genetic diversity with novel mutations in spike glycoprotein of severe acute respiratory syndrome coronavirus 2, Bangladesh in late 2020. New Microbes New Infect 2021; 41:100889. [PMID: 33936746 PMCID: PMC8065242 DOI: 10.1016/j.nmni.2021.100889] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
In Bangladesh, coronavirus disease 2019 (COVID-19) has been highly prevalent during late 2020, with nearly 500 000 confirmed cases. In the present study, the spike (S) protein of severe acute respiratory coronavirus 2 (SARS-CoV-2) circulating in Bangladesh was genetically investigated to elucidate the diversity of mutations and their prevalence. The nucleotide sequence of the S protein gene was determined for 15 SARS-CoV-2 samples collected from eight divisions in Bangladesh, and analysed for mutations compared with the reference strain (hCoV-19/Wuhan/WIV04/2019). All the SARS-CoV-2 S genes were assigned to B.1 lineage in G clade, and individual S proteins had 1-25 mutations causing amino acid substitution/deletion. A total of 133 mutations were detected in 15 samples, with D614G being present in all the samples; 53 were novel mutations as of January 2021. On the receptor-binding domain, 21 substitutions including ten novel mutations were identified. Other novel mutations were located on the N-terminal domain (S1 subunit) and dispersed sites in the S2 subunit, including two substitutions that remove potential N-glycosylation sites. A P681R substitution adjacent to the furin cleavage site was detected in one sample. All the mutations detected were located on positions that are functionally linked to host transition, antigenic drift, host surface receptor binding or antibody recognition sites, and viral oligomerization interfaces, which presumably related to viral transmission and pathogenic capacity.
Collapse
Affiliation(s)
- S Z Afrin
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - S K Paul
- Department of Microbiology, Netrokona Medical College, Netrokona, Bangladesh
| | - J A Begum
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - S A Nasreen
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - S Ahmed
- Department of Microbiology, Mymensingh Medical College, Mymensingh, Bangladesh
| | - F U Ahmad
- Department of Microbiology, TMSS Medical College, Bogura, Bangladesh
| | - M A Aziz
- Department of Microbiology, Rangpur Medical College, Rangpur, Bangladesh
| | - R Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - M S Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - N Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
21
|
Amruta N, Chastain WH, Paz M, Solch RJ, Murray-Brown IC, Befeler JB, Gressett TE, Longo MT, Engler-Chiurazzi EB, Bix G. SARS-CoV-2 mediated neuroinflammation and the impact of COVID-19 in neurological disorders. Cytokine Growth Factor Rev 2021; 58:1-15. [PMID: 33674185 PMCID: PMC7894219 DOI: 10.1016/j.cytogfr.2021.02.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 is a novel coronavirus that severely affects the respiratory system, is the cause of the COVID-19 pandemic, and is projected to result in the deaths of 2 million people worldwide. Recent reports suggest that SARS-CoV-2 also affects the central nervous system along with other organs. COVID-19-associated complications are observed in older people with underlying neurological conditions like stroke, Alzheimer's disease, and Parkinson's disease. Hence, we discuss SARS-CoV-2 viral replication and its inflammation-mediated infection. This review also focuses on COVID-19 associated neurological complications in individuals with those complications as well as other groups of people. Finally, we also briefly discuss the current therapies available to treat patients, as well as ongoing available treatments and vaccines for effective cures with a special focus on the therapeutic potential of a small 5 amino acid peptide (PHSCN), ATN-161, that inhibits SARS-CoV-2 spike protein binding to both integrin α5β1 and α5β1/hACE2.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Meshi Paz
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Rebecca J Solch
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Michele T Longo
- Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
22
|
Kimura I, Konno Y, Uriu K, Hopfensperger K, Sauter D, Nakagawa S, Sato K. Sarbecovirus ORF6 proteins hamper induction of interferon signaling. Cell Rep 2021; 34:108916. [PMID: 33765414 PMCID: PMC7953434 DOI: 10.1016/j.celrep.2021.108916] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/24/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
The presence of an ORF6 gene distinguishes sarbecoviruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 from other betacoronaviruses. Here we show that ORF6 inhibits induction of innate immune signaling, including upregulation of type I interferon (IFN) upon viral infection as well as type I and III IFN signaling. Intriguingly, ORF6 proteins from SARS-CoV-2 lineages are more efficient antagonists of innate immunity than their orthologs from SARS-CoV lineages. Mutational analyses identified residues E46 and Q56 as important determinants of the antagonistic activity of SARS-CoV-2 ORF6. Moreover, we show that the anti-innate immune activity of ORF6 depends on its C-terminal region and that ORF6 inhibits nuclear translocation of IRF3. Finally, we identify naturally occurring frameshift/nonsense mutations that result in an inactivating truncation of ORF6 in approximately 0.2% of SARS-CoV-2 isolates. Our findings suggest that ORF6 contributes to the poor IFN activation observed in individuals with coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Izumi Kimura
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Yoriyuki Konno
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo 1130033, Japan
| | - Kristina Hopfensperger
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm 89081, Germany; Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen 72076, Germany
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa 2591193, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan
| | - Kei Sato
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; CREST, Japan Science and Technology Agency, Saitama 3220012, Japan.
| |
Collapse
|
23
|
Wang Y, Wang D, Zhang L, Sun W, Zhang Z, Chen W, Zhu A, Huang Y, Xiao F, Yao J, Gan M, Li F, Luo L, Huang X, Zhang Y, Wong SS, Cheng X, Ji J, Ou Z, Xiao M, Li M, Li J, Ren P, Deng Z, Zhong H, Xu X, Song T, Mok CKP, Peiris M, Zhong N, Zhao J, Li Y, Li J, Zhao J. Intra-host variation and evolutionary dynamics of SARS-CoV-2 populations in COVID-19 patients. Genome Med 2021; 13:30. [PMID: 33618765 PMCID: PMC7898256 DOI: 10.1186/s13073-021-00847-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/05/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Since early February 2021, the causative agent of COVID-19, SARS-CoV-2, has infected over 104 million people with more than 2 million deaths according to official reports. The key to understanding the biology and virus-host interactions of SARS-CoV-2 requires the knowledge of mutation and evolution of this virus at both inter- and intra-host levels. However, despite quite a few polymorphic sites identified among SARS-CoV-2 populations, intra-host variant spectra and their evolutionary dynamics remain mostly unknown. METHODS Using high-throughput sequencing of metatranscriptomic and hybrid captured libraries, we characterized consensus genomes and intra-host single nucleotide variations (iSNVs) of serial samples collected from eight patients with COVID-19. The distribution of iSNVs along the SARS-CoV-2 genome was analyzed and co-occurring iSNVs among COVID-19 patients were identified. We also compared the evolutionary dynamics of SARS-CoV-2 population in the respiratory tract (RT) and gastrointestinal tract (GIT). RESULTS The 32 consensus genomes revealed the co-existence of different genotypes within the same patient. We further identified 40 intra-host single nucleotide variants (iSNVs). Most (30/40) iSNVs presented in a single patient, while ten iSNVs were found in at least two patients or identical to consensus variants. Comparing allele frequencies of the iSNVs revealed a clear genetic differentiation between intra-host populations from the respiratory tract (RT) and gastrointestinal tract (GIT), mostly driven by bottleneck events during intra-host migrations. Compared to RT populations, the GIT populations showed a better maintenance and rapid development of viral genetic diversity following the suspected intra-host bottlenecks. CONCLUSIONS Our findings here illustrate the intra-host bottlenecks and evolutionary dynamics of SARS-CoV-2 in different anatomic sites and may provide new insights to understand the virus-host interactions of coronaviruses and other RNA viruses.
Collapse
Affiliation(s)
- Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Daxi Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Lu Zhang
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China
| | - Wanying Sun
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Weijun Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
- BGI PathoGenesis Pharmaceutical Technology Co., Ltd, BGI-Shenzhen, Shenzhen, 518083, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yongbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fei Xiao
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Biomedical Imaging, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jinxiu Yao
- Yangjiang People's Hospital, Yangjiang, Guangdong, China
| | - Mian Gan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Ling Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Xiaofang Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Xinyi Cheng
- BGI-Shenzhen, Shenzhen, 518083, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jingkai Ji
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhihua Ou
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Min Li
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Jiandong Li
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Peidi Ren
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huanzi Zhong
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Tie Song
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, Guangdong, China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- The HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, 19406, China
| | - Malik Peiris
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- The HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, 19406, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, 518083, China.
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
24
|
Wang D, Wang Y, Sun W, Zhang L, Ji J, Zhang Z, Cheng X, Li Y, Xiao F, Zhu A, Zhong B, Ruan S, Li J, Ren P, Ou Z, Xiao M, Li M, Deng Z, Zhong H, Li F, Wang WJ, Zhang Y, Chen W, Zhu S, Xu X, Jin X, Zhao J, Zhong N, Zhang W, Zhao J, Li J, Xu Y. Population Bottlenecks and Intra-host Evolution During Human-to-Human Transmission of SARS-CoV-2. Front Med (Lausanne) 2021; 8:585358. [PMID: 33659260 PMCID: PMC7917136 DOI: 10.3389/fmed.2021.585358] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
The emergence of the novel human coronavirus, SARS-CoV-2, causes a global COVID-19 (coronavirus disease 2019) pandemic. Here, we have characterized and compared viral populations of SARS-CoV-2 among COVID-19 patients within and across households. Our work showed an active viral replication activity in the human respiratory tract and the co-existence of genetically distinct viruses within the same host. The inter-host comparison among viral populations further revealed a narrow transmission bottleneck between patients from the same households, suggesting a dominated role of stochastic dynamics in both inter-host and intra-host evolutions.
Collapse
Affiliation(s)
- Daxi Wang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wanying Sun
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Lu Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingkai Ji
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinyi Cheng
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Xiao
- Guangdong Provincial Key Laboratory of Biomedical Imaging, Department of Infectious Diseases, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bei Zhong
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | | | - Jiandong Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Peidi Ren
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Zhihua Ou
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Min Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Ziqing Deng
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
| | - Huanzi Zhong
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fuqiang Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
| | - Wen-jing Wang
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Weijun Chen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
- BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Infectious Disease, Guangzhou Eighth People's Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yonghao Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Alosaimi B, Naeem A, Alghoribi MF, Okdah L, Hamed ME, AlYami AS, Alotaibi A, Enani M. Structural Mapping of Mutations in Spike, RdRp and Orf3a Genes of SARS-CoV-2 in Influenza Like Illness (ILI) Patients. Viruses 2021; 13:136. [PMID: 33477951 PMCID: PMC7835825 DOI: 10.3390/v13010136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
In December 2019, the emergence of SARS-CoV-2 virus in China led to a pandemic. Since both Influenza Like Illness (ILI) and COVID-19 case definitions overlap, we re-investigated the ILI cases using PCR for the presence of SARS-CoV-2 in 739 nasopharyngeal swabs collected from November 2019 to March 2020. SARS-CoV-2 RNA was found in 37 samples (5%) collected mostly during February 2020. It was followed by confirmation of evolutionary and spatial relationships using next generation sequencing (NGS). We observed that the overall incidence of ILI cases during 2019-2020 influenza season was considerably higher than previous years and was gradually replaced with SARS-CoV-2, which indicated a silent transmission among ambulatory patients. Sequencing of representative isolates confirmed independent introductions and silent transmission earlier than previously thought. Evolutionary and spatial analyses revealed clustering in the GH clade, characterized by three amino acid substitutions in spike gene (D614G), RdRp (P323L) and NS3 (Q57H). P323L causes conformational change near nsp8 binding site that might affect virus replication and transcription. In conclusion, assessment of the community transmission among patients with mild COVID-19 illness, particularly those without epidemiological link for acquiring the virus, is of utmost importance to guide policy makers to optimize public health interventions. The detection of SARS-CoV-2 in ILI cases shows the importance of ILI surveillance systems and warrants its further strengthening to mitigate the ongoing transmission of SARS-CoV-2. The effect of NS3 substitutions on oligomerization or membrane channel function (intra- and extracellular) needs functional validation.
Collapse
Affiliation(s)
- Bandar Alosaimi
- Department of Research labs, Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
- College of Medicine, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Asif Naeem
- Department of Research labs, Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Majed F. Alghoribi
- King Abdullah International Medical Research Center, Riyadh 11211, Saudi Arabia; (M.F.A.); (L.O.)
| | - Lilian Okdah
- King Abdullah International Medical Research Center, Riyadh 11211, Saudi Arabia; (M.F.A.); (L.O.)
| | - Maaweya E. Hamed
- College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ahmad S. AlYami
- Pathology and Clinical Laboratory Medicine Administration, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Athari Alotaibi
- General Administration for Research and Studies, Ministry of Health, Riyadh 11176, Saudi Arabia;
| | - Mushira Enani
- Medical Specialties Department, King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| |
Collapse
|
26
|
Opriessnig T, Huang Y. Third update on possible animal sources for human COVID-19. Xenotransplantation 2021; 28:e12671. [PMID: 33476071 PMCID: PMC7995224 DOI: 10.1111/xen.12671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Tanja Opriessnig
- The Roslin Institute and The Royal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
- Department of Veterinary Diagnostic and Production Animal MedicineCollege of Veterinary MedicineIowa State UniversityAmesIAUSA
| | - Yao‐Wei Huang
- Institute of Preventive Veterinary MedicineCollege of Animal SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
27
|
Santacroce L, Charitos IA, Carretta DM, De Nitto E, Lovero R. The human coronaviruses (HCoVs) and the molecular mechanisms of SARS-CoV-2 infection. J Mol Med (Berl) 2021; 99:93-106. [PMID: 33269412 PMCID: PMC7710368 DOI: 10.1007/s00109-020-02012-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
In humans, coronaviruses can cause infections of the respiratory system, with damage of varying severity depending on the virus examined: ranging from mild-to-moderate upper respiratory tract diseases, such as the common cold, pneumonia, severe acute respiratory syndrome, kidney failure, and even death. Human coronaviruses known to date, common throughout the world, are seven. The most common-and least harmful-ones were discovered in the 1960s and cause a common cold. Others, more dangerous, identified in the early 2000s and cause more severe respiratory tract infections. Among these the SARS-CoV, isolated in 2003 and responsible for the severe acute respiratory syndrome (the so-called SARS), which appeared in China in November 2002, the coronavirus 2012 (2012-nCoV) cause of the Middle Eastern respiratory syndrome (MERS) from coronavirus, which exploded in June 2012 in Saudi Arabia, and actually SARS-CoV-2. On December 31, 2019, a new coronavirus strain was reported in Wuhan, China, identified as a new coronavirus beta strain ß-CoV from group 2B, with a genetic similarity of approximately 70% to SARS-CoV, the virus responsible of SARS. In the first half of February, the International Committee on Taxonomy of Viruses (ICTV), in charge of the designation and naming of the viruses (i.e., species, genus, family, etc.), thus definitively named the new coronavirus as SARS-CoV-2. This article highlights the main knowledge we have about the biomolecular and pathophysiologic mechanisms of SARS-CoV-2.
Collapse
Affiliation(s)
- Luigi Santacroce
- Department of Interdisciplinary Medicine, Microbiology and Virology Laboratory, University Hospital of Bari, Università degli Studi di Bari, p.zza G. Cesare, 11, 70124, Bari, Italy.
| | - Ioannis A Charitos
- Department of Emergency and Urgency, National Poisoning Centre, Riuniti University Hospital of Foggia, viale Pinto, 1, Foggia, 71122, Italy
| | - Domenico M Carretta
- Syncope Unit at Cardio-Thoracic Department, Policlinico Consorziale, U.O.S. Coronary Unit and Electrophysiology/Pacing Unit, p.zza G. Cesare 11, Bari, 70124, Italy
| | - Emanuele De Nitto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Section of Biochemistry, University of Bari "Aldo Moro", p.zza G. Cesare, 11, 70124, Bari, Italy
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari - Ospedale Giovanni XXIII, p.zza G. Cesare 11, 70124, Bari, Italy
| |
Collapse
|
28
|
Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I, Dal Monego S, Pantano E, Manganaro N, Manenti A, Manna R, Casa E, Hyseni I, Benincasa L, Montomoli E, Amaro RE, McLellan JS, Rappuoli R. SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.28.424451. [PMID: 33398278 PMCID: PMC7781313 DOI: 10.1101/2020.12.28.424451] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To investigate the evolution of SARS-CoV-2 in the immune population, we co-incubated authentic virus with a highly neutralizing plasma from a COVID-19 convalescent patient. The plasma fully neutralized the virus for 7 passages, but after 45 days, the deletion of F140 in the spike N-terminal domain (NTD) N3 loop led to partial breakthrough. At day 73, an E484K substitution in the receptor-binding domain (RBD) occurred, followed at day 80 by an insertion in the NTD N5 loop containing a new glycan sequon, which generated a variant completely resistant to plasma neutralization. Computational modeling predicts that the deletion and insertion in loops N3 and N5 prevent binding of neutralizing antibodies. The recent emergence in the United Kingdom and South Africa of natural variants with similar changes suggests that SARS-CoV-2 has the potential to escape an effective immune response and that vaccines and antibodies able to control emerging variants should be developed. ONE SENTENCE SUMMARY Three mutations allowed SARS-CoV-2 to evade the polyclonal antibody response of a highly neutralizing COVID-19 convalescent plasma.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Danilo Licastro
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Simeone Dal Monego
- ARGO Open Lab Platform for Genome sequencing, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | - Elisa Casa
- VisMederi S.r.l, Siena, Italy
- VisMederi Research S.r.l., Siena, Italy
| | - Inesa Hyseni
- VisMederi S.r.l, Siena, Italy
- VisMederi Research S.r.l., Siena, Italy
| | | | - Emanuele Montomoli
- VisMederi S.r.l, Siena, Italy
- VisMederi Research S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Rommie E. Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- Faculty of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
29
|
Nakagawa S, Miyazawa T. Correction to: Genome evolution of SARS-CoV-2 and its virological characteristics. Inflamm Regen 2020; 40:41. [PMID: 33349265 PMCID: PMC7751742 DOI: 10.1186/s41232-020-00151-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- So Nakagawa
- Molecular Life Science, School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan. .,Institute of Medical Sciences, Tokai University, Kanagawa, Japan. .,Micro/Nano Technology Center, Tokai University, Hiratsuka, Japan.
| | - Takayuki Miyazawa
- Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan. .,Resilience Research Unit, Kyoto University, Kyoto, Japan.
| |
Collapse
|
30
|
Papageorgiou AC, Mohsin I. The SARS-CoV-2 Spike Glycoprotein as a Drug and Vaccine Target: Structural Insights into Its Complexes with ACE2 and Antibodies. Cells 2020; 9:E2343. [PMID: 33105869 PMCID: PMC7690584 DOI: 10.3390/cells9112343] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/18/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the Coronavirus disease (COVID-19) pandemic, has so far resulted in more than 1.1 M deaths and 40 M cases worldwide with no confirmed remedy yet available. Since the first outbreak in Wuhan, China in December 2019, researchers across the globe have been in a race to develop therapies and vaccines against the disease. SARS-CoV-2, similar to other previously identified Coronaviridae family members, encodes several structural proteins, such as spike, envelope, membrane, and nucleocapsid, that are responsible for host penetration, binding, recycling, and pathogenesis. Structural biology has been a key player in understanding the viral infection mechanism and in developing intervention strategies against the new coronavirus. The spike glycoprotein has drawn considerable attention as a means to block viral entry owing to its interactions with the human angiotensin-converting enzyme 2 (ACE2), which acts as a receptor. Here, we review the current knowledge of SARS-CoV-2 and its interactions with ACE2 and antibodies. Structural information of SARS-CoV-2 spike glycoprotein and its complexes with ACE2 and antibodies can provide key input for the development of therapies and vaccines against the new coronavirus.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Betacoronavirus/chemistry
- Binding Sites
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Humans
- Pandemics/prevention & control
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Protein Binding
- Protein Domains/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Viral Vaccines/immunology
Collapse
|