1
|
Li C, Liu P, Zhu H, Yang H, Zha J, Yao H, Zhang S, Huang J, Li G, Jiang G, Jiang Y, Dai A. T follicular helper cell is essential for M2 macrophage polarization and pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension. Respir Res 2024; 25:428. [PMID: 39633343 PMCID: PMC11619207 DOI: 10.1186/s12931-024-03058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Hypoxia-induced pulmonary hypertension (HPH) is a subgroup of type 3 pulmonary hypertension that may cause early right ventricular failure and eventual cardiac failure, which lacks potential therapeutic targets. Our previous research demonstrated that T follicular helper (TFH) cells that produce IL-21 were involved in HPH. However, the molecular mechanisms of TFH/IL-21-mediated pathogenesis of HPH have been elusive. Here we investigate the role of TFH cells and IL-21 in HPH. METHODS Studies were performed in C57BL/6 mice or IL-21 knockout mice exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in mouse lung and pulmonary arterial smooth muscle cells (PASMCs). M2 signature gene (Fizz1), M1 signature genes (iNos, IL-12β and MMP9), GC B cell and its marker GL-7, caspase-1, M2 macrophages, TFH cells, Bcl-6 and IL-21 level were measured. Proliferation rate of PASMCs was measured by EdU. Pyroptosis was assessed using Hoechst 33,342/PI double fluorescent staining. RESULTS In response to chronic hypoxia exposure-induced pulmonary hypertension, IL-21-/- mice or downregulation of TFH cells in WT mice developed blunted pulmonary hypertension, attenuated pulmonary vascular remodelling. Furthermore, chronic hypoxia exposure significantly increased the germinal center (GC) B cell responses, which were not present in IL-21-/- mice or downregulation of TFH cells in WT mice. Importantly, IL-21 promoted the polarization of primary alveolar macrophages toward the M2 phenotype. Consistently, significantly enhanced expression of M2 macrophage marker Fizz1 were detected in the bronchoalveolar lavage fluid of HPH mice. Moreover, alveolar macrophages that had been cultivated with IL-21 promoted PASMCs proliferation and pyroptosis in vitro, while a selective CX3CR1 antagonist, AZD8797 (AZD), significantly attenuated the proliferation and pyroptosis of the PASMCs. Finally, ECM1 knockdown promoted IL-2-STAT5 signaling and inhibited Bcl-6 signaling to inhibit TFH differentiation in HPH. CONCLUSIONS TFH/IL-21 axis amplified pulmonary vascular remodelling in HPH. This involved M2 macrophage polarization, PASMCs proliferation and pyroptosis. These data suggested that TFH/IL-21 axis may be a novel therapeutic target for the treatment of HPH.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Pingping Liu
- Department of Emergency, Hunan Province Key Laboratory of Pediatric Emergency Medicine, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Huan Yang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Jun Zha
- Department of Respiratory and Critical Care Medicine, Changsha Central Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Huiling Yao
- Department of General Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, People's Republic of China
| | - Shaoze Zhang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Jin Huang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Guang Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China
| | - Gang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China.
| | - Yongliang Jiang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, People's Republic of China.
| | - Aiguo Dai
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
- Hunan Province Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
3
|
Zhao Y, Zhao M, Li M, Ma X, Zheng M, Nie Y, Zhu Y, Ren J, Hasimu A, Yuan Z, Li Q, Bahabayi A, Zhang Z, Zeng X, Liu C. Alterations in Helios+ T cell subsets in peripheral blood of early-stage lung adenocarcinoma patients: Implications for early diagnosis. Immunobiology 2023; 228:152749. [PMID: 37778128 DOI: 10.1016/j.imbio.2023.152749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE This study aimed to investigate the changes and significance of circulating Helios-associated T cell subsets in patients with early-stage lung adenocarcinoma (LUAD). METHODS Blood samples were collected from 35 healthy controls and 34 patients with early-stage LUAD. Flow cytometry was used to analyze various CD4+ T cell subsets, including regulatory T(Treg) cells, follicular regulatory T(Tfr) cells, follicular helper T (Tfh) cells, and conventional T (con-T) cells. Correlation analysis was conducted to investigate the association of Helios-related subsets with clinical indicators. The ROC curve was used to explore the potential clinical value of Helios+ T cell subsets in the screening of patients with early LUAD. Fifteen of these patients were tracked after lung cancer resection and changes in Helios+ T cell subsets before and after treatment were analyzed. RESULTS The percentage and absolute number of Tregs were up-regulated in LUAD patients while Tfh and con-T cells expressing Helios were down-regulated. Absolute counts of Tfr and con-T cells and Helios expression in Tfr and Treg decreased significantly after resection. Helios+ Tfh and con-T were negatively correlated with certain tumor markers. Areas under the curve (AUCs) of percentages and absolute counts of Helios+ Tfh, Treg, Tfr and con-T cells to distinguish early LUAD from healthy individuals were 0.7277, 0.5697, 0.5718, 0.7210 (percentages), 0.7336, 0.7378, 0.5908 and 0.7445(absolute numbers), respectively. CONCLUSION Helios+ T cell subsets in peripheral blood of early-stage LUAD patients has changed significantly, which may be related to the pathogenesis of LUAD and could help for early diagnosis of LUAD.
Collapse
Affiliation(s)
- Yiming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Meng Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiancan Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yuying Nie
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yaoyi Zhu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Jiaxin Ren
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
4
|
Suhrkamp I, Scheffold A, Heine G. T-cell subsets in allergy and tolerance induction. Eur J Immunol 2023; 53:e2249983. [PMID: 37489248 DOI: 10.1002/eji.202249983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Antigen-specific T lymphocytes are the central regulators of tolerance versus immune pathology against otherwise innocuous antigens and key targets of antigen-specific immune therapy. Recent advances in the understanding of T cells in tolerance and allergy resulted from improved technologies to directly characterize allergen-specific T cells by multiparameter flow cytometry or single-cell sequencing. This unravelled phenotypically and functionally distinct populations, such as Type 2a T helper cells (Th2a), follicular Th cells (Tfh), regulatory T cells (Treg), Type 1 regulatory T cells (Tr1), and follicular T regulatory cells. Here we will discuss the role of the different Th-cell subsets in the healthy state, during sensitization and development of allergy, and in tolerance induction by allergen immunotherapy (AIT). To date, the mechanisms of AIT as the only causal treatment of allergy are not completely understood. The analyses of allergen-specific T cells directly ex vivo during AIT support the concept of specific-Th2(a) cell deletion rather than an expansion of allergen-specific Tr1 or Treg cells as underlying mechanism.
Collapse
Affiliation(s)
- Ina Suhrkamp
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Guido Heine
- Department of Dermatology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Nakayamada S, Tanaka Y. Immune Phenotype as a Biomarker for Systemic Lupus Erythematosus. Biomolecules 2023; 13:960. [PMID: 37371540 DOI: 10.3390/biom13060960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The treatment of rheumatoid arthritis was revolutionized with the use of molecular-targeted drugs that target immunoregulatory molecules. The success of treatment with these drugs prompted the development of molecular-targeted drugs for systemic lupus erythematosus. However, systemic lupus erythematosus is a disease with high heterogeneous immune abnormalities, and diverse cells or molecules can be treatment targets. Thus, the identification of subpopulations based on immune abnormalities is essential for the development of effective treatment. One analytical method used to identify subpopulations is the immunophenotyping of peripheral blood samples of patients. This analysis evaluates the validity of target molecules for peripheral blood immune cell subsets, which are expected to be developed as biomarkers for precision medicine in which appropriate treatment targets are set for each subpopulation.
Collapse
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Fukuoka, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu 807-8555, Fukuoka, Japan
| |
Collapse
|
6
|
Zhou A, Shi C, Fan Y, Zheng Y, Wang J, Liu Z, Xie H, Liu J, Jiao Q. Involvement of CD40-CD40L and ICOS-ICOSL in the development of chronic rhinosinusitis by targeting eosinophils. Front Immunol 2023; 14:1171308. [PMID: 37325657 PMCID: PMC10267736 DOI: 10.3389/fimmu.2023.1171308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 06/17/2023] Open
Abstract
Background Chronic rhinosinusitis (CRS), whose prevalence and pathogenesis are age-related, is characterized by nasal tissue eosinophil infiltration. CD40-CD40 ligand (CD40L) pathway involves in the eosinophil-mediated inflammation, and inducible co-stimulator (ICOS)-ICOS ligand (ICOSL) signal can strengthen CD40-CD40L interaction. Whether CD40-CD40L and ICOS-ICOSL have a role in the development of CRS remains unknown. Objectives The aim of this study is to investigate the association of CD40-CD40L and ICOS-ICOSL expression with CRS and underlying mechanisms. Methods Immunohistology detected the expression of CD40, CD40L, ICOS, and ICOSL. Immunofluorescence was performed to evaluate the co-localizations of CD40 or ICOSL with eosinophils. Correlations between CD40-CD40L and ICOS-ICOSL as well as clinical parameters were analyzed. Flow cytometry was used to explore the activation of eosinophils by CD69 expression and the CD40 and ICOSL expression on eosinophils. Results Compared with the non-eCRS subset, ECRS (eosinophilic CRS) subset showed significantly increased CD40, ICOS, and ICOSL expression. The CD40, CD40L, ICOS, and ICOSL expressions were all positively correlated with eosinophil infiltration in nasal tissues. CD40 and ICOSL were mainly expressed on eosinophils. ICOS expression was significantly correlated with the expression of CD40-CD40L, whereas ICOSL expression was correlated with CD40 expression. ICOS-ICOSL expression positively correlated with blood eosinophils count and disease severity. rhCD40L and rhICOS significantly enhanced the activation of eosinophils from patients with ECRS. Tumor necrosis factor-α (TNF-α) and interleukin-5 (IL-5) obviously upregulated CD40 expression on eosinophils, which was significantly inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor. Conclusions Increased CD40-CD40L and ICOS-ICOSL expressions in nasal tissues are linked to eosinophils infiltration and disease severity of CRS. CD40-CD40L and ICOS-ICOSL signals enhance eosinophils activation of ECRS. TNF-α and IL-5 regulate eosinophils function by increasing CD40 expression partly via p38 MAPK activation in patients with CRS.
Collapse
Affiliation(s)
- Aina Zhou
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenxi Shi
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhui Fan
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yushuang Zheng
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jue Wang
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichen Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huanxia Xie
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jisheng Liu
- Department of Ear, Nose, and Throat, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingqing Jiao
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Deligiorgi MV, Trafalis DT. A Concerted Vision to Advance the Knowledge of Diabetes Mellitus Related to Immune Checkpoint Inhibitors. Int J Mol Sci 2023; 24:ijms24087630. [PMID: 37108792 PMCID: PMC10146255 DOI: 10.3390/ijms24087630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The rubric of immune-related (ir) diabetes mellitus (DM) (irDM) encompasses various hyperglycemic disorders related to immune checkpoint inhibitors (ICPis). Beyond sharing similarities with conventional DM, irDM is a distinct, yet important, entity. The present narrative review provides a comprehensive overview of the literature regarding irDM published in major databases from January 2018 until January 2023. Initially considered rare, irDM is increasingly being reported. To advance the knowledge of irDM, the present review suggests a concerted vision comprising two intertwined aspects: a scientific-centered and a patient-centered view. The scientific-centered aspect addresses the pathophysiology of irDM, integrating: (i) ICPi-induced pancreatic islet autoimmunity in genetically predisposed patients; (ii) altered gut microbiome; (iii) involvement of exocrine pancreas; (iv) immune-related acquired generalized lipodystrophy. The patient-centered aspect is both nurtured by and nurturing the four pillars of the scientific-centered aspect: awareness, diagnosis, treatment, and monitoring of irDM. The path forward is a multidisciplinary initiative towards: (i) improved characterization of the epidemiological, clinical, and immunological profile of irDM; (ii) standardization of reporting, management, and surveillance protocols for irDM leveraging global registries; (iii) patient stratification according to personalized risk for irDM; (iv) new treatments for irDM; and (v) uncoupling ICPi efficacy from immunotoxicity.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology-Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology-Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
8
|
Betzler AC, Ushmorov A, Brunner C. The transcriptional program during germinal center reaction - a close view at GC B cells, Tfh cells and Tfr cells. Front Immunol 2023; 14:1125503. [PMID: 36817488 PMCID: PMC9936310 DOI: 10.3389/fimmu.2023.1125503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The germinal center (GC) reaction is a key process during an adaptive immune response to T cell specific antigens. GCs are specialized structures within secondary lymphoid organs, in which B cell proliferation, somatic hypermutation and antibody affinity maturation occur. As a result, high affinity antibody secreting plasma cells and memory B cells are generated. An effective GC response needs interaction between multiple cell types. Besides reticular cells and follicular dendritic cells, particularly B cells, T follicular helper (Tfh) cells as well as T follicular regulatory (Tfr) cells are a key player during the GC reaction. Whereas Tfh cells provide help to GC B cells in selection processes, Tfr cells, a specialized subset of regulatory T cells (Tregs), are able to suppress the GC reaction maintaining the balance between immune activation and tolerance. The formation and function of GCs is regulated by a complex network of signals and molecules at multiple levels. In this review, we highlight recent developments in GC biology by focusing on the transcriptional program regulating the GC reaction. This review focuses on the transcriptional co-activator BOB.1/OBF.1, whose important role for GC B, Tfh and Tfr cell differentiation became increasingly clear in recent years. Moreover, we outline how deregulation of the GC transcriptional program can drive lymphomagenesis.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Alexey Ushmorov
- Ulm University, Institute of Physiological Chemistry, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany,*Correspondence: Cornelia Brunner,
| |
Collapse
|
9
|
Peng XP, Caballero-Oteyza A, Grimbacher B. Common Variable Immunodeficiency: More Pathways than Roads to Rome. ANNUAL REVIEW OF PATHOLOGY 2023; 18:283-310. [PMID: 36266261 DOI: 10.1146/annurev-pathmechdis-031521-024229] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fifty years have elapsed since the term common variable immunodeficiency (CVID) was introduced to accommodate the many and varied antibody deficiencies being identified in patients with suspected inborn errors of immunity (IEIs). Since then, how the term is understood and applied for diagnosis and management has undergone many revisions, though controversy persists on how exactly to define and classify CVID. Many monogenic disorders have been added under its aegis, while investigations into polygenic, epigenetic, and somatic contributions to CVID susceptibility have gained momentum. Expansion of the overall IEI landscape has increasingly revealed genotypic and phenotypic overlap between CVID and various other immunological conditions, while increasingly routine genotyping of CVID patients continues to identify an incredible diversity of pathophysiological mechanisms affecting even single genes. Though many questions remain to be answered, the lessons we have already learned from CVID biology have greatly informed our understanding of adaptive, but also innate, immunity.
Collapse
Affiliation(s)
- Xiao P Peng
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany; .,Resolving Infection Susceptibility (RESIST) Cluster of Excellence, Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany.,Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany.,German Center for Infection Research (DZIF), Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Benamar M, Chen Q, Wang M, Chan TMF, Chatila TA. CPHEN-016: Comprehensive phenotyping of human regulatory T cells. Cytometry A 2022; 101:1006-1011. [PMID: 36165514 PMCID: PMC10031414 DOI: 10.1002/cyto.a.24692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 01/27/2023]
Abstract
Peripheral immunological tolerance is mainly maintained by regulatory T (Treg) cells, a specific CD4 T cells subset that expresses the transcription factor Foxp3. Treg cells are crucial to control autoimmunity and inflammation and to limit tissue destruction arising from inflammatory responses. Loss of functions mutations in FOXP3 in humans induces a fatal autoimmune lymphoproliferative disorder, known as Immune dysregulation, Polyendocrinopathy, Enteropathy, X-linked (IPEX). Specific Treg cell differentiation and activation states have been linked to several human diseases. Indeed, Treg cells play a crucial role in different diseases including colitis, multiple sclerosis, autoimmunity, and infection. Characterization of Treg cell functions and understanding the role of different Treg cell subsets are crucial to the development of novel Treg cell-specific therapeutics for inflammatory diseases. In this phenotype report, we will describe laboratory methods to effectively study and characterize human Treg cells.
Collapse
Affiliation(s)
- Mehdi Benamar
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Correspondence to: Mehdi Benamar
| | - Qian Chen
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Muyun Wang
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Tsz Man Fion Chan
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Quintana JF, Chandrasegaran P, Sinton MC, Briggs EM, Otto TD, Heslop R, Bentley-Abbot C, Loney C, de Lecea L, Mabbott NA, MacLeod A. Single cell and spatial transcriptomic analyses reveal microglia-plasma cell crosstalk in the brain during Trypanosoma brucei infection. Nat Commun 2022; 13:5752. [PMID: 36180478 PMCID: PMC9525673 DOI: 10.1038/s41467-022-33542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022] Open
Abstract
Human African trypanosomiasis, or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and induces profound reactivity of glial cells and neuroinflammation when the parasites colonise the central nervous system. However, the transcriptional and functional responses of the brain to chronic T. brucei infection remain poorly understood. By integrating single cell and spatial transcriptomics of the mouse brain, we identify that glial responses triggered by infection are readily detected in the proximity to the circumventricular organs, including the lateral and 3rd ventricle. This coincides with the spatial localisation of both slender and stumpy forms of T. brucei. Furthermore, in silico predictions and functional validations led us to identify a previously unknown crosstalk between homeostatic microglia and Cd138+ plasma cells mediated by IL-10 and B cell activating factor (BAFF) signalling. This study provides important insights and resources to improve understanding of the molecular and cellular responses in the brain during infection with African trypanosomes.
Collapse
Affiliation(s)
- Juan F Quintana
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK.
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK.
| | - Praveena Chandrasegaran
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Matthew C Sinton
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Emma M Briggs
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Infection and Immunity, MVLS, University of Glasgow, Glasgow, UK
| | - Rhiannon Heslop
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Calum Bentley-Abbot
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| | - Colin Loney
- School of Infection and Immunity, MVLS, University of Glasgow, Glasgow, UK
- MRC Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Luis de Lecea
- Stanford University School of Medicine, Stanford, CA, USA
| | - Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Annette MacLeod
- Wellcome Centre for Integrative Parasitology (WCIP), University of Glasgow, Glasgow, UK
- School of Biodiversity, One Health, and Veterinary Medicine (SBOHVM), MVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
FOS gene associated immune infiltration signature in perivascular adipose tissues of abdominal aortic aneurysm. Gene X 2022; 831:146576. [PMID: 35568340 DOI: 10.1016/j.gene.2022.146576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Abdominal aortic aneurysms (AAA) are pathological dilations in local aortic wall. The inflammatory infiltrates of the perivascular adipose tissue (PAT) surrounding AAAs were associated with AAAs and have been shown to contribute vascular pathology. However, the mechanism by which PAT inflammation contributes to vascular pathology in AAA remains to be clarified. This study aimed to explore the association between immune cell infiltration and key gene expression profile in PAT of AAA. For that, a gene expression dataset of human dilated perivascular adipose tissue (dPAT), non-dilated perivascular adipose tissue (ndPAT), subcutaneous abdominal fat (SAF) and omental-visceral fat (OVF) samples, as well as another microarray dataset of the abdominal perivascular adipose tissue in peripheral artery disease patients were downloaded from GEO database for analysis in this study. The CIBERSORT algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm were used for the identification of immune infiltration, immune-related genes and the development of diagnostic signature. Our data discovered a significant higher proportion of activated mast cells and follicular helper T (Tfh) cells in dPAT than ndPAT, OVT and SAF samples. Moreover, AP-1 family members (FOS, FOSB, ATF3, JUN and JUNB) were found to compose the hub genes of purple module in WGCNA. Among them, FOS gene acts as a higher efficient marker to discriminate dPAT from ndPAT, OVT and SAF in AAA. Meanwhile, the expression profiles of the AP-1 family members are all significantly positive correlated with activated mast cell, plasma cell and Tfh cell infiltration in dPAT of AAA. Therefore, in the PAT surrounding AAA, the signature of inflammatory infiltration might be represented by a FOS-dominated cell network consist of activated mast cell, plasma cell and Tfh cell. Given the complicated etiology of AAA, our results are likely to shed new light on the pathophysiologic mechanism of AAA influenced by the local dPAT.
Collapse
|
13
|
Lu J, Wu J, Mao L, Xu H, Wang S. Revisiting PD-1/PD-L pathway in T and B cell response: Beyond immunosuppression. Cytokine Growth Factor Rev 2022; 67:58-65. [PMID: 35850949 DOI: 10.1016/j.cytogfr.2022.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022]
Abstract
The regulation of T cell response depends on co-inhibitory pathways that serve to control immune-mediated tissue damage and resolve inflammation by modulating the magnitude and duration of immune response. In this process, the axis of T-cell-expressed programmed death-1 (PD-1) and its ligands (PD-L1 and PD-L2) play a key role. While the PD-1/PD-L pathway has received considerable attention for its role in the maintenance of T cell exhaustion in cancer and chronic infection, the PD-1/PD-L pathway also plays diverse roles in regulating host immunity beyond T cell exhaustion. In this review, we will discuss emerging concepts in co-stimulatory functions of PD-1/PD-L pathway on T cell- and B cell response and explore the potential underlying mechanisms. In addition, based on the elevated expression of PD-1 and its ligands in local inflamed tissues, we further discussed the role of PD-1/PD-L pathway in autoimmune diseases.
Collapse
Affiliation(s)
- Jian Lu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Wu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China.
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
T Cell Roles and Activity in Chronic Sclerosing Sialadenitis as IgG4-Related Disease: Current Concepts in Immunopathogenesis. Autoimmune Dis 2022; 2022:5689883. [PMID: 35769404 PMCID: PMC9236833 DOI: 10.1155/2022/5689883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
IgG4-related disease is a multiorgan immunological fibroinflammatory disorder characterized by lymphoplasmacytic infiltration and fibrosis in multiple organs accompanied by high serum IgG4 levels. The salivary glands are the most common organs involved in this disease. Recently, chronic sclerosing sialadenitis affecting salivary glands, formerly known as Küttner's tumor, and Mikulicz's disease have been classified as a class of IgG4-related diseases. The etiopathobiology of IgG4-related disease is not fully understood. It has recently been hypothesized that the inflammatory and fibrotic process and the increased serum IgG4+ levels in IgG4-related disease are the result of an interaction between B cells and T helper cells, suggesting that T cells may play a key role in the pathogenesis of this disease. The aim of this review is to discuss the proposed roles of different T cell subsets in the pathogenesis of IgG4-related disease focusing on their roles in immunopathogenesis of IgG4-related sialadenitis.
Collapse
|
15
|
Gupta S, Demirdag Y, Gupta AA. Members of the Regulatory Lymphocyte Club in Common Variable Immunodeficiency. Front Immunol 2022; 13:864307. [PMID: 35669770 PMCID: PMC9164302 DOI: 10.3389/fimmu.2022.864307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
The role of CD4 T regulatory cells is well established in peripheral tolerance and the pathogenesis of the murine model and human autoimmune diseases. CD4 T regulatory cells (CD4 Tregs) have been investigated in common variable immunodeficiency (CVID). Recently, additional members have been added to the club of regulatory lymphocytes. These include CD8 T regulatory (CD8 Tregs), B regulatory (Bregs), and T follicular helper regulatory (TFR) cells. There are accumulating data to suggest their roles in both human and experimental models of autoimmune disease. Their phenotypic characterization and mechanisms of immunoregulation are evolving. Patients with CVID may present or are associated with an increased frequency of autoimmunity and autoimmune diseases. In this review, we have primarily focused on the characteristics of CD4 Tregs and new players of the regulatory club and their changes in patients with CVID in relation to autoimmunity and emphasized the complexity of interplay among various regulatory lymphocytes. We suggest future careful investigations of phenotypic and functional regulatory lymphocytes in a large cohort of phenotypic and genotypically defined CVID patients to define their role in the pathogenesis of CVID and autoimmunity associated with CVID.
Collapse
|
16
|
Ghosh S, Leavenworth JW. Current Advances in Follicular Regulatory T-Cell Biology. Crit Rev Immunol 2022; 42:35-47. [PMID: 37017287 PMCID: PMC11034780 DOI: 10.1615/critrevimmunol.2022045746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Follicular regulatory T (TFR) cells are a population of CD4+ T-cells that concomitantly express markers for regulatory T-cells and follicular helper T (TFH) cells, and have been predominantly implicated in the regulation of humoral immunity via their suppressive functions. Rapid and robust progress has been made in the field of TFR cell research since the discovery of this subset over a decade ago. However, there is still a significant gap in our understanding of the mechanisms underlying the phenotypic and functional heterogeneity of TFR cells under various physiologic and pathologic settings. In this review article, we aim to highlight the most up-to-date concepts and investigations in both experimental animal models and human studies to provide a perspective on our understanding of TFR biology with particular emphasis on these cells in the context of disease settings.
Collapse
Affiliation(s)
- Sadashib Ghosh
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 USA
- The O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
17
|
Mortezaee K, Majidpoor J. The impact of hypoxia on immune state in cancer. Life Sci 2021; 286:120057. [PMID: 34662552 DOI: 10.1016/j.lfs.2021.120057] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022]
Abstract
Hypoxia is a known feature of solid tumors and a critical promoter of tumor hallmarks. Hypoxia influences tumor immunity in a way favoring immune evasion and resistance. Extreme hypoxia and aberrant hypoxia-inducible factor-1 (HIF-1) activity in tumor microenvironment (TME) is a drawback for effective immunotherapy. Infiltration and activity of CD8+ T cells is reduced in such condition, whereas regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) show high activities. Highly hypoxic TME also impairs maturation and activity of dendritic cell (DCs) and natural killer (NK) cells. In addition, the hypoxic TME positively is linked positively with metabolic changes in cells of immune system. These alterations are indicative of a need for hypoxia modulation as a complementary targeting strategy to go with immune checkpoint inhibitor (ICI) therapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
18
|
Zhang X, Ge R, Chen H, Ahiafor M, Liu B, Chen J, Fan X. Follicular Helper CD4 + T Cells, Follicular Regulatory CD4 + T Cells, and Inducible Costimulator and Their Roles in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2021; 2021:2058964. [PMID: 34552387 PMCID: PMC8452443 DOI: 10.1155/2021/2058964] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Follicular helper CD4+ T (TFH) cells are a specialized subset of effector T cells that play a central role in orchestrating adaptive immunity. TFH cells mainly promote germinal center (GC) formation, provide help to B cells for immunoglobulin affinity maturation and class-switch recombination of B cells, and facilitate production of long-lived plasma cells and memory B cells. TFH cells express the nuclear transcriptional repressor B cell lymphoma 6 (Bcl-6), the chemokine (C-X-C motif) receptor 5 (CXCR5), the CD28 family members programmed cell death protein-1 (PD-1) and inducible costimulator (ICOS) and are also responsible for the secretion of interleukin-21 (IL-21) and IL-4. Follicular regulatory CD4+ T (TFR) cells, as a regulatory counterpart of TFH cells, participate in the regulation of GC reactions. TFR cells not only express markers of TFH cells but also express markers of regulatory T (Treg) cells containing FOXP3, glucocorticoid-induced tumor necrosis factor receptor (GITR), cytotoxic T lymphocyte antigen 4 (CTLA-4), and IL-10, hence owing to the dual characteristic of TFH cells and Treg cells. ICOS, expressed on activated CD4+ effector T cells, participates in T cell activation, differentiation, and effector process. The expression of ICOS is highest on TFH and TFR cells, indicating it as a key regulator of humoral immunity. Multiple sclerosis (MS) is a severe autoimmune disease that affects the central nervous system and results in disability, mediated by autoreactive T cells with evolving evidence of a remarkable contribution from humoral responses. This review summarizes recent advances regarding TFH cells, TFR cells, and ICOS, as well as their functional characteristics in relation to MS.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Maxwell Ahiafor
- School of International Studies, Binzhou Medical University, Yantai, 264003 Shandong, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| |
Collapse
|
19
|
Nakayamada S, Tanaka Y. Clinical relevance of T follicular helper cells in systemic lupus erythematosus. Expert Rev Clin Immunol 2021; 17:1143-1150. [PMID: 34469695 DOI: 10.1080/1744666x.2021.1976146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION T helper cells regulate a variety of immune responses and are involved in the pathogenesis of infection, allergy and autoimmune diseases. T follicular helper (Tfh) cells, which induce B cell maturation, play an important role in the production of the extremely diverse autoantibodies found in systemic lupus erythematosus (SLE). AREA COVERED We provide an overview of the plasticity and diversity of Tfh cells in humans and their involvement in the pathology and pathogenesis of SLE. Our review outlines the potential of Tfh cells as a therapeutic target for SLE. EXPERT OPINION Tfh cells are involved in the pathogenesis of SLE based on their plasticity and diversity. Tfh cell differentiation and function are variably regulated by cytokines (IL-12, interferons, IL-2, etc), co-stimulatory molecules (ICOS, CD40L, OX40, etc), and intracellular signals (JAK-STAT, etc). Elucidation of the mechanisms underlying Tfh cell differentiation and function may lead to the development of new therapies for SLE.
Collapse
Affiliation(s)
- Shingo Nakayamada
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|