1
|
Yu B, Jia S, Chen Y, Guan R, Chen S, Tang W, Bao T, Tian Z. CXCL4 deficiency limits M4 macrophage infiltration and attenuates hyperoxia-induced lung injury. Mol Med 2024; 30:253. [PMID: 39707183 DOI: 10.1186/s10020-024-01043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD), a chronic lung disease prevalent among premature infants, significantly impacts lifelong respiratory health. Macrophages, as key components of the innate immune system, play a role in lung tissue inflammation and injury, exhibiting diverse and dynamic functionalities. The M4 macrophage, a distinctive subtype primarily triggered by chemokine (C-X-C motif) ligand 4 (CXCL4), has been implicated in pulmonary inflammatory and fibrotic processes. Nonetheless, its contribution to the pathophysiology of BPD remains uncertain. OBJECTIVE This study aimed to elucidate the involvement of CXCL4 in hyperoxia-induced neonatal lung injury and fibrosis, with a particular focus on its influence on M4 macrophages. METHODS A BPD model in neonatal mice was established through continuous exposure to 95% O2 for 7 days. Comparative analyses of lung damage and subsequent regeneration were conducted between wild-type (WT) and CXCL4 knockout (KO) mice. Lung tissue inflammation and fibrosis were assessed using histological and immunofluorescence staining, enzyme-linked immunosorbent assay, Western blot, and real-time quantitative polymerase chain reaction. Differentiation of M0 and M4 macrophages was performed in vitro using macrophage colony-stimulating factor and CXCL4, while expressions of S100A8 and MMP7, along with migration assays, were evaluated. RESULTS Elevated CXCL4 levels and M4 macrophage activation were identified in the lung tissue of BPD model mice. CXCL4 deficiency conferred protection to alveolar type 2 epithelial cells, reduced sphingosine-1-phosphate metabolic activity, mitigated pulmonary fibrosis, and limited M4 macrophage progression. This deletion further enhanced lung matrix remodeling during recovery. In vitro, CXCL4 promoted M4 macrophage differentiation and increased macrophage migration via chemokine (C-C motif) receptor 1. CONCLUSION CXCL4 contributes to hyperoxia-induced lung injury and fibrosis through modulation of cytokine release, alveolar cell proliferation, lipid metabolism, and the regulation of macrophage phenotype and function.
Collapse
Affiliation(s)
- Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Siyuan Jia
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Yu Chen
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Rong Guan
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Shuyu Chen
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Wanwen Tang
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China
| | - Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1 Western Huanghe Road, Huai'an, Jiangsu, 223300, China.
| |
Collapse
|
2
|
Zheng X, Tan Z, Zhu D, Zhao D, Liu C, Wang S, Wang X, Zhang Y. Eclipta prostrata improves alveolar development of bronchopulmonary dysplasia via suppressing the NLRP3 inflammasome in a DLD-dependent manner. Pediatr Pulmonol 2024; 59:3371-3382. [PMID: 39115441 DOI: 10.1002/ppul.27209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES Bronchopulmonary dysplasia (BPD), the most common late morbidity in preterm infants, is characterized by impaired alveolar development caused by persistent lung inflammation. Studies have shown that NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome-mediated inflammation is critically involved in the development of BPD. As a traditional Chinese medicinal herb, Eclipta prostrata (EAP) exhibits potent anti-inflammatory properties. Our study aims to investigate whether EAP could improve the lung development of BPD by suppressing the lung inflammatory response. METHODS The BPD rat model was established by intra-amniotic injection of lipopolysaccharide (LPS) and postnatal exposure to hyperoxia. Changes in the NLRP3 inflammasome and pyroptosis were assessed by treatment with EAP. The effect of EAP on the NLRP3 inflammasome was tested in vitro using the THP-1 cell line and primary alveolar macrophages. Proteomics analysis was used to elucidate the mechanism of action of EAP. RESULTS Histopathological and immunofluorescence results of lung tissues revealed that LPS and hyperoxia induced lung injury and triggered NLRP3 inflammasome activation and pyroptosis in alveolar macrophages. EAP ameliorated BPD lung injury, inhibited NLRP3 inflammasome activation and reduced gasdermin D (GSDMD) expression in alveolar macrophages. EAP downregulated the expression of NLRP3 inflammasome pathway molecules (NLRP3, caspase-1, and IL-1β) and GSDMD in LPS-stimulated THP-1 macrophages and primary alveolar macrophages. In addition, proteomics analysis identified that dihydrolipoamide dehydrogenase (DLD) interacted with EAP. Inhibition of DLD activity abolished the protective effects of EAP. CONCLUSIONS Our study suggested that EAP could attenuate arrest of alveolar development via inhibiting NLRP3 inflammasome in a DLD-dependent way, and could be a potential therapeutic method for BPD.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Tan
- Department of Pediatric Hematology-Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danying Zhu
- Department of Respiratory, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongying Zhao
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengbo Liu
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Wang X, Yao F, Yang L, Han D, Zeng Y, Huang Z, Yang C, Lin B, Chen X. Macrophage extracellular vesicle-packaged miR-23a-3p impairs maintenance and angiogenic capacity of human endothelial progenitor cells in neonatal hyperoxia-induced lung injury. Stem Cell Res Ther 2024; 15:295. [PMID: 39256862 PMCID: PMC11389047 DOI: 10.1186/s13287-024-03920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Premature infants requiring mechanical ventilation and supplemental oxygen for respiratory support are at increased risk for bronchopulmonary dysplasia (BPD), wherein inflammation have been proposed as a driver of hyperoxia-induced injuries, including persistent loss of endothelial progenitor cells (EPCs), impaired vascularization and eventual alveolar simplification in BPD lungs. However, the underlying mechanisms linking these phenomena remain poorly defined. METHODS We used clodronate liposomes to deplete macrophages in a mouse model of neonatal hyperoxia-induced lung injury to evaluate if EPC loss in BPD lungs could be an effect of macrophage infiltration. We further generated in vitro culture systems initiated with cord blood (CB)-derived CD34+ EPCs and neonatal macrophages either polarized from CB-derived monocytes or isolated from tracheal aspirates of human preterm infants requiring mechanical ventilation and oxygen supplementation, to identify EV-transmitted molecular mechanism that is critical for inhibitory actions of hyperoxic macrophages on EPCs. RESULTS Initial experiments using mouse model identified the crucial role of macrophage infiltration in eliciting significant reduction of c-Kit+ EPCs in BPD lungs. Further examination of this concept in human system, we found that hyperoxia-exposed neonatal macrophages hamper human CD34+ EPC maintenance and impair endothelial function in the differentiated progeny via the EV transmission of miR-23a-3p. Notably, treatment with antagomiR-23a-3p to silence miR-23a-3p in vivo enhances c-Kit+ EPC maintenance, and increases capillary density, and consequently mitigates simplified alveolarization in BPD lungs. CONCLUSION Our findings highlight the importance of pulmonary intercellular communication in the pathophysiology of BPD, by identifying a linkage through vesicle transfer of miR-23a-3p from hyperoxic macrophages to EPCs, and thus demonstrating potential for novel therapeutic target in BPD.
Collapse
Affiliation(s)
- Xuan Wang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Fang Yao
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Lingling Yang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Dongshan Han
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Yali Zeng
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Zilu Huang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
| | - Chuanzhong Yang
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China
| | - Bingchun Lin
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China.
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, 518000, China.
- The First Clinical Medical School, Southern Medical University, Guangzhou, China.
- Shenzhen Key Laboratory of Maternal and Child Health and Diseases, Shenzhen, China.
| |
Collapse
|
4
|
He Y, Li D, Zhang M, Li F. Bioinformatic analysis reveals the relationship between macrophage infiltration and Cybb downregulation in hyperoxia-induced bronchopulmonary dysplasia. Sci Rep 2024; 14:20089. [PMID: 39209930 PMCID: PMC11362550 DOI: 10.1038/s41598-024-70877-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common sequela of prematurity and is characterized by alveolar simplification and lung angiogenesis failure. The aim of this study was to explore the immune signatures of BPD. Differentially expressed gene analysis and immune infiltration analysis were conducted to identify key immune cell types and related genes by using the mRNA-seq dataset GSE25286. The expression patterns of key genes were validated in the scRNA-seq dataset GSE209664 and in experiments. The cell-cell crosstalk of key immune cells was explored with CellChat. We found that differentially expressed genes between BPD mice and controls were mostly enriched in leukocyte migration and M1 macrophages were highly enriched in BPD lungs. Hub genes (Cybb, Papss2, F7 and Fpr2) were validated at the single-cell level, among which the downregulation of Cybb was most closely related to macrophage infiltration. The reduced mRNA and protein levels of Cybb were further validated in animal experiments. Colocalization analysis of Cybb and macrophage markers demonstrated a significant decrease of Cybb in M1 macrophages. Cell-cell crosstalk found that alveolar epithelial cells interacted actively with macrophages through MIF-(CD74 + CD44) signalling. In conclusion, M1 macrophages played important roles in promoting BPD-like lung injury, which was correlated with a specific reduction of Cybb in macrophages and the potential activation of MIF signalling.
Collapse
Affiliation(s)
- Yi He
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children; Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing, 401147, China
| | - Decai Li
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children; Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing, 401147, China
| | - Meiyu Zhang
- Department of Neonatal Diagnosis and Treatment Center, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400015, China
| | - Fang Li
- Department of Pediatrics, Women and Children's Hospital of Chongqing Medical University, Chongqing Health Center for Women and Children; Chongqing Research Center for Prevention & Control of Maternal and Child Diseases and Public Health, Chongqing, 401147, China.
| |
Collapse
|
5
|
Kai J, Huang H, Su J, Chen Q. Identification of shared immune infiltration characteristic molecules in dermatomyositis and nasopharyngeal carcinoma using bioinformatics: Traits in dermatomyositis and nasopharyngeal cancer. Skin Res Technol 2024; 30:e13871. [PMID: 39081134 PMCID: PMC11289422 DOI: 10.1111/srt.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Dermatomyositis (DM) is a kind of dermatologically associated autoimmune disease that is notably associated with an increased risk of concurrent malignancies, although the underlying mechanisms remain to be fully elucidated. The purpose of this investigation was to examine the immunological parallels between DM and nasopharyngeal carcinoma (NPC), with the aim of identifying pivotal biomarkers that could facilitate a deeper understanding and enhance the predictive capabilities of NPC in DM patients. METHOD Data for DM and NPC were sourced from the Gene Expression Omnibus (GEO) database. Immune infiltration was analyzed using the "cibersort" R package, differentially expressed genes (DEGs) were identified with the "limma" package, and functional pathways were investigated through Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses. Characteristic genes were determined by Utilizing Protein-Protein Interaction (PPI) and Least Absolute Shrinkage and Selection Operator (LASSO), and their features were validated using the GSE53819 dataset. RESULTS In comparison to normal samples, significant infiltration of macrophage M1 was observed in both DM and NPC. The analysis revealed 77 DEGs in DM and 1051 DEGs in NPC, with 22 genes found to be co-DEGs. Following PPI and LASSO analysis, six distinctive genes were retained. Notably, CCL8, IFIH1, CXCL10, and CXCL11 exhibited optimal diagnostic efficacy for NPC and displayed significant correlation with macrophage M1 infiltration within the carcinoma. CONCLUSION Four characteristic genes, CCL8, IFIH1, CXCL10, and CXCL11 are risk factors for both DM and NPC. They exhibit a robust correlation with the incidence of NPC and offer a commendable diagnostic efficacy. Furthermore, they may serve as prospective predictive biomarkers for the emergence of NPC in DM.
Collapse
Affiliation(s)
- Jinyan Kai
- Department of Clinical Medical LaboratoryThe Affiliated Second Hospital of Xiamen Medical CollegeXiamenFujianChina
| | - Haitao Huang
- Department of MicrobiologyGuilin Medical UniversityGuilinGuangxiChina
| | - Jiaqi Su
- Department of Clinical Medical LaboratoryThe Affiliated Second Hospital of Xiamen Medical CollegeXiamenFujianChina
| | - Qiong Chen
- Department of Traditional Chinese MedicineShanghai General Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Liu C, Fu C, Sun Y, You Y, Wang T, Zhang Y, Xia H, Wang X. Itaconic acid regulation of TFEB-mediated autophagy flux alleviates hyperoxia-induced bronchopulmonary dysplasia. Redox Biol 2024; 72:103115. [PMID: 38554522 PMCID: PMC10998238 DOI: 10.1016/j.redox.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Premature infants often require oxygen supplementation, which can elicit bronchopulmonary dysplasia (BPD) and lead to mitochondrial dysfunction. Mitochondria play important roles in lung development, in both normal metabolism and apoptosis. Enhancing our comprehension of the underlying mechanisms in BPD development can facilitate the effective treatments. METHODS Plasma samples from BPD and non-BPD infants were collected at 36 weeks post-menstrual age and used for metabolomic analysis. Based on hyperoxia-induced animal and cell models, changes in mitophagy and apoptosis were evaluated following treatment with itaconic acid (ITA). Finally, the mechanism of action of ITA in lung development was comprehensively demonstrated through rescue strategies and administration of corresponding inhibitors. RESULTS An imbalance in the tricarboxylic acid (TCA) cycle significantly affected lung development, with ITA serving as a significant metabolic marker for the outcomes of lung development. ITA improved the morphological changes in BPD rats, promoted SP-C expression, and inhibited the degree of alveolar type II epithelial cells (AEC II) apoptosis. Mechanistically, ITA mainly promotes the nuclear translocation of transcription factor EB (TFEB) to facilitate dysfunctional mitochondrial clearance and reduces apoptosis in AEC II cells by regulating autophagic flux. CONCLUSION The metabolic imbalance in the TCA cycle is closely related to lung development. ITA can improve lung development by regulating autophagic flux and promote the nuclear translocation of TFEB, implying its potential therapeutic utility in the treatment of BPD.
Collapse
Affiliation(s)
- Chengbo Liu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Changchang Fu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China; Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yazhou Sun
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - You You
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Tengfei Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Hongping Xia
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
7
|
Alserawan L, Mulet M, Anguera G, Riudavets M, Zamora C, Osuna-Gómez R, Serra-López J, Barba Joaquín A, Sullivan I, Majem M, Vidal S. Kinetics of IFNγ-Induced Cytokines and Development of Immune-Related Adverse Events in Patients Receiving PD-(L)1 Inhibitors. Cancers (Basel) 2024; 16:1759. [PMID: 38730712 PMCID: PMC11083441 DOI: 10.3390/cancers16091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Immune checkpoint inhibitors (ICI) have the potential to trigger unpredictable immune-related adverse events (irAEs), which can be severe. The underlying mechanisms of these events are not fully understood. As PD-L1 is upregulated by IFN, the heightened immune activation resulting from PD-1/PD-L1 inhibition may enhance the IFN response, triggering the expression of IFN-inducible genes and contributing to irAE development and its severity. In this study, we investigated the interplay between irAEs and the expression of IFN-inducible chemokines and cytokines in 134 consecutive patients with solid tumours treated with PD-(L)1 inhibitors as monotherapy or in combination with chemotherapy or other immunotherapy agents. We compared the plasma levels of IFN-associated cytokines (CXCL9/10/11, IL-18, IL-10, IL-6 and TGFβ) at various time points (at baseline, at the onset of irAE and previous to irAE onset) in three patient groups categorized by irAE development and severity: patients with serious irAEs, mild irAEs and without irAEs after PD-(L)1 inhibitors. No differences were observed between groups at baseline. However, patients with serious irAEs exhibited significant increases in CXCL9/10/11, IL-18 and IL-10 levels at the onset of the irAE compared to baseline. A network analysis and correlation patterns highlighted a robust relationship among these chemokines and cytokines at serious-irAE onset. Combining all of the analysed proteins in a cluster analysis, we identified a subgroup of patients with a higher incidence of serious irAEs affecting different organs or systems. Finally, an ROC analysis and a decision tree model proposed IL-18 levels ≥ 807 pg/mL and TGFβ levels ≤ 114 pg/mL as predictors for serious irAEs in 90% of cases. In conclusion, our study elucidates the dynamic changes in cytokine profiles associated with serious irAE development during treatment with PD-(L)1 inhibitors. The study's findings offer valuable insights into the intricate IFN-induced immune responses associated with irAEs and propose potential predictive markers for their severity.
Collapse
Affiliation(s)
- Leticia Alserawan
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
- Department of Immunology, Hospital Clínic Barcelona, 08036 Barcelona, Spain
| | - Maria Mulet
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Geòrgia Anguera
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Mariona Riudavets
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
- Department of Pneumologie, Hôpital Cochin—APHP Centre, 75014 Paris, France
| | - Carlos Zamora
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Rubén Osuna-Gómez
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| | - Jorgina Serra-López
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Andrés Barba Joaquín
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Ivana Sullivan
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Margarita Majem
- Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; (G.A.); (M.R.); (J.S.-L.); (A.B.J.); (I.S.); (M.M.)
| | - Silvia Vidal
- Immunology-Inflammatory Diseases, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; (L.A.); (M.M.); (C.Z.); (R.O.-G.)
| |
Collapse
|
8
|
Mestan KK, Sharma A, Lazar S, Pandey S, Parast MM, Laurent LC, Prince LS, Sahoo D. Macrophage Polarizations in the Placenta and Lung are Associated with Bronchopulmonary Dysplasia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577443. [PMID: 38352616 PMCID: PMC10862768 DOI: 10.1101/2024.01.26.577443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The intricate interplay between macrophage polarization and placenta vascular dysfunction has garnered increasing attention in the context of placental inflammatory diseases. This study delves into the complex relationship between macrophage polarization within the placenta and its potential impact on the development of vascular dysfunction and inflammatory conditions. The placenta, a crucial organ in fetal development, relies on a finely tuned balance of immune responses for proper functioning. Disruptions in this delicate equilibrium can lead to pathological conditions, including inflammatory diseases affecting the fetus and newborn infant. We explored the interconnectedness between placental macrophage polarization and its relevance to lung macrophages, particularly in the context of early life lung development. Bronchopulmonary dysplasia (BPD), the most common chronic lung disease of prematurity, has been associated with abnormal immune responses, and understanding the role of macrophages in this context is pivotal. The investigation aims to shed light on how alterations in placental macrophage polarization may contribute to lung macrophage behavior and, consequently, influence the development of BPD. By unraveling the intricate mechanisms linking macrophage polarization, placental dysfunction and BPD, this research seeks to provide insights that could pave the way for targeted therapeutic interventions. The findings may offer novel perspectives on preventing and managing placental and lung-related pathologies, ultimately contributing to improved maternal and neonatal health outcomes.
Collapse
Affiliation(s)
- Karen K. Mestan
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Abhineet Sharma
- Department of Pediatrics, Divisions of Neonatology and Pediatric Pulmonology, University of Nebraska College of Medicine, Omaha, NE
| | - Sarah Lazar
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Sonalisa Pandey
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Mana M. Parast
- Department of Pathology, University of California San Diego, La Jolla, CA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA
| | | | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, Jacob’s School of Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|