1
|
Alatawi A, Gumel AB. Mathematical assessment of control strategies against the spread of MERS-CoV in humans and camels in Saudi Arabia. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6425-6470. [PMID: 39176403 DOI: 10.3934/mbe.2024281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A new mathematical model for the transmission dynamics and control of the Middle Eastern respiratory syndrome (MERS), a respiratory virus caused by MERS-CoV coronavirus (and primarily spread to humans by dromedary camels) that first emerged out of the Kingdom of Saudi Arabia (KSA) in 2012, was designed and used to study the transmission dynamics of the disease in a human-camel population within the KSA. Rigorous analysis of the model, which was fitted and cross-validated using the observed MERS-CoV data for the KSA, showed that its disease-free equilibrium was locally asymptotically stable whenever its reproduction number (denoted by $ {\mathbb R}_{0M} $) was less than unity. Using the fixed and estimated parameters of the model, the value of $ {\mathbb R}_{0M} $ for the KSA was estimated to be 0.84, suggesting that the prospects for MERS-CoV elimination are highly promising. The model was extended to allow for the assessment of public health intervention strategies, notably the potential use of vaccines for both humans and camels and the use of face masks by humans in public or when in close proximity with camels. Simulations of the extended model showed that the use of the face mask by humans who come in close proximity with camels, as a sole public health intervention strategy, significantly reduced human-to-camel and camel-to-human transmission of the disease, and this reduction depends on the efficacy and coverage of the mask type used in the community. For instance, if surgical masks are prioritized, the disease can be eliminated in both the human and camel population if at least 45% of individuals who have close contact with camels wear them consistently. The simulations further showed that while vaccinating humans as a sole intervention strategy only had marginal impact in reducing the disease burden in the human population, an intervention strategy based on vaccinating camels only resulted in a significant reduction in the disease burden in camels (and, consequently, in humans as well). Thus, this study suggests that attention should be focused on effectively combating the disease in the camel population, rather than in the human population. Furthermore, the extended model was used to simulate a hybrid strategy, which combined vaccination of both humans and camels as well as the use of face masks by humans. This simulation showed a marked reduction of the disease burden in both humans and camels, with an increasing effectiveness level of this intervention, in comparison to the baseline scenario or any of the aforementioned sole vaccination scenarios. In summary, this study showed that the prospect of the elimination of MERS-CoV-2 in the Kingdom of Saudi Arabia is promising using pharmaceutical (vaccination) and nonpharmaceutical (mask) intervention strategies, implemented in isolation or (preferably) in combination, that are focused on reducing the disease burden in the camel population.
Collapse
Affiliation(s)
- Adel Alatawi
- Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abba B Gumel
- Department of Mathematics, University of Maryland, College Park, MD, 20742, USA
- Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
2
|
Alkathlan MS, Alsuyufi YA, Alresheedi AF, Khalil R, Sheiq PA, Alotaieq SS, Almithn AA, Alissa II, Alayyaf HF, Alharbi RM, Alkhamis IA, Al-Wutayd O. Healthcare adjustments and concerns: a qualitative study exploring the perspectives of healthcare providers and administrative staff during the COVID-19 pandemic in Saudi Arabia. Front Public Health 2023; 11:961060. [PMID: 37250078 PMCID: PMC10211340 DOI: 10.3389/fpubh.2023.961060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Background Healthcare systems have modified their strategies to manage their staff, supplies, and space to deal systematically with the COVID-19 pandemic. This research aimed to explore the nature of hospital adjustments and the concerns of healthcare providers and administrative staff working in Governmental and private hospitals throughout the Qassim Region of the Kingdom of Saudi Arabia (KSA) during the pandemic. Methods A qualitative phenomenological study using semi-structured in-depth interviews were conducted with 75 purposively selected healthcare providers and administrative staff working at three main hospitals in the Qassim Region, KSA. The maximum variation sampling technique was utilized. Recruitment of participants was continued until data saturation was reached. All interviews were audiotaped, transcribed verbatim, and analyzed thematically. Results Four core themes were identified in this paper: (1) changes in hospital policy and procedures, (2) workforce management, (3) the well-being of the workforce, and (4) apprehensions and expectations of the workforce. The participants showed satisfaction with timely administrative decisions and new policies during the COVID-19 pandemic. Furthermore, the psychological health of healthcare professionals was affected more than their physical state. Finally, the providers perceived the emergence of multiple concerns in the coming months. Conclusion Although healthcare providers were initially overwhelmed, they gradually accepted new administrative policies. Numerous innovative interventions effectively reduced their physical workload and increased their productivity, but they remained significantly affected by a wide range of psychological disorders, with a high prevalence of obsessive-compulsive disorder. There were some concerns about the new SARS-CoV-2 variant, but the majority were optimistic.
Collapse
Affiliation(s)
- Mohammed S. Alkathlan
- MD Consultant Infectious Diseases, King Fahad Specialist Hospital, Buraydah, Saudi Arabia
| | - Yasir A. Alsuyufi
- MD Consultant Pediatric Gastroenterologist, King Saud Hospital, Unaizah, Saudi Arabia
| | | | - Rehana Khalil
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Parveen Anjum Sheiq
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Suliman S. Alotaieq
- Medical Students, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Abdullah A. Almithn
- Medical Students, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Ibrahim I. Alissa
- Medical Students, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Hamad F. Alayyaf
- Medical Students, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Raed M. Alharbi
- Medical Students, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Ibrahim A. Alkhamis
- Medical Students, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Osama Al-Wutayd
- Department of Family and Community Medicine, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
3
|
Rojas-Cruz AF, Gallego-Gómez JC, Bermúdez-Santana CI. RNA structure-altering mutations underlying positive selection on Spike protein reveal novel putative signatures to trace crossing host-species barriers in Betacoronavirus. RNA Biol 2022; 19:1019-1044. [PMID: 36102368 PMCID: PMC9481089 DOI: 10.1080/15476286.2022.2115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Similar to other RNA viruses, the emergence of Betacoronavirus relies on cross-species viral transmission, which requires careful health surveillance monitoring of protein-coding information as well as genome-wide analysis. Although the evolutionary jump from natural reservoirs to humans may be mainly traced-back by studying the effect that hotspot mutations have on viral proteins, it is largely unexplored if other impacts might emerge on the structured RNA genome of Betacoronavirus. In this survey, the protein-coding and viral genome architecture were simultaneously studied to uncover novel insights into cross-species horizontal transmission events. We analysed 1,252,952 viral genomes of SARS-CoV, MERS-CoV, and SARS-CoV-2 distributed across the world in bats, intermediate animals, and humans to build a new landscape of changes in the RNA viral genome. Phylogenetic analyses suggest that bat viruses are the most closely related to the time of most recent common ancestor of Betacoronavirus, and missense mutations in viral proteins, mainly in the S protein S1 subunit: SARS-CoV (G > T; A577S); MERS-CoV (C > T; S746R and C > T; N762A); and SARS-CoV-2 (A > G; D614G) appear to have driven viral diversification. We also found that codon sites under positive selection on S protein overlap with non-compensatory mutations that disrupt secondary RNA structures in the RNA genome complement. These findings provide pivotal factors that might be underlying the eventual jumping the species barrier from bats to intermediate hosts. Lastly, we discovered that nearly half of the Betacoronavirus genomes carry highly conserved RNA structures, and more than 90% of these RNA structures show negative selection signals, suggesting essential functions in the biology of Betacoronavirus that have not been investigated to date. Further research is needed on negatively selected RNA structures to scan for emerging functions like the potential of coding virus-derived small RNAs and to develop new candidate antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Alexis Felipe Rojas-Cruz
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, National University of Colombia, Bogota Colombia
| | - Juan Carlos Gallego-Gómez
- Molecular and Translational Medicine Group, Faculty of Medicine, University of Antioquia, Medellin Colombia
| | - Clara Isabel Bermúdez-Santana
- Theoretical and Computational RNomics Group, Department of Biology, Faculty of Sciences, National University of Colombia, Bogota Colombia
- Center of Excellence in Scientific Computing, National University of Colombia, Bogota Colombia
| |
Collapse
|
4
|
Motayo BO, Oluwasemowo OO, Akinduti PA. Evolutionary dynamics and geographic dispersal of beta coronaviruses in African bats. PeerJ 2020; 8:e10434. [PMID: 33304657 PMCID: PMC7700737 DOI: 10.7717/peerj.10434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/06/2020] [Indexed: 11/20/2022] Open
Abstract
Bats have been shown to serve as reservoir host of various viral agents including coronaviruses. They have also been associated with the novel coronavirus SARS-CoV-2. This has made them an all important agent for CoV evolution and transmission. Our objective in this study was to investigate the dispersal, phylogenomics and evolution of betacoronavirus (βCoV) among African bats. We retrieved sequence data from established databases such as GenBank and Virus Pathogen Resource, covering the partial RNA dependent RNA polymerase (RdRP) gene of bat coronaviruses from eight African, three Asian, five European, two South American countries and Australia. We analyzed for phylogeographic information relating to genetic diversity and evolutionary dynamics. Our study revealed that majority of the African strains fell within Norbecovirus subgenera, with an evolutionary rate of 1.301 × 10-3, HPD (1.064 × 10-3-1.434 × 10-3) subs/site/year. The African strains diversified into three main subgenera, Norbecovirus, Hibecovirus and Merbecovirus. The time to most common recent ancestor for Norbecovirus strains was 1973, and 2007, for the African Merbecovirus strains. There was evidence of inter species transmission of Norbecovirus among bats in Cameroun and DRC. Phlylogeography showed that there were inter-continental spread of Bt-CoV from Europe, China and Hong Kong into Central and Southern Africa, highlighting the possibility of long distance transmission. Our study has elucidated the possible evolutionary origins of βCoV among African bats; we therefore advocate for broader studies of whole genome sequences of BtCoV to further understand the drivers for their emergence and zoonotic spillovers into human population.
Collapse
Affiliation(s)
- Babatunde O Motayo
- Department of Virology, College of Medicine, University of Ibadan, Ibadan, Oyo, Nigeria.,Department of Medical Microbiology and Parasitology, Federal Medical Center, Abeokuta, Nigeria, Abeokuta, Ogun, Nigeria
| | | | - Paul A Akinduti
- Department of Biological Science, Covenant University, Otta, Ogun, Nigeria
| |
Collapse
|
5
|
Lester S, Harcourt J, Whitt M, Al-Abdely HM, Midgley CM, Alkhamis AM, Aziz Jokhdar HA, Assiri AM, Tamin A, Thornburg N. Middle East respiratory coronavirus (MERS-CoV) spike (S) protein vesicular stomatitis virus pseudoparticle neutralization assays offer a reliable alternative to the conventional neutralization assay in human seroepidemiological studies. Access Microbiol 2019; 1:e000057. [PMID: 32974558 PMCID: PMC7472544 DOI: 10.1099/acmi.0.000057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/15/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel zoonotic coronavirus that was identified in 2012. MERS-CoV infection in humans can result in an acute, severe respiratory disease and in some cases multi-organ failure; the global mortality rate is approximately 35 %. The MERS-CoV spike (S) protein is a major target for neutralizing antibodies in infected patients. The MERS-CoV microneutralization test (MNt) is the gold standard method for demonstrating prior infection. However, this method requires the use of live MERS-CoV in biosafety level 3 (BSL-3) containment. The present work describes the generation and validation of S protein-bearing vesicular stomatitis virus (VSV) pseudotype particles (VSV-MERS-CoV-S) in which the VSV glycoprotein G gene has been replaced by the luciferase reporter gene, followed by the establishment of a pseudoparticle-based neutralization test to detect MERS-CoV neutralizing antibodies under BSL-2 conditions. Using a panel of human sera from confirmed MERS-CoV patients, the VSV-MERS-CoV particle neutralization assay produced results that were highly comparable to those of the microneutralization test using live MERS-CoV. The results suggest that the VSV-MERS-CoV-S pseudotype neutralization assay offers a highly specific, sensitive and safer alternative method to detect MERS-CoV neutralizing antibodies in human sera.
Collapse
Affiliation(s)
- Sandra Lester
- Synergy America, Inc., Duluth, GA, USA
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
- *Correspondence: Sandra Lester,
| | - Jennifer Harcourt
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Michael Whitt
- The University of Tennessee Health Science Center, Microbiology, Immunology, and Biochemistry, Memphis, TN, USA
| | | | - Claire M. Midgley
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | | | | | | | - Azaibi Tamin
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Natalie Thornburg
- National Center for Immunization and Respiratory Diseases, Division of Viral Diseases, Respiratory Viruses Laboratory Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| |
Collapse
|
6
|
Ciccozzi M, Lai A, Zehender G, Borsetti A, Cella E, Ciotti M, Sagnelli E, Sagnelli C, Angeletti S. The phylogenetic approach for viral infectious disease evolution and epidemiology: An updating review. J Med Virol 2019; 91:1707-1724. [PMID: 31243773 DOI: 10.1002/jmv.25526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022]
Abstract
In the last decade, the phylogenetic approach is recurrent in molecular evolutionary analysis. On 12 May, 2019, about 2 296 213 papers are found, but typing "phylogeny" or "epidemiology AND phylogeny" only 199 804 and 20 133 are retrieved, respectively. Molecular epidemiology in infectious diseases is widely used to define the source of infection as so as the ancestral relationships of individuals sampled from a population. Coalescent theory and phylogeographic analysis have had scientific application in several, recent pandemic events, and nosocomial outbreaks. Hepatitis viruses and immunodeficiency virus (human immunodeficiency virus) have been largely studied. Phylogenetic analysis has been recently applied on Polyomaviruses so as in the more recent outbreaks due to different arboviruses type as Zika and chikungunya viruses discovering the source of infection and the geographic spread. Data on sequences isolated by the microorganism are essential to apply the phylogenetic tools and research in the field of infectious disease phylodinamics is growing up. There is the need to apply molecular phylogenetic and evolutionary methods in areas out of infectious diseases, as translational genomics and personalized medicine. Lastly, the application of these tools in vaccine strategy so as in antibiotic and antiviral researchers are encouraged.
Collapse
Affiliation(s)
- Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Roma, Italy
| | - Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marco Ciotti
- Laboratory of Molecular Virology, Polyclinic Tor Vergata Foundation, Rome, Italy
| | - Evangelista Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Caterina Sagnelli
- Department of Mental Health and Public Medicine, Section of Infectious Diseases, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
7
|
Eifan SA, Nour I, Hanif A, Zamzam AM, AlJohani SM. A pandemic risk assessment of middle east respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia. Saudi J Biol Sci 2017; 24:1631-1638. [PMID: 29062261 PMCID: PMC5643837 DOI: 10.1016/j.sjbs.2017.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/20/2023] Open
Abstract
Since the initial emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, a high incidence rate has been observed in Saudi Arabia. This suggests that the country is at continuous risk. The epidemic level of MERS-CoV infection was examined in Saudi Arabia by the Susceptible-Infectious-Recovered (SIR) model using a Bayesian approach for estimation of time dependent reproduction number (R) across a two-year interval (May, 2013-May, 2015) in five defined clusters, followed by sensitivity analysis of the most significant clusters. Significant MERS-CoV peaks were detected in the period between March and May of each year. Moreover, MERS-CoV infection was highlighted in western (40.8%) and central (31.9%) regions, followed by eastern region (20%). The temporal-based Bayesian approach indicated a sub-critical epidemic in all regions in the baseline scenario (R: 0.85-0.97). However, R potential limit was exceeded in the sensitivity analysis scenario in only central and western regions (R: 1.08-1.12) that denoted epidemic level in those regions. The impact of sporadic cases was found relatively insignificant and pinpointed to the lack of zoonotic influence on MERS-CoV transmission dynamics. The results of current study would be helpful for evaluation of future progression of MERS-CoV infections, better understanding and control interventions.
Collapse
Affiliation(s)
- Saleh A. Eifan
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
- Corresponding author at: Botany and Microbiology Department, King Saud University, Riyadh 11451, P.O.B. 2455, Saudi Arabia.Botany and Microbiology DepartmentKing Saud UniversityRiyadh 11451P.O.B. 2455Saudi Arabia
| | - Islam Nour
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Atif Hanif
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Sameera Mohammed AlJohani
- Division of Microbiology, Pathology and Laboratory Medicine, King AbdulAziz Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Rife BD, Mavian C, Chen X, Ciccozzi M, Salemi M, Min J, Prosperi MCF. Phylodynamic applications in 21 st century global infectious disease research. Glob Health Res Policy 2017; 2:13. [PMID: 29202081 PMCID: PMC5683535 DOI: 10.1186/s41256-017-0034-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/31/2017] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Phylodynamics, the study of the interaction between epidemiological and pathogen evolutionary processes within and among populations, was originally defined in the context of rapidly evolving viruses and used to characterize transmission dynamics. The concept of phylodynamics has evolved since the early 21st century, extending its reach to slower-evolving pathogens, including bacteria and fungi, and to the identification of influential factors in disease spread and pathogen population dynamics. RESULTS The phylodynamic approach has now become a fundamental building block for the development of comparative phylogenetic tools capable of incorporating epidemiological surveillance data with molecular sequences into a single statistical framework. These innovative tools have greatly enhanced scientific investigations of the temporal and geographical origins, evolutionary history, and ecological risk factors associated with the growth and spread of viruses such as human immunodeficiency virus (HIV), Zika, and dengue and bacteria such as Methicillin-resistant Staphylococcus aureus. CONCLUSIONS Capitalizing on an extensive review of the literature, we discuss the evolution of the field of infectious disease epidemiology and recent accomplishments, highlighting the advancements in phylodynamics, as well as the challenges and limitations currently facing researchers studying emerging pathogen epidemics across the globe.
Collapse
Affiliation(s)
- Brittany D Rife
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Carla Mavian
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Xinguang Chen
- Department of Epidemiology, University of Florida, Gainesville, FL USA
| | - Massimo Ciccozzi
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- Unit of Clinical Pathology and Microbiology, University Campus Biomedico of Rome, Rome, Italy
| | - Marco Salemi
- Emerging Pathogens Institute and Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL USA
| | - Jae Min
- Department of Epidemiology, University of Florida, Gainesville, FL USA
| | | |
Collapse
|