1
|
Howell HJ, McGale JP, Choucair A, Shirini D, Aide N, Postow MA, Wang L, Tordjman M, Lopci E, Lecler A, Champiat S, Chen DL, Deandreis D, Dercle L. Artificial Intelligence for Drug Discovery: An Update and Future Prospects. Semin Nucl Med 2025:S0001-2998(25)00004-2. [PMID: 39966029 DOI: 10.1053/j.semnuclmed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
Artificial intelligence (AI) has become a pivotal tool for medical image analysis, significantly enhancing drug discovery through improved diagnostics, staging, prognostication, and response assessment. At a high level, AI-driven image analysis enables the quantification and synthesis of previously qualitative imaging characteristics, facilitating the identification of novel disease-specific biomarkers, patient risk stratification, prognostication, and adverse event prediction. In addition, AI can assist in response assessment by capturing changes in imaging "phenotype" over time, allowing for optimized treatment plans based on real-time analysis. Integrating this emerging technology into drug discovery pipelines has the potential to accelerate the identification and development of new pharmaceuticals by assisting in target identification and patient selection, as well as reducing the incidence, and therefore cost, of failed trials through high-throughput, reproducible, and data-driven insights. Continued progress in AI applications will shape the future of medical imaging, ultimately fostering more efficient, accurate, and tailored drug discovery processes. Herein, we offer a comprehensive overview of how AI enhances medical imaging to inform drug development and therapeutic strategies.
Collapse
Affiliation(s)
- Harrison J Howell
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Jeremy P McGale
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | | | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nicolas Aide
- Centre Havrais d'Imagerie Nucléaire, Octeville, France
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering and Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Lucy Wang
- School of Medicine, New York Medical College, Valhalla, NY
| | - Mickael Tordjman
- Department of Radiology, Biomedical Engineering & Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Rozzano, Italy
| | - Augustin Lecler
- Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, Université Paris Cité, Paris, France
| | - Stéphane Champiat
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Delphine L Chen
- Department of Radiology, University of Washington, Seattle, WA
| | | | - Laurent Dercle
- Department of Radiology, New York-Presbyterian Hospital, Columbia University Vagelos College of Physicians and Surgeons, New York, NY..
| |
Collapse
|
2
|
Shirzad M, Salahvarzi A, Razzaq S, Javid-Naderi MJ, Rahdar A, Fathi-Karkan S, Ghadami A, Kharaba Z, Romanholo Ferreira LF. Revolutionizing prostate cancer therapy: Artificial intelligence - Based nanocarriers for precision diagnosis and treatment. Crit Rev Oncol Hematol 2025; 208:104653. [PMID: 39923922 DOI: 10.1016/j.critrevonc.2025.104653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025] Open
Abstract
Prostate cancer is one of the major health challenges in the world and needs novel therapeutic approaches to overcome the limitations of conventional treatment. This review delineates the transformative potential of artificial intelligence (AL) in enhancing nanocarrier-based drug delivery systems for prostate cancer therapy. With its ability to optimize nanocarrier design and predict drug delivery kinetics, AI has revolutionized personalized treatment planning in oncology. We discuss how AI can be integrated with nanotechnology to address challenges related to tumor heterogeneity, drug resistance, and systemic toxicity. Emphasis is placed on strong AI-driven advancements in the design of nanocarriers, structural optimization, targeting of ligands, and pharmacokinetics. We also give an overview of how AI can better predict toxicity, reduce costs, and enable personalized medicine. While challenges persist in the way of data accessibility, regulatory hurdles, and interactions with the immune system, future directions based on explainable AI (XAI) models, integration of multimodal data, and green nanocarrier designs promise to move the field forward. Convergence between AI and nanotechnology has been one key step toward safer, more effective, and patient-tailored cancer therapy.
Collapse
Affiliation(s)
- Maryam Shirzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Salahvarzi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sobia Razzaq
- School of Pharmacy, University of Management and Technology, Lahore SPH, Punjab, Pakistan
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Science, Bojnurd, Iran.
| | - Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zelal Kharaba
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | | |
Collapse
|
3
|
Bini F, Missori E, Pucci G, Pasini G, Marinozzi F, Forte GI, Russo G, Stefano A. Preclinical Implementation of matRadiomics: A Case Study for Early Malformation Prediction in Zebrafish Model. J Imaging 2024; 10:290. [PMID: 39590754 PMCID: PMC11595506 DOI: 10.3390/jimaging10110290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Radiomics provides a structured approach to support clinical decision-making through key steps; however, users often face difficulties when switching between various software platforms to complete the workflow. To streamline this process, matRadiomics integrates the entire radiomics workflow within a single platform. This study extends matRadiomics to preclinical settings and validates it through a case study focused on early malformation differentiation in a zebrafish model. The proposed plugin incorporates Pyradiomics and streamlines feature extraction, selection, and classification using machine learning models (linear discriminant analysis-LDA; k-nearest neighbors-KNNs; and support vector machines-SVMs) with k-fold cross-validation for model validation. Classifier performances are evaluated using area under the ROC curve (AUC) and accuracy. The case study indicated the criticality of the long time required to extract features from preclinical images, generally of higher resolution than clinical images. To address this, a feature analysis was conducted to optimize settings, reducing extraction time while maintaining similarity to the original features. As a result, SVM exhibited the best performance for early malformation differentiation in zebrafish (AUC = 0.723; accuracy of 0.72). This case study underscores the plugin's versatility and effectiveness in early biological outcome prediction, emphasizing its applicability across biomedical research fields.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Elisa Missori
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Gaia Pucci
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Giovanni Pasini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (F.B.); (E.M.); (F.M.)
| | - Giusi Irma Forte
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Giorgio Russo
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| | - Alessandro Stefano
- Institute of Bioimaging and Complex Biological Systems—National Research Council (IBSBC—CNR), Contrada Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.P.); (G.I.F.); (G.R.); (A.S.)
| |
Collapse
|
4
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024; 29:3164. [PMID: 38999115 PMCID: PMC11243723 DOI: 10.3390/molecules29133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
- Photo4Chem Ltd., Juliusza Lea 114/416A-B, 31-133 Cracow, Poland
| |
Collapse
|
5
|
Li Y, Wang S, Zhao S, Zhao P, Huang S, Li K, Han S, Tian C, Li X, Shi B, Li X. Initial [18F]DCFPyL PET/CT in treatment-naïve prostate cancer: correlation with post-ADT PSA outcomes and recurrence. Eur J Nucl Med Mol Imaging 2024; 51:2458-2466. [PMID: 38563882 DOI: 10.1007/s00259-024-06684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Positron emission tomography (PET) with prostate-specific membrane antigen (PSMA) targeting tracers has emerged as a valuable diagnostic tool for prostate cancer (PCa), androgen deprivation therapy (ADT) stands as the cornerstone treatment for advanced PCa, yet forecasting the response to hormonal therapy poses a significant clinical hurdle. METHODS In a prospective cohort of 86 PCa patients undergoing short-term ADT, this study evaluated the prognostic potential of [18F]DCFPyL PET/CT scans. Comprehensive data encompassing clinical profiles, baseline prostate-specific antigen (PSA) levels, and imaging metrics were assessed. We developed predictive models for assessing decreases in PSA levels (PSA50 and PSA70) based on a combination of PET-related parameters and clinical factors. Kaplan-Meier survival analysis was utilized to ascertain the prognostic value of PET-based metrics. RESULTS In this study, elevated [18F]DCFPyL uptake within the primary tumor, as indicated by a SUV ≥ 6.78 (p = 0.0024), and a reduction in the tumor volume (TV) of primary PSMA-avid tumor with PSMA-TV < 41.96 cm3 (p = 0.038), as well as an increased burden of metastatic PSMA-avid tumor, with PSMA-TV (PSMA-TV ≥ 71.39 cm3) (p = 0.012) were identified in association with diminished progression-free survival (PFS). PET and clinical parameters demonstrated constrained predictive capacity for PSA50 response as indicated by an area under the curve (AUC) of 0.442. CONCLUSION Our study revealed that pretreatment [18F]DCFPyL uptake in primary or metastatic tumor sites is prognostically relevant in high-risk PCa patients undergoing ADT. Further research is needed to develop robust predictive models in this multifaceted landscape of PCa management.
Collapse
Affiliation(s)
- Yuekai Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, No. 107, Cultural West Road, Jinan, 250012, China
| | - Shiwei Wang
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Shimin Zhao
- Department of Radiology, Rizhao Hospital of Traditional Chinese Medicine, No. 35 Wanghai Road, Rizhao, 276800, China
| | - Pengfei Zhao
- Department of Nuclear Medicine, Jinan Yaoying Medical Imaging Center, Jinan, 250012, China
| | - Shuai Huang
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, No. 107, Cultural West Road, Jinan, 250012, China
| | - Kaiyue Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, No. 107, Cultural West Road, Jinan, 250012, China
| | - Shaoli Han
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Caixia Tian
- Evomics Medical Technology Co., Ltd, Shanghai, China
| | - Xin Li
- Department of Nuclear Medicine, Qilu Hospital of Shandong University, No. 107, Cultural West Road, Jinan, 250012, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, No. 107, Cultural West Road, Jinan, 250012, China.
| | - Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria.
- Department of Nuclear Medicine, Beijing Chest Hospital, Beijing, China.
| |
Collapse
|
6
|
Bortolotto C, Pinto A, Brero F, Messana G, Cabini RF, Postuma I, Robustelli Test A, Stella GM, Galli G, Mariani M, Figini S, Lascialfari A, Filippi AR, Bottinelli OM, Preda L. CT and MRI radiomic features of lung cancer (NSCLC): comparison and software consistency. Eur Radiol Exp 2024; 8:71. [PMID: 38880866 PMCID: PMC11180643 DOI: 10.1186/s41747-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/10/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Radiomics is a quantitative approach that allows the extraction of mineable data from medical images. Despite the growing clinical interest, radiomics studies are affected by variability stemming from analysis choices. We aimed to investigate the agreement between two open-source radiomics software for both contrast-enhanced computed tomography (CT) and contrast-enhanced magnetic resonance imaging (MRI) of lung cancers and to preliminarily evaluate the existence of radiomic features stable for both techniques. METHODS Contrast-enhanced CT and MRI images of 35 patients affected with non-small cell lung cancer (NSCLC) were manually segmented and preprocessed using three different methods. Sixty-six Image Biomarker Standardisation Initiative-compliant features common to the considered platforms, PyRadiomics and LIFEx, were extracted. The correlation among features with the same mathematical definition was analyzed by comparing PyRadiomics and LIFEx (at fixed imaging technique), and MRI with CT results (for the same software). RESULTS When assessing the agreement between LIFEx and PyRadiomics across the considered resampling, the maximum statistically significant correlations were observed to be 94% for CT features and 95% for MRI ones. When examining the correlation between features extracted from contrast-enhanced CT and MRI using the same software, higher significant correspondences were identified in 11% of features for both software. CONCLUSIONS Considering NSCLC, (i) for both imaging techniques, LIFEx and PyRadiomics agreed on average for 90% of features, with MRI being more affected by resampling and (ii) CT and MRI contained mostly non-redundant information, but there are shape features and, more importantly, texture features that can be singled out by both techniques. RELEVANCE STATEMENT Identifying and selecting features that are stable cross-modalities may be one of the strategies to pave the way for radiomics clinical translation. KEY POINTS • More than 90% of LIFEx and PyRadiomics features contain the same information. • Ten percent of features (shape, texture) are stable among contrast-enhanced CT and MRI. • Software compliance and cross-modalities stability features are impacted by the resampling method.
Collapse
Affiliation(s)
- Chandra Bortolotto
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| | - Alessandra Pinto
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy.
| | - Francesca Brero
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy
| | - Gaia Messana
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Raffaella Fiamma Cabini
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy.
- Department of Mathematics, University of Pavia, Via Ferrata 5, Pavia, 27100, Italy.
| | - Ian Postuma
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy
| | - Agnese Robustelli Test
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy.
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy.
| | - Giulia Maria Stella
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, 27100, Italy
| | - Giulia Galli
- Department of Medical Sciences and Infective Diseases, Unit of Respiratory Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, Pavia, 27100, Italy
| | - Manuel Mariani
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, 27100, Italy
| | - Alessandro Lascialfari
- Department of Physics, University of Pavia, Via Bassi 6, Pavia, 27100, Italy
- Istituto Nazionale Di Fisica Nucleare, Sezione Di Pavia, Pavia, 27100, Italy
| | - Andrea Riccardo Filippi
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
- Department of Radiation Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
| | - Olivia Maria Bottinelli
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| | - Lorenzo Preda
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Pavia, 27100, Italy
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
7
|
Belue MJ, Harmon SA, Yang D, An JY, Gaur S, Law YM, Turkbey E, Xu Z, Tetreault J, Lay NS, Yilmaz EC, Phelps TE, Simon B, Lindenberg L, Mena E, Pinto PA, Bagci U, Wood BJ, Citrin DE, Dahut WL, Madan RA, Gulley JL, Xu D, Choyke PL, Turkbey B. Deep Learning-Based Detection and Classification of Bone Lesions on Staging Computed Tomography in Prostate Cancer: A Development Study. Acad Radiol 2024; 31:2424-2433. [PMID: 38262813 PMCID: PMC11214604 DOI: 10.1016/j.acra.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
RATIONALE AND OBJECTIVES Efficiently detecting and characterizing metastatic bone lesions on staging CT is crucial for prostate cancer (PCa) care. However, it demands significant expert time and additional imaging such as PET/CT. We aimed to develop an ensemble of two automated deep learning AI models for 1) bone lesion detection and segmentation and 2) benign vs. metastatic lesion classification on staging CTs and to compare its performance with radiologists. MATERIALS AND METHODS This retrospective study developed two AI models using 297 staging CT scans (81 metastatic) with 4601 benign and 1911 metastatic lesions in PCa patients. Metastases were validated by follow-up scans, bone biopsy, or PET/CT. Segmentation AI (3DAISeg) was developed using the lesion contours delineated by a radiologist. 3DAISeg performance was evaluated with the Dice similarity coefficient, and classification AI (3DAIClass) performance on AI and radiologist contours was assessed with F1-score and accuracy. Training/validation/testing data partitions of 70:15:15 were used. A multi-reader study was performed with two junior and two senior radiologists within a subset of the testing dataset (n = 36). RESULTS In 45 unseen staging CT scans (12 metastatic PCa) with 669 benign and 364 metastatic lesions, 3DAISeg detected 73.1% of metastatic (266/364) and 72.4% of benign lesions (484/669). Each scan averaged 12 extra segmentations (range: 1-31). All metastatic scans had at least one detected metastatic lesion, achieving a 100% patient-level detection. The mean Dice score for 3DAISeg was 0.53 (median: 0.59, range: 0-0.87). The F1 for 3DAIClass was 94.8% (radiologist contours) and 92.4% (3DAISeg contours), with a median false positive of 0 (range: 0-3). Using radiologist contours, 3DAIClass had PPV and NPV rates comparable to junior and senior radiologists: PPV (semi-automated approach AI 40.0% vs. Juniors 32.0% vs. Seniors 50.0%) and NPV (AI 96.2% vs. Juniors 95.7% vs. Seniors 91.9%). When using 3DAISeg, 3DAIClass mimicked junior radiologists in PPV (pure-AI 20.0% vs. Juniors 32.0% vs. Seniors 50.0%) but surpassed seniors in NPV (pure-AI 93.8% vs. Juniors 95.7% vs. Seniors 91.9%). CONCLUSION Our lesion detection and classification AI model performs on par with junior and senior radiologists in discerning benign and metastatic lesions on staging CTs obtained for PCa.
Collapse
Affiliation(s)
- Mason J Belue
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Stephanie A Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Dong Yang
- NVIDIA Corporation, Santa Clara, California, USA (D.Y., Z.X., J.T., D.X.)
| | - Julie Y An
- Department of Radiology, University of California, San Diego, California, USA (J.Y.A.)
| | - Sonia Gaur
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA (S.G.)
| | - Yan Mee Law
- Department of Radiology, Singapore General Hospital, Singapore (Y.M.L.)
| | - Evrim Turkbey
- Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA (E.T., B.J.W.)
| | - Ziyue Xu
- NVIDIA Corporation, Santa Clara, California, USA (D.Y., Z.X., J.T., D.X.)
| | - Jesse Tetreault
- NVIDIA Corporation, Santa Clara, California, USA (D.Y., Z.X., J.T., D.X.)
| | - Nathan S Lay
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Enis C Yilmaz
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Tim E Phelps
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Benjamin Simon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Liza Lindenberg
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA (P.A.P.)
| | - Ulas Bagci
- Radiology and Biomedical Engineering Department, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA (U.B.)
| | - Bradford J Wood
- Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA (E.T., B.J.W.); Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA (B.J.W.)
| | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA (D.E.C.)
| | - William L Dahut
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA (W.L.D., R.A.M.)
| | - Ravi A Madan
- Genitourinary Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA (W.L.D., R.A.M.)
| | - James L Gulley
- Center for Immuno-Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA (J.L.G.)
| | - Daguang Xu
- NVIDIA Corporation, Santa Clara, California, USA (D.Y., Z.X., J.T., D.X.)
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.)
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, Maryland, USA (M.J.B., S.A.H., N.S.L., E.C.Y., T.E.P., B.S., L.L., E.M., P.L.C., B.T.).
| |
Collapse
|
8
|
Huynh LM, Swanson S, Cima S, Haddadin E, Baine M. Prostate-Specific Membrane Antigen Positron Emission Tomography/Computed Tomography-Derived Radiomic Models in Prostate Cancer Prognostication. Cancers (Basel) 2024; 16:1897. [PMID: 38791977 PMCID: PMC11120365 DOI: 10.3390/cancers16101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The clinical integration of prostate membrane specific antigen (PSMA) positron emission tomography and computed tomography (PET/CT) scans represents potential for advanced data analysis techniques in prostate cancer (PC) prognostication. Among these tools is the use of radiomics, a computer-based method of extracting and quantitatively analyzing subvisual features in medical imaging. Within this context, the present review seeks to summarize the current literature on the use of PSMA PET/CT-derived radiomics in PC risk stratification. A stepwise literature search of publications from 2017 to 2023 was performed. Of 23 articles on PSMA PET/CT-derived prostate radiomics, PC diagnosis, prediction of biopsy Gleason score (GS), prediction of adverse pathology, and treatment outcomes were the primary endpoints of 4 (17.4%), 5 (21.7%), 7 (30.4%), and 7 (30.4%) studies, respectively. In predicting PC diagnosis, PSMA PET/CT-derived models performed well, with receiver operator characteristic curve area under the curve (ROC-AUC) values of 0.85-0.925. Similarly, in the prediction of biopsy and surgical pathology results, ROC-AUC values had ranges of 0.719-0.84 and 0.84-0.95, respectively. Finally, prediction of recurrence, progression, or survival following treatment was explored in nine studies, with ROC-AUC ranging 0.698-0.90. Of the 23 studies included in this review, 2 (8.7%) included external validation. While explorations of PSMA PET/CT-derived radiomic models are immature in follow-up and experience, these results represent great potential for future investigation and exploration. Prior to consideration for clinical use, however, rigorous validation in feature reproducibility and biologic validation of radiomic signatures must be prioritized.
Collapse
Affiliation(s)
- Linda My Huynh
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
- Department of Urology, University of California, Irvine, CA 92868, USA;
| | - Shea Swanson
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
| | - Sophia Cima
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
| | - Eliana Haddadin
- Department of Urology, University of California, Irvine, CA 92868, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (L.M.H.); (S.C.)
| |
Collapse
|
9
|
Belge Bilgin G, Bilgin C, Burkett BJ, Orme JJ, Childs DS, Thorpe MP, Halfdanarson TR, Johnson GB, Kendi AT, Sartor O. Theranostics and artificial intelligence: new frontiers in personalized medicine. Theranostics 2024; 14:2367-2378. [PMID: 38646652 PMCID: PMC11024845 DOI: 10.7150/thno.94788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/17/2024] [Indexed: 04/23/2024] Open
Abstract
The field of theranostics is rapidly advancing, driven by the goals of enhancing patient care. Recent breakthroughs in artificial intelligence (AI) and its innovative theranostic applications have marked a critical step forward in nuclear medicine, leading to a significant paradigm shift in precision oncology. For instance, AI-assisted tumor characterization, including automated image interpretation, tumor segmentation, feature identification, and prediction of high-risk lesions, improves diagnostic processes, offering a precise and detailed evaluation. With a comprehensive assessment tailored to an individual's unique clinical profile, AI algorithms promise to enhance patient risk classification, thereby benefiting the alignment of patient needs with the most appropriate treatment plans. By uncovering potential factors unseeable to the human eye, such as intrinsic variations in tumor radiosensitivity or molecular profile, AI software has the potential to revolutionize the prediction of response heterogeneity. For accurate and efficient dosimetry calculations, AI technology offers significant advantages by providing customized phantoms and streamlining complex mathematical algorithms, making personalized dosimetry feasible and accessible in busy clinical settings. AI tools have the potential to be leveraged to predict and mitigate treatment-related adverse events, allowing early interventions. Additionally, generative AI can be utilized to find new targets for developing novel radiopharmaceuticals and facilitate drug discovery. However, while there is immense potential and notable interest in the role of AI in theranostics, these technologies do not lack limitations and challenges. There remains still much to be explored and understood. In this study, we investigate the current applications of AI in theranostics and seek to broaden the horizons for future research and innovation.
Collapse
Affiliation(s)
| | - Cem Bilgin
- Department of Radiology, Mayo Clinic Rochester, MN, USA
| | | | - Jacob J. Orme
- Department of Oncology, Mayo Clinic Rochester, MN, USA
| | | | | | | | - Geoffrey B Johnson
- Department of Radiology, Mayo Clinic Rochester, MN, USA
- Department of Immunology, Mayo Clinic Rochester, MN, USA
| | | | - Oliver Sartor
- Department of Radiology, Mayo Clinic Rochester, MN, USA
- Department of Oncology, Mayo Clinic Rochester, MN, USA
- Department of Urology, Mayo Clinic Rochester, MN, USA
| |
Collapse
|
10
|
Huang B, Yang Q, Li X, Wu Y, Liu Z, Pan Z, Zhong S, Song S, Zuo C. Deep learning-based whole-body characterization of prostate cancer lesions on [ 68Ga]Ga-PSMA-11 PET/CT in patients with post-prostatectomy recurrence. Eur J Nucl Med Mol Imaging 2024; 51:1173-1184. [PMID: 38049657 DOI: 10.1007/s00259-023-06551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
PURPOSE The automatic segmentation and detection of prostate cancer (PC) lesions throughout the body are extremely challenging due to the lesions' complexity and variability in appearance, shape, and location. In this study, we investigated the performance of a three-dimensional (3D) convolutional neural network (CNN) to automatically characterize metastatic lesions throughout the body in a dataset of PC patients with recurrence after radical prostatectomy. METHODS We retrospectively collected [68 Ga]Ga-PSMA-11 PET/CT images from 116 patients with metastatic PC at two centers: center 1 provided the data for fivefold cross validation (n = 78) and internal testing (n = 19), and center 2 provided the data for external testing (n = 19). PET and CT data were jointly input into a 3D U-Net to achieve whole-body segmentation and detection of PC lesions. The performance in both the segmentation and the detection of lesions throughout the body was evaluated using established metrics, including the Dice similarity coefficient (DSC) for segmentation and the recall, precision, and F1-score for detection. The correlation and consistency between tumor burdens (PSMA-TV and TL-PSMA) calculated from automatic segmentation and artificial ground truth were assessed by linear regression and Bland‒Altman plots. RESULTS On the internal test set, the DSC, precision, recall, and F1-score values were 0.631, 0.961, 0.721, and 0.824, respectively. On the external test set, the corresponding values were 0.596, 0.888, 0.792, and 0.837, respectively. Our approach outperformed previous studies in segmenting and detecting metastatic lesions throughout the body. Tumor burden indicators derived from deep learning and ground truth showed strong correlation (R2 ≥ 0.991, all P < 0.05) and consistency. CONCLUSION Our 3D CNN accurately characterizes whole-body tumors in relapsed PC patients; its results are highly consistent with those of manual contouring. This automatic method is expected to improve work efficiency and to aid in the assessment of tumor burden.
Collapse
Affiliation(s)
- Bingsheng Huang
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Qinqin Yang
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Xiao Li
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China
| | - Yuxuan Wu
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Zhantao Liu
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Zhaohong Pan
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Shaonan Zhong
- Medical AI Lab, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Changjing Zuo
- Department of Nuclear Medicine, Shanghai Changhai Hospital, Shanghai, China.
| |
Collapse
|
11
|
Cheng T, Li H. Prediction of Gleason score in prostate cancer patients based on radiomic features of transrectal ultrasound images. Br J Radiol 2024; 97:415-421. [PMID: 38308030 DOI: 10.1093/bjr/tqad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVES The aim of this study was to develop a model for predicting the Gleason score of patients with prostate cancer based on ultrasound images. METHODS Transrectal ultrasound images of 838 prostate cancer patients from The Cancer Imaging Archive database were included in this cross-section study. Data were randomly divided into the training set and testing set (ratio 7:3). A total of 103 radiomic features were extracted from the ultrasound image. Lasso regression was used to select radiomic features. Random forest and broad learning system (BLS) methods were utilized to develop the model. The area under the curve (AUC) was calculated to evaluate the model performance. RESULTS After the screening, 10 radiomic features were selected. The AUC and accuracy of the radiomic feature variables random forest model in the testing set were 0.727 (95% CI, 0.694-0.760) and 0.646 (95% CI, 0.620-0.673), respectively. When PSA and radiomic feature variables were included in the random forest model, the AUC and accuracy of the model were 0.770 (95% CI, 0.740-0.800) and 0.713 (95% CI, 0.688-0.738), respectively. While the BLS method was utilized to construct the model, the AUC and accuracy of the model were 0.726 (95% CI, 0.693-0.759) and 0.698 (95% CI, 0.673-0.723), respectively. In predictions for different Gleason grades, the highest AUC of 0.847 (95% CI, 0.749-0.945) was found to predict Gleason grade 5 (Gleason score ≥9). CONCLUSIONS A model based on transrectal ultrasound image features showed a good ability to predict Gleason scores in prostate cancer patients. ADVANCES IN KNOWLEDGE This study used ultrasound-based radiomics to predict the Gleason score of patients with prostate cancer.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Ultrasound, Changzhou Tumor Hospital, Changzhou 213000, China
| | - Huiming Li
- Department of Ultrasound, Changzhou Tumor Hospital, Changzhou 213000, China
| |
Collapse
|
12
|
Yazdani E, Geramifar P, Karamzade-Ziarati N, Sadeghi M, Amini P, Rahmim A. Radiomics and Artificial Intelligence in Radiotheranostics: A Review of Applications for Radioligands Targeting Somatostatin Receptors and Prostate-Specific Membrane Antigens. Diagnostics (Basel) 2024; 14:181. [PMID: 38248059 PMCID: PMC10814892 DOI: 10.3390/diagnostics14020181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Radiotheranostics refers to the pairing of radioactive imaging biomarkers with radioactive therapeutic compounds that deliver ionizing radiation. Given the introduction of very promising radiopharmaceuticals, the radiotheranostics approach is creating a novel paradigm in personalized, targeted radionuclide therapies (TRTs), also known as radiopharmaceuticals (RPTs). Radiotherapeutic pairs targeting somatostatin receptors (SSTR) and prostate-specific membrane antigens (PSMA) are increasingly being used to diagnose and treat patients with metastatic neuroendocrine tumors (NETs) and prostate cancer. In parallel, radiomics and artificial intelligence (AI), as important areas in quantitative image analysis, are paving the way for significantly enhanced workflows in diagnostic and theranostic fields, from data and image processing to clinical decision support, improving patient selection, personalized treatment strategies, response prediction, and prognostication. Furthermore, AI has the potential for tremendous effectiveness in patient dosimetry which copes with complex and time-consuming tasks in the RPT workflow. The present work provides a comprehensive overview of radiomics and AI application in radiotheranostics, focusing on pairs of SSTR- or PSMA-targeting radioligands, describing the fundamental concepts and specific imaging/treatment features. Our review includes ligands radiolabeled by 68Ga, 18F, 177Lu, 64Cu, 90Y, and 225Ac. Specifically, contributions via radiomics and AI towards improved image acquisition, reconstruction, treatment response, segmentation, restaging, lesion classification, dose prediction, and estimation as well as ongoing developments and future directions are discussed.
Collapse
Affiliation(s)
- Elmira Yazdani
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Parham Geramifar
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Najme Karamzade-Ziarati
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| | - Mahdi Sadeghi
- Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Payam Amini
- Department of Biostatistics, School of Public Health, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Departments of Radiology and Physics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
13
|
McKone EL, Sutton EA, Johnson GB, Phillips RM. Application of Advanced Imaging to Prostate Cancer Diagnosis and Management: A Narrative Review of Current Practice and Unanswered Questions. J Clin Med 2024; 13:446. [PMID: 38256579 PMCID: PMC10816977 DOI: 10.3390/jcm13020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Major advances in prostate cancer diagnosis, staging, and management have occurred over the past decade, largely due to our improved understanding of the technical aspects and clinical applications of advanced imaging, specifically magnetic resonance imaging (MRI) and prostate-cancer-specific positron emission tomography (PET). Herein, we review the established utility of these important and exciting technologies, as well as areas of controversy and uncertainty that remain important areas for future study. There is strong evidence supporting the utility of MRI in guiding initial biopsy and assessing local disease. There is debate, however, regarding how to best use the imaging modality in risk stratification, treatment planning, and assessment of biochemical failure. Prostate-cancer-specific PET is a relatively new technology that provides great value to the evaluation of newly diagnosed, treated, and recurrent prostate cancer. However, its ideal use in treatment decision making, staging, recurrence detection, and surveillance necessitates further research. Continued study of both imaging modalities will allow for an improved understanding of their best utilization in improving cancer care.
Collapse
Affiliation(s)
| | - Elsa A. Sutton
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Geoffrey B. Johnson
- Department of Radiology, Nuclear Medicine Division, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan M. Phillips
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Mohseninia N, Zamani-Siahkali N, Harsini S, Divband G, Pirich C, Beheshti M. Bone Metastasis in Prostate Cancer: Bone Scan Versus PET Imaging. Semin Nucl Med 2024; 54:97-118. [PMID: 37596138 DOI: 10.1053/j.semnuclmed.2023.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Prostate cancer is the second most common cause of malignancy among men, with bone metastasis being a significant source of morbidity and mortality in advanced cases. Detecting and treating bone metastasis at an early stage is crucial to improve the quality of life and survival of prostate cancer patients. This objective strongly relies on imaging studies. While CT and MRI have their specific utilities, they also possess certain drawbacks. Bone scintigraphy, although cost-effective and widely available, presents high false-positive rates. The emergence of PET/CT and PET/MRI, with their ability to overcome the limitations of standard imaging methods, offers promising alternatives for the detection of bone metastasis. Various radiotracers targeting cell division activity or cancer-specific membrane proteins, as well as bone seeking agents, have been developed and tested. The use of positron-emitting isotopes such as fluorine-18 and gallium-68 for labeling allows for a reduced radiation dose and unaffected biological properties. Furthermore, the integration of artificial intelligence (AI) and radiomics techniques in medical imaging has shown significant advancements in reducing interobserver variability, improving accuracy, and saving time. This article provides an overview of the advantages and limitations of bone scan using SPECT and SPECT/CT and PET imaging methods with different radiopharmaceuticals and highlights recent developments in hybrid scanners, AI, and radiomics for the identification of prostate cancer bone metastasis using molecular imaging.
Collapse
Affiliation(s)
- Nasibeh Mohseninia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Nuclear Medicine, Research center for Nuclear Medicine and Molecular Imaging, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Harsini
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
15
|
Gonzalez AJ, Gonzalez-Montoro A. Developments in Dedicated Prostate PET Instrumentation. PET Clin 2024; 19:49-57. [PMID: 37778967 DOI: 10.1016/j.cpet.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
This article summarizes the evolution of dedicated prostate PET instrumentation. It starts by introducing prostate cancer, as well as the most common diagnostic and staging methods that are used in the clinics. Then, it describes the key aspects of PET detectors and their assembly in full PET scanners highlighting the most suitable geometries for prostate examination, and a review on the existing prostate dedicated PET. Finally, the next steps for extending the use of PET in the daily diagnose, staging, and image-guided biopsy of patients with prostate cancer are discussed.
Collapse
Affiliation(s)
- Antonio J Gonzalez
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain.
| | - Andrea Gonzalez-Montoro
- Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC - Universitat Politècnica de València, Camino de Vera s/n, E-46022 Valencia, Spain
| |
Collapse
|
16
|
Stefano A, Mantarro C, Richiusa S, Pasini G, Sabini MG, Cosentino S, Ippolito M. Prediction of High Pathological Grade in Prostate Cancer Patients Undergoing [18F]-PSMA PET/CT: A Preliminary Radiomics Study. LECTURE NOTES IN COMPUTER SCIENCE 2024:49-58. [DOI: 10.1007/978-3-031-51026-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Pasini G, Russo G, Mantarro C, Bini F, Richiusa S, Morgante L, Comelli A, Russo GI, Sabini MG, Cosentino S, Marinozzi F, Ippolito M, Stefano A. A Critical Analysis of the Robustness of Radiomics to Variations in Segmentation Methods in 18F-PSMA-1007 PET Images of Patients Affected by Prostate Cancer. Diagnostics (Basel) 2023; 13:3640. [PMID: 38132224 PMCID: PMC10743045 DOI: 10.3390/diagnostics13243640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Radiomics shows promising results in supporting the clinical decision process, and much effort has been put into its standardization, thus leading to the Imaging Biomarker Standardization Initiative (IBSI), that established how radiomics features should be computed. However, radiomics still lacks standardization and many factors, such as segmentation methods, limit study reproducibility and robustness. AIM We investigated the impact that three different segmentation methods (manual, thresholding and region growing) have on radiomics features extracted from 18F-PSMA-1007 Positron Emission Tomography (PET) images of 78 patients (43 Low Risk, 35 High Risk). Segmentation was repeated for each patient, thus leading to three datasets of segmentations. Then, feature extraction was performed for each dataset, and 1781 features (107 original, 930 Laplacian of Gaussian (LoG) features, 744 wavelet features) were extracted. Feature robustness and reproducibility were assessed through the intra class correlation coefficient (ICC) to measure agreement between the three segmentation methods. To assess the impact that the three methods had on machine learning models, feature selection was performed through a hybrid descriptive-inferential method, and selected features were given as input to three classifiers, K-Nearest Neighbors (KNN), Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), Random Forest (RF), AdaBoost and Neural Networks (NN), whose performance in discriminating between low-risk and high-risk patients have been validated through 30 times repeated five-fold cross validation. CONCLUSIONS Our study showed that segmentation methods influence radiomics features and that Shape features were the least reproducible (average ICC: 0.27), while GLCM features the most reproducible. Moreover, feature reproducibility changed depending on segmentation type, resulting in 51.18% of LoG features exhibiting excellent reproducibility (range average ICC: 0.68-0.87) and 47.85% of wavelet features exhibiting poor reproducibility that varied between wavelet sub-bands (range average ICC: 0.34-0.80) and resulted in the LLL band showing the highest average ICC (0.80). Finally, model performance showed that region growing led to the highest accuracy (74.49%), improved sensitivity (84.38%) and AUC (79.20%) in contrast with manual segmentation.
Collapse
Affiliation(s)
- Giovanni Pasini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
| | - Giorgio Russo
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95125 Catania, Italy
| | - Cristina Mantarro
- Nuclear Medicine Department, Cannizzaro Hospital, 95125 Catania, Italy; (C.M.); (S.C.); (M.I.)
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
| | - Selene Richiusa
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
| | - Lucrezia Morgante
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
| | - Albert Comelli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy
| | - Giorgio Ivan Russo
- Department of Surgery, Urology Section, University of Catania, 95125 Catania, Italy;
| | | | - Sebastiano Cosentino
- Nuclear Medicine Department, Cannizzaro Hospital, 95125 Catania, Italy; (C.M.); (S.C.); (M.I.)
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Eudossiana 18, 00184 Rome, Italy; (G.P.); (L.M.); (F.M.)
| | - Massimo Ippolito
- Nuclear Medicine Department, Cannizzaro Hospital, 95125 Catania, Italy; (C.M.); (S.C.); (M.I.)
| | - Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Contrada, Pietrapollastra-Pisciotto, 90015 Cefalù, Italy; (G.R.); (S.R.); (A.C.); (A.S.)
- National Laboratory of South, National Institute for Nuclear Physics (LNS-INFN), 95125 Catania, Italy
| |
Collapse
|
18
|
Brosch-Lenz JF, Delker A, Schmidt F, Tran-Gia J. On the Use of Artificial Intelligence for Dosimetry of Radiopharmaceutical Therapies. Nuklearmedizin 2023; 62:379-388. [PMID: 37827503 DOI: 10.1055/a-2179-6872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Routine clinical dosimetry along with radiopharmaceutical therapies is key for future treatment personalization. However, dosimetry is considered complex and time-consuming with various challenges amongst the required steps within the dosimetry workflow. The general workflow for image-based dosimetry consists of quantitative imaging, the segmentation of organs and tumors, fitting of the time-activity-curves, and the conversion to absorbed dose. This work reviews the potential and advantages of the use of artificial intelligence to improve speed and accuracy of every single step of the dosimetry workflow.
Collapse
Affiliation(s)
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, Munich, Germany
| | - Fabian Schmidt
- Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital Tuebingen, Tuebingen, Germany
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Tuebingen, Germany
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
19
|
Wu WJ, Chen R, Guo R, Yan JJ, Zhang CK, Wang YQ, Yan HX, Zhang YQ. A novel method for assessing cardiac function in patients with coronary heart disease based on wrist pulse analysis. Ir J Med Sci 2023; 192:2697-2706. [PMID: 36961673 PMCID: PMC10692030 DOI: 10.1007/s11845-023-03341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND The timely assessment of B-type natriuretic peptide (BNP) marking chronic heart failure risk in patients with coronary heart disease (CHD) helps to reduce patients' mortality. OBJECTIVE To evaluate the potential of wrist pulse signals for use in the cardiac monitoring of patients with CHD. METHODS A total of 419 patients with CHD were assigned to Group 1 (BNP < 95 pg/mL, n = 249), 2 (95 < BNP < 221 pg/mL, n = 85), and 3 (BNP > 221 pg/mL, n = 85) according to BNP levels. Wrist pulse signals were measured noninvasively. Both the time-domain method and multiscale entropy (MSE) method were used to extract pulse features. Decision tree (DT) and random forest (RF) algorithms were employed to construct models for classifying three groups, and the models' performance metrics were compared. RESULTS The pulse features of the three groups differed significantly, suggesting different pathological states of the cardiovascular system in patients with CHD. Moreover, the RF models outperformed the DT models in performance metrics. Furthermore, the optimal RF model was that based on a dataset comprising both time-domain and MSE features, achieving accuracy, average precision, average recall, and average F1-score of 90.900%, 91.048%, 90.900%, and 90.897%, respectively. CONCLUSIONS The wrist pulse detection technology employed in this study is useful for assessing the cardiac function of patients with CHD.
Collapse
Affiliation(s)
- Wen-Jie Wu
- Department of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Rui Chen
- Department of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Rui Guo
- Department of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China.
| | - Jian-Jun Yan
- Institute of Intelligent Perception and Diagnosis, School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai, 200237, China
| | - Chun-Ke Zhang
- Department of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Yi-Qin Wang
- Department of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Hai-Xia Yan
- Department of Basic Medical Science, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, China
| | - Ye-Qing Zhang
- Department of Chinese Internal Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| |
Collapse
|
20
|
Wang YD, Huang CP, Yang YR, Wu HC, Hsu YJ, Yeh YC, Yeh PC, Wu KC, Kao CH. Machine Learning and Radiomics of Bone Scintigraphy: Their Role in Predicting Recurrence of Localized or Locally Advanced Prostate Cancer. Diagnostics (Basel) 2023; 13:3380. [PMID: 37958276 PMCID: PMC10648785 DOI: 10.3390/diagnostics13213380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Machine-learning (ML) and radiomics features have been utilized for survival outcome analysis in various cancers. This study aims to investigate the application of ML based on patients' clinical features and radiomics features derived from bone scintigraphy (BS) and to evaluate recurrence-free survival in local or locally advanced prostate cancer (PCa) patients after the initial treatment. METHODS A total of 354 patients who met the eligibility criteria were analyzed and used to train the model. Clinical information and radiomics features of BS were obtained. Survival-related clinical features and radiomics features were included in the ML model training. Using the pyradiomics software, 128 radiomics features from each BS image's region of interest, validated by experts, were extracted. Four textural matrices were also calculated: GLCM, NGLDM, GLRLM, and GLSZM. Five training models (Logistic Regression, Naive Bayes, Random Forest, Support Vector Classification, and XGBoost) were applied using K-fold cross-validation. Recurrence was defined as either a rise in PSA levels, radiographic progression, or death. To assess the classifier's effectiveness, the ROC curve area and confusion matrix were employed. RESULTS Of the 354 patients, 101 patients were categorized into the recurrence group with more advanced disease status compared to the non-recurrence group. Key clinical features including tumor stage, radical prostatectomy, initial PSA, Gleason Score primary pattern, and radiotherapy were used for model training. Random Forest (RF) was the best-performing model, with a sensitivity of 0.81, specificity of 0.87, and accuracy of 0.85. The ROC curve analysis showed that predictions from RF outperformed predictions from other ML models with a final AUC of 0.94 and a p-value of <0.001. The other models had accuracy ranges from 0.52 to 0.78 and AUC ranges from 0.67 to 0.84. CONCLUSIONS The study showed that ML based on clinical features and radiomics features of BS improves the prediction of PCa recurrence after initial treatment. These findings highlight the added value of ML techniques for risk classification in PCa based on clinical features and radiomics features of BS.
Collapse
Affiliation(s)
- Yu-De Wang
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
| | - Chi-Ping Huang
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
- School of Medicine, China Medical University, Taichung 406040, Taiwan;
| | - You-Rong Yang
- Department of Urology, China Medical University Hospital, Taichung 404327, Taiwan; (C.-P.H.); (Y.-R.Y.)
| | - Hsi-Chin Wu
- School of Medicine, China Medical University, Taichung 406040, Taiwan;
- Department of Urology, China Medical University Beigang Hospital, Yunlin 651012, Taiwan
| | - Yu-Ju Hsu
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Yi-Chun Yeh
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Pei-Chun Yeh
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
| | - Kuo-Chen Wu
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106319, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, School of Medicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- Artificial Intelligence Center, China Medical University Hospital, Taichung 404327, Taiwan; (Y.-J.H.); (Y.-C.Y.); (P.-C.Y.); (K.-C.W.)
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung 404327, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
21
|
Zoi V, Giannakopoulou M, Alexiou GA, Bouziotis P, Thalasselis S, Tzakos AG, Fotopoulos A, Papadopoulos AN, Kyritsis AP, Sioka C. Nuclear Medicine and Cancer Theragnostics: Basic Concepts. Diagnostics (Basel) 2023; 13:3064. [PMID: 37835806 PMCID: PMC10572920 DOI: 10.3390/diagnostics13193064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Cancer theragnostics is a novel approach that combines diagnostic imaging and radionuclide therapy. It is based on the use of a pair of radiopharmaceuticals, one optimized for positron emission tomography imaging through linkage to a proper radionuclide, and the other bearing an alpha- or beta-emitter isotope that can induce significant damage to cancer cells. In recent years, the use of theragnostics in nuclear medicine clinical practice has increased considerably, and thus investigation has focused on the identification of novel radionuclides that can bind to molecular targets that are typically dysregulated in different cancers. The major advantages of the theragnostic approach include the elimination of multi-step procedures, reduced adverse effects to normal tissues, early diagnosis, better predictive responses, and personalized patient care. This review aims to discuss emerging theragnostic molecules that have been investigated in a series of human malignancies, including gliomas, thyroid cancer, neuroendocrine tumors, cholangiocarcinoma, and prostate cancer, as well as potent and recently introduced molecular targets, like cell-surface receptors, kinases, and cell adhesion proteins. Furthermore, special reference has been made to copper radionuclides as theragnostic agents and their radiopharmaceutical applications since they present promising alternatives to the well-studied gallium-68 and lutetium-177.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
| | | | - George A. Alexiou
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Neurosurgery, University of Ioannina, 45110 Ioannina, Greece
| | - Penelope Bouziotis
- Institute of Nuclear and Radiological Sciences and Technology, Energy and Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece;
| | | | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | - Chrissa Sioka
- Neurosurgical Institute, University of Ioannina, 45110 Ioannina, Greece
- Department of Nuclear Medicine, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
22
|
Chaddad A, Tan G, Liang X, Hassan L, Rathore S, Desrosiers C, Katib Y, Niazi T. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers (Basel) 2023; 15:3839. [PMID: 37568655 PMCID: PMC10416937 DOI: 10.3390/cancers15153839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The use of multiparametric magnetic resonance imaging (mpMRI) has become a common technique used in guiding biopsy and developing treatment plans for prostate lesions. While this technique is effective, non-invasive methods such as radiomics have gained popularity for extracting imaging features to develop predictive models for clinical tasks. The aim is to minimize invasive processes for improved management of prostate cancer (PCa). This study reviews recent research progress in MRI-based radiomics for PCa, including the radiomics pipeline and potential factors affecting personalized diagnosis. The integration of artificial intelligence (AI) with medical imaging is also discussed, in line with the development trend of radiogenomics and multi-omics. The survey highlights the need for more data from multiple institutions to avoid bias and generalize the predictive model. The AI-based radiomics model is considered a promising clinical tool with good prospects for application.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Guina Tan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Xiaojuan Liang
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | - Lama Hassan
- School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China
| | | | - Christian Desrosiers
- The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada
| | - Yousef Katib
- Department of Radiology, Taibah University, Al Madinah 42361, Saudi Arabia
| | - Tamim Niazi
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
23
|
Ferro M, Rocco B, Maggi M, Lucarelli G, Falagario UG, Del Giudice F, Crocetto F, Barone B, La Civita E, Lasorsa F, Brescia A, Catellani M, Busetto GM, Tataru OS, Terracciano D. Beyond blood biomarkers: the role of SelectMDX in clinically significant prostate cancer identification. Expert Rev Mol Diagn 2023; 23:1061-1070. [PMID: 37897252 DOI: 10.1080/14737159.2023.2277366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION New potential biomarkers to pre-intervention identification of a clinically significant prostate cancer (csPCa) will prevent overdiagnosis and overtreatment and limit quality of life impairment of PCa patients. AREAS COVERED We have developed a comprehensive review focusing our research on the increasing knowledge of the role of SelectMDX® in csPCa detection. Areas identified as clinically relevant are the ability of SelectMDX® to predict csPCa in active surveillance setting, its predictive ability when combined with multiparametric MRI and the role of SelectMDX® in the landscape of urinary biomarkers. EXPERT OPINION Several PCa biomarkers have been developed either alone or in combination with clinical variables to improve csPCa detection. SelectMDX® score includes genomic markers, age, PSA, prostate volume, and digital rectal examination. Several studies have shown consistency in the ability to improve detection of csPCa, avoidance of unnecessary prostate biopsies, helpful in decision-making for clinical benefit of PCa patients with future well designed, and impactful studies.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Bernardo Rocco
- Unit of Urology, Department of Health Science, University of Milan, ASST Santi Paolo and Carlo, Via A. Di Rudini 8, Milan 20142, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza Umberto I - 70121, Bari, Italy
| | - Ugo Giovanni Falagario
- Department of Urology and Organ Transplantation, University of Foggia, Via A.Gramsci 89/91, 71122 Foggia, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Pansini, 5 - 80131, Naples, Italy
| | - Biagio Barone
- Department of Surgical Sciences, Urology Unit, AORN Sant'Anna e San Sebastiano, Caserta, Via Ferdinando Palasciano, 81100 Caserta , Italy
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples "Federico II", Corso Umberto I 40 - 80138 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza Umberto I - 70121, Bari, Italy
| | - Antonio Brescia
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Michele Catellani
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Via A.Gramsci 89/91, 71122 Foggia, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, Gh Marinescu 35, 540142 Târgu Mures, Romania
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", Corso Umberto I 40 - 80138 Naples, Italy
| |
Collapse
|
24
|
Lee HW, Kim E, Na I, Kim CK, Seo SI, Park H. Novel Multiparametric Magnetic Resonance Imaging-Based Deep Learning and Clinical Parameter Integration for the Prediction of Long-Term Biochemical Recurrence-Free Survival in Prostate Cancer after Radical Prostatectomy. Cancers (Basel) 2023; 15:3416. [PMID: 37444526 DOI: 10.3390/cancers15133416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Radical prostatectomy (RP) is the main treatment of prostate cancer (PCa). Biochemical recurrence (BCR) following RP remains the first sign of aggressive disease; hence, better assessment of potential long-term post-RP BCR-free survival is crucial. Our study aimed to evaluate a combined clinical-deep learning (DL) model using multiparametric magnetic resonance imaging (mpMRI) for predicting long-term post-RP BCR-free survival in PCa. A total of 437 patients with PCa who underwent mpMRI followed by RP between 2008 and 2009 were enrolled; radiomics features were extracted from T2-weighted imaging, apparent diffusion coefficient maps, and contrast-enhanced sequences by manually delineating the index tumors. Deep features from the same set of imaging were extracted using a deep neural network based on pretrained EfficentNet-B0. Here, we present a clinical model (six clinical variables), radiomics model, DL model (DLM-Deep feature), combined clinical-radiomics model (CRM-Multi), and combined clinical-DL model (CDLM-Deep feature) that were built using Cox models regularized with the least absolute shrinkage and selection operator. We compared their prognostic performances using stratified fivefold cross-validation. In a median follow-up of 61 months, 110/437 patients experienced BCR. CDLM-Deep feature achieved the best performance (hazard ratio [HR] = 7.72), followed by DLM-Deep feature (HR = 4.37) or RM-Multi (HR = 2.67). CRM-Multi performed moderately. Our results confirm the superior performance of our mpMRI-derived DL algorithm over conventional radiomics.
Collapse
Affiliation(s)
- Hye Won Lee
- Samsung Medical Center, Department of Urology, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Eunjin Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inye Na
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chan Kyo Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seong Il Seo
- Samsung Medical Center, Department of Urology, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Hyunjin Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Xu M, Chen Z, Zheng J, Zhao Q, Yuan Z. Artificial Intelligence-Aided Optical Imaging for Cancer Theranostics. Semin Cancer Biol 2023:S1044-579X(23)00094-9. [PMID: 37302519 DOI: 10.1016/j.semcancer.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxiao Zheng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
26
|
Ong W, Zhu L, Tan YL, Teo EC, Tan JH, Kumar N, Vellayappan BA, Ooi BC, Quek ST, Makmur A, Hallinan JTPD. Application of Machine Learning for Differentiating Bone Malignancy on Imaging: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061837. [PMID: 36980722 PMCID: PMC10047175 DOI: 10.3390/cancers15061837] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
An accurate diagnosis of bone tumours on imaging is crucial for appropriate and successful treatment. The advent of Artificial intelligence (AI) and machine learning methods to characterize and assess bone tumours on various imaging modalities may assist in the diagnostic workflow. The purpose of this review article is to summarise the most recent evidence for AI techniques using imaging for differentiating benign from malignant lesions, the characterization of various malignant bone lesions, and their potential clinical application. A systematic search through electronic databases (PubMed, MEDLINE, Web of Science, and clinicaltrials.gov) was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A total of 34 articles were retrieved from the databases and the key findings were compiled and summarised. A total of 34 articles reported the use of AI techniques to distinguish between benign vs. malignant bone lesions, of which 12 (35.3%) focused on radiographs, 12 (35.3%) on MRI, 5 (14.7%) on CT and 5 (14.7%) on PET/CT. The overall reported accuracy, sensitivity, and specificity of AI in distinguishing between benign vs. malignant bone lesions ranges from 0.44–0.99, 0.63–1.00, and 0.73–0.96, respectively, with AUCs of 0.73–0.96. In conclusion, the use of AI to discriminate bone lesions on imaging has achieved a relatively good performance in various imaging modalities, with high sensitivity, specificity, and accuracy for distinguishing between benign vs. malignant lesions in several cohort studies. However, further research is necessary to test the clinical performance of these algorithms before they can be facilitated and integrated into routine clinical practice.
Collapse
Affiliation(s)
- Wilson Ong
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-67725207
| | - Lei Zhu
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Yi Liang Tan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Ee Chin Teo
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
| | - Jiong Hao Tan
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Naresh Kumar
- University Spine Centre, Department of Orthopaedic Surgery, National University Health System, 1E, Lower Kent Ridge Road, Singapore 119228, Singapore
| | - Balamurugan A. Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Beng Chin Ooi
- Department of Computer Science, School of Computing, National University of Singapore, 13 Computing Drive, Singapore 117417, Singapore
| | - Swee Tian Quek
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - Andrew Makmur
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| | - James Thomas Patrick Decourcy Hallinan
- Department of Diagnostic Imaging, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
| |
Collapse
|
27
|
Huynh LM, Hwang Y, Taylor O, Baine MJ. The Use of MRI-Derived Radiomic Models in Prostate Cancer Risk Stratification: A Critical Review of Contemporary Literature. Diagnostics (Basel) 2023; 13:diagnostics13061128. [PMID: 36980436 PMCID: PMC10047271 DOI: 10.3390/diagnostics13061128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The development of precise medical imaging has facilitated the establishment of radiomics, a computer-based method of quantitatively analyzing subvisual imaging characteristics. The present review summarizes the current literature on the use of diagnostic magnetic resonance imaging (MRI)-derived radiomics in prostate cancer (PCa) risk stratification. A stepwise literature search of publications from 2017 to 2022 was performed. Of 218 articles on MRI-derived prostate radiomics, 33 (15.1%) generated models for PCa risk stratification. Prediction of Gleason score (GS), adverse pathology, postsurgical recurrence, and postradiation failure were the primary endpoints in 15 (45.5%), 11 (33.3%), 4 (12.1%), and 3 (9.1%) studies. In predicting GS and adverse pathology, radiomic models differentiated well, with receiver operator characteristic area under the curve (ROC-AUC) values of 0.50–0.92 and 0.60–0.92, respectively. For studies predicting post-treatment recurrence or failure, ROC-AUC for radiomic models ranged from 0.73 to 0.99 in postsurgical and radiation cohorts. Finally, of the 33 studies, 7 (21.2%) included external validation. Overall, most investigations showed good to excellent prediction of GS and adverse pathology with MRI-derived radiomic features. Direct prediction of treatment outcomes, however, is an ongoing investigation. As these studies mature and reach potential for clinical integration, concerted effort to validate these radiomic models must be undertaken.
Collapse
Affiliation(s)
- Linda My Huynh
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521, USA
- Department of Urology, University of California, Orange, CA 92868, USA
| | - Yeagyeong Hwang
- Department of Urology, University of California, Orange, CA 92868, USA
| | - Olivia Taylor
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521, USA
| | - Michael J. Baine
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, 987521 Nebraska Medical Center, Omaha, NE 68198-7521, USA
- Correspondence:
| |
Collapse
|
28
|
Stanzione A, Ponsiglione A, Alessandrino F, Brembilla G, Imbriaco M. Beyond diagnosis: is there a role for radiomics in prostate cancer management? Eur Radiol Exp 2023; 7:13. [PMID: 36907973 PMCID: PMC10008761 DOI: 10.1186/s41747-023-00321-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/05/2023] [Indexed: 03/13/2023] Open
Abstract
The role of imaging in pretreatment staging and management of prostate cancer (PCa) is constantly evolving. In the last decade, there has been an ever-growing interest in radiomics as an image analysis approach able to extract objective quantitative features that are missed by human eye. However, most of PCa radiomics studies have been focused on cancer detection and characterisation. With this narrative review we aimed to provide a synopsis of the recently proposed potential applications of radiomics for PCa with a management-based approach, focusing on primary treatments with curative intent and active surveillance as well as highlighting on recurrent disease after primary treatment. Current evidence is encouraging, with radiomics and artificial intelligence appearing as feasible tools to aid physicians in planning PCa management. However, the lack of external independent datasets for validation and prospectively designed studies casts a shadow on the reliability and generalisability of radiomics models, delaying their translation into clinical practice.Key points• Artificial intelligence solutions have been proposed to streamline prostate cancer radiotherapy planning.• Radiomics models could improve risk assessment for radical prostatectomy patient selection.• Delta-radiomics appears promising for the management of patients under active surveillance.• Radiomics might outperform current nomograms for prostate cancer recurrence risk assessment.• Reproducibility of results, methodological and ethical issues must still be faced before clinical implementation.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | | | - Giorgio Brembilla
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Luvhengo T, Molefi T, Demetriou D, Hull R, Dlamini Z. Use of Artificial Intelligence in Implementing Mainstream Precision Medicine to Improve Traditional Symptom-driven Practice of Medicine: Allowing Early Interventions and Tailoring better-personalised Cancer Treatments. ARTIFICIAL INTELLIGENCE AND PRECISION ONCOLOGY 2023:49-72. [DOI: 10.1007/978-3-031-21506-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|