1
|
Ghasemi A, Jeddi S, Kashfi K. Brain glucose metabolism: Role of nitric oxide. Biochem Pharmacol 2024; 232:116728. [PMID: 39709040 DOI: 10.1016/j.bcp.2024.116728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
One possible reason for failure in achieving optimal glycemic control in patients with type 2 diabetes (T2D) is that less attention has been paid to the brain, a fundamental player in glucose homeostasis, that consumes about 25% of total glucose utilization. In addition, animal and human studies indicate that nitric oxide (NO) is a critical player in glucose metabolism. NO synthesis from L-arginine is lower in patients with T2D, and endothelial NO synthase (eNOS)-derived NO bioavailability is lower in T2D. NO in the nervous system plays a role in neurovascular coupling (NVC) and the hypothalamic control of glucose sensing and energy homeostasis, influencing glucose utilization. This review explores NO's role in the brain's glucose metabolism. Literature indicates that glucose metabolism is different between neurons and astrocytes. Unlike neurons, astrocytes have a higher rate of glycolysis and a greater ability for lactate production. Astrocytes produce a greater amount of NO than neurons. NO inhibits mitochondrial respiration in both neurons and astrocytes and decreases intracellular ATP. NO-induced inhibition of mitochondrial respiration in neurons is not accompanied by compensatory glycolysis because phosphofructokinase 2.3 (PFK2.3), the most potent activator of PFK1 and thus glycolysis, is subjected to ubiquitylation and proteasomal degradation by cadherin-1 (Cdh1)-activated anaphase-promoting complex/cyclosome (APC/C), which leads to a low glycolytic rate in neurons. In astrocytes, NO inhibits mitochondrial respiration, but astrocytes display compensatory glycolysis by activating the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA
| |
Collapse
|
2
|
Mangioris G, Orozco E, Dubey D, Flanagan EP, Pittock SJ, Zekeridou A, McKeon A. Long-term outcomes in antibody-negative autoimmune encephalitis: a retrospective study. J Neurol 2024; 271:7502-7515. [PMID: 39278895 DOI: 10.1007/s00415-024-12680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND AND OBJECTIVE Despite constituting one-third of suspected autoimmune encephalitis (AE) patients, antibody-negative cases without typical AE features are understudied. We aim to characterize the clinical phenotypes and long-term outcomes of "possible only" and "probable" AE cases. METHODS We conducted a retrospective analysis of adult patients evaluated at Mayo Clinic's Autoimmune Neurology Clinic (01/01/2006-12/31/2020), meeting diagnostic criteria for "possible only" or "probable but antibody-negative" AE, with ≥ 1 year of follow-up. All patients underwent neural antibody testing. RESULTS Among fifty-one patients, six had a change in diagnosis (non-autoimmune, 2) and were excluded from further analysis. Forty-five patients were analyzed [median age, 61 years (range 20-88); female, 21 (47%); median follow-up, 36 months (range 12-174)]. A nadir modified Rankin Scale (mRS) ≥ 3 was recorded in 41/45 (91%). CSF was inflammatory in 20/44 (45%) and MRI had encephalitic changes in 21/45 (47%). Unclassified neural-specific IgG staining on tissue-based assay was detected in five (11%). Two patients (4%) had paraneoplastic causation. Relapses (> 3 months from onset) were noted in 14 (31%). Memory dysfunction (69%), attention deficits (38%), and gait instability (29%) were the most frequent at the last follow-up. Most patients (76%) were independent at the last follow-up and only two required an assistive device to ambulate; 11 patients (24%) had poor neurological outcome (mRS ≥ 3). Higher mRS score and gait assistance requirement at 3 months were predictive of poor outcome (P ≤ 0.01). DISCUSSION Despite significant disability at initial disease stages, most antibody-negative AE patients regain independent functioning. Early functional status and gait assistance requirements may predict long-term prognosis.
Collapse
Affiliation(s)
- Georgios Mangioris
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1St ST SW, Rochester, MN, 55905, USA
| | - Emma Orozco
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Divyanshu Dubey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1St ST SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1St ST SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1St ST SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1St ST SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1St ST SW, Rochester, MN, 55905, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Berends E, Pencheva MG, van de Waarenburg MPH, Scheijen JLJM, Hermes DJHP, Wouters K, van Oostenbrugge RJ, Foulquier S, Schalkwijk CG. Glyoxalase 1 overexpression improves neurovascular coupling and limits development of mild cognitive impairment in a mouse model of type 1 diabetes. J Physiol 2024; 602:6209-6223. [PMID: 39316027 DOI: 10.1113/jp286723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes is associated with cognitive impairment, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a precursor to advanced glycation endproducts (AGEs), is elevated in diabetes and linked to microvascular dysfunction. In this study, overexpression of the MGO-detoxifying enzyme glyoxalase 1 (Glo1) was used in a mouse model of diabetes to explore whether MGO accumulation in diabetes causes cognitive impairment. Diabetes was induced with streptozotocin. Fasting blood glucose, cognitive function, cerebral blood flow, neurovascular coupling (NVC), Glo1 activity, MGO and AGEs were assessed. In diabetes, MGO-derived hydroimidazolone-1 increased in the cortex, and was decreased in Glo1-overexpressing mice compared to controls. Visuospatial memory was decreased in diabetes, but not in Glo1/diabetes. NVC response time was slightly increased in diabetes, and normalised in the Glo1-overexpressing group. No impact of diabetes or Glo1 overexpression on blood-brain barrier integrity or vascular density was observed. Diabetes induced a mild visuospatial memory impairment and slightly reduced NVC response speed and these effects were mitigated by Glo1. This study shows a link between MGO-related AGE accumulation and cerebrovascular/cognitive functions in diabetes. Modulation of the MGO-Glo1 pathway may be a novel intervention strategy in patients with diabetes who have cerebrovascular complications. KEY POINTS: Diabetes is associated with an increased risk of stroke, cognitive decline, depression and Alzheimer's disease, but the underlying mechanism remains unclear. Methylglyoxal (MGO), a highly reactive by-product of glycolysis, plays an important role in the development of diabetes-associated microvascular dysfunction in the periphery and is detoxified by the enzyme glyoxalase 1. Diabetes reduced visuospatial memory in mice and slowed the neurovascular coupling response speed, which was improved by overexpression of glyoxalase 1. MGO formation and MGO-derived advanced glycation endproduct (AGE) accumulation in the brain of diabetic mice are associated with a slight reduction in neurovascular coupling and mild cognitive impairment. The endogenous formation of MGO, and the accumulation of MGO-derived AGEs, might be a potential target in reducing the risk of vascular cognitive impairment in people with diabetes.
Collapse
Affiliation(s)
- Eline Berends
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Margarita G Pencheva
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- Department of Biomedical Engineering, Maastricht University, Maastricht, the Netherlands
| | - Marjo P H van de Waarenburg
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Jean L J M Scheijen
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Denise J H P Hermes
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
| | - Kristiaan Wouters
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Robert J van Oostenbrugge
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Sébastien Foulquier
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
- MHeNs, School for Mental Health and Neurosciences, Maastricht University, Maastricht, the Netherlands
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Maastricht University, Maastricht, the Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
4
|
Womack CL, Perkins A, Arnold JM. Cognitive Impairment in the Primary Care Clinic. Prim Care 2024; 51:233-251. [PMID: 38692772 DOI: 10.1016/j.pop.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Cognitive impairment is a common problem in the geriatric population and is characterized by variable symptoms of memory difficulties, executive dysfunction, language or visuospatial problems, and behavioral changes. It is imperative that primary care clinicians recognize and differentiate the variable symptoms associated with cognitive impairment from changes attributable to normal aging or secondary to other medical conditions. A thorough evaluation for potentially reversible causes of dementia is required before diagnosis with a neurodegenerative dementia. Other abnormal neurologic findings, rapid progression, or early age of onset are red flags that merit referral to neurology for more specialized evaluation and treatment.
Collapse
Affiliation(s)
- Cindy L Womack
- Department of Neurology, Neuroscience Institute, Southern Illinois University School of Medicine, 751 North Rutledge Street, PO 19643, Springfield, IL 62794, USA
| | - Andrea Perkins
- Department of Neurology, Neuroscience Institute, Southern Illinois University School of Medicine, 751 North Rutledge Street, PO 19643, Springfield, IL 62794, USA
| | - Jennifer M Arnold
- Department of Neurology, Neuroscience Institute, Southern Illinois University School of Medicine, 751 North Rutledge Street, PO 19643, Springfield, IL 62794, USA.
| |
Collapse
|
5
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
6
|
Antunovic L, Artesani A, Viganò A, Chiti A, Santoro A, Sollini M, Morbelli SD, De Sanctis R. Imaging Correlates between Headache and Breast Cancer: An [ 18F]FDG PET Study. Cancers (Basel) 2023; 15:4147. [PMID: 37627174 PMCID: PMC10453040 DOI: 10.3390/cancers15164147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to examine brain metabolic patterns on [18F]Fluorodeoxyglucose ([18F]FDG) positron emission tomography (PET) in breast cancer (BC), comparing patients with tension-type headache (TTH), migraine (MiG), and those without headache. Further association with BC response to neoadjuvant chemotherapy (NAC) was explored. In this prospective study, BC patients eligible for NAC performed total-body [18F]FDG PET/CT with a dedicated brain scan. A voxel-wise analysis (two-sample t-test) and a multiple regression model were used to compare brain metabolic patterns among TTH, MiG, and no-headache patients and to correlate them with clinical covariates. A single-subject analysis compared each patient's brain uptake before and after NAC with a healthy control group. Primary headache was diagnosed in 39/46 of BC patients (39% TTH and 46% MiG). TTH patients exhibited hypometabolism in specific brain regions before NAC. TTH patients with a pathological complete response (pCR) to NAC showed hypermetabolic brain regions in the anterior medial frontal cortex. The correlation between tumor uptake and brain metabolism varied before and after NAC, suggesting an inverse relationship. Additionally, the single-subject analysis revealed that hypometabolic brain regions were not present after NAC. Primary headache, especially MiG, was associated with a better response to NAC. These findings suggest complex interactions between BC, headache, and hormonal status, warranting further investigation in larger prospective cohorts.
Collapse
Affiliation(s)
- Lidija Antunovic
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
| | - Alessia Artesani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | | | - Arturo Chiti
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Armando Santoro
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Martina Sollini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| | - Silvia D. Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | - Rita De Sanctis
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.A.); (A.A.); (A.C.); (A.S.); (R.D.S.)
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy
| |
Collapse
|
7
|
Zhang S, Zhang Y, Wen Z, Yang Y, Bu T, Bu X, Ni Q. Cognitive dysfunction in diabetes: abnormal glucose metabolic regulation in the brain. Front Endocrinol (Lausanne) 2023; 14:1192602. [PMID: 37396164 PMCID: PMC10312370 DOI: 10.3389/fendo.2023.1192602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Cognitive dysfunction is increasingly recognized as a complication and comorbidity of diabetes, supported by evidence of abnormal brain structure and function. Although few mechanistic metabolic studies have shown clear pathophysiological links between diabetes and cognitive dysfunction, there are several plausible ways in which this connection may occur. Since, brain functions require a constant supply of glucose as an energy source, the brain may be more susceptible to abnormalities in glucose metabolism. Glucose metabolic abnormalities under diabetic conditions may play an important role in cognitive dysfunction by affecting glucose transport and reducing glucose metabolism. These changes, along with oxidative stress, inflammation, mitochondrial dysfunction, and other factors, can affect synaptic transmission, neural plasticity, and ultimately lead to impaired neuronal and cognitive function. Insulin signal triggers intracellular signal transduction that regulates glucose transport and metabolism. Insulin resistance, one hallmark of diabetes, has also been linked with impaired cerebral glucose metabolism in the brain. In this review, we conclude that glucose metabolic abnormalities play a critical role in the pathophysiological alterations underlying diabetic cognitive dysfunction (DCD), which is associated with multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, inflammation, and others. Brain insulin resistance is highly emphasized and characterized as an important pathogenic mechanism in the DCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Ni
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Henn RE, Elzinga SE, Glass E, Parent R, Guo K, Allouch AM, Mendelson FE, Hayes J, Webber-Davis I, Murphy GG, Hur J, Feldman EL. Obesity-induced neuroinflammation and cognitive impairment in young adult versus middle-aged mice. Immun Ageing 2022; 19:67. [PMID: 36550567 PMCID: PMC9773607 DOI: 10.1186/s12979-022-00323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Obesity rates are increasing worldwide. Obesity leads to many complications, including predisposing individuals to the development of cognitive impairment as they age. Immune dysregulation, including inflammaging (e.g., increased circulating cytokines) and immunosenescence (declining immune system function), commonly occur in obesity and aging and may impact cognitive impairment. As such, immune system changes across the lifespan may impact the effects of obesity on neuroinflammation and associated cognitive impairment. However, the role of age in obesity-induced neuroinflammation and cognitive impairment is unclear. To further define this putative relationship, the current study examined metabolic and inflammatory profiles, along with cognitive changes using a high-fat diet (HFD) mouse model of obesity. RESULTS First, HFD promoted age-related changes in hippocampal gene expression. Given this early HFD-induced aging phenotype, we fed HFD to young adult and middle-aged mice to determine the effect of age on inflammatory responses, metabolic profile, and cognitive function. As anticipated, HFD caused a dysmetabolic phenotype in both age groups. However, older age exacerbated HFD cognitive and neuroinflammatory changes, with a bi-directional regulation of hippocampal inflammatory gene expression. CONCLUSIONS Collectively, these data indicate that HFD promotes an early aging phenotype in the brain, which is suggestive of inflammaging and immunosenescence. Furthermore, age significantly compounded the impact of HFD on cognitive outcomes and on the regulation of neuroinflammatory programs in the brain.
Collapse
Affiliation(s)
- Rosemary E Henn
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sarah E Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emily Glass
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rachel Parent
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Adam M Allouch
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - John Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffery G Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Molecular and Integrative Physiology, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Solas M, Zamarbide M, Ardanaz CG, Ramírez MJ, Pérez-Mediavilla A. The Cognitive Improvement and Alleviation of Brain Hypermetabolism Caused by FFAR3 Ablation in Tg2576 Mice Is Persistent under Diet-Induced Obesity. Int J Mol Sci 2022; 23:13591. [PMID: 36362376 PMCID: PMC9654726 DOI: 10.3390/ijms232113591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Obesity and aging are becoming increasingly prevalent across the globe. It has been established that aging is the major risk factor for Alzheimer's disease (AD), and it is becoming increasingly evident that obesity and the associated insulin resistance are also notably relevant risk factors. The biological plausibility of the link between high adiposity, insulin resistance, and dementia is central for understanding AD etiology, and to form bases for prevention efforts to decrease the disease burden. Several studies have demonstrated a strong association between short chain fatty acid receptor FFAR3 and insulin sensitivity. Interestingly, it has been recently established that FFAR3 mRNA levels are increased in early stages of the AD pathology, indicating that FFAR3 could play a key role in AD onset and progression. Indeed, in the present study we demonstrate that the ablation of the Ffar3 gene in Tg2576 mice prevents the development of cognitive deficiencies in advanced stages of the disease. Notably, this cognitive improvement is also maintained upon a severe metabolic challenge such as the exposure to high-fat diet (HFD) feeding. Moreover, FFAR3 deletion restores the brain hypermetabolism displayed by Tg2576 mice. Collectively, these data postulate FFAR3 as a potential novel target for AD.
Collapse
Affiliation(s)
- Maite Solas
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Carlos G. Ardanaz
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María J. Ramírez
- Department of Pharmacology and Toxicology, University of Navarra, 31008 Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Alberto Pérez-Mediavilla
- IdISNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Neuroscience Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain
| |
Collapse
|
10
|
Savelieff MG, Chen KS, Elzinga SE, Feldman EL. Diabetes and dementia: Clinical perspective, innovation, knowledge gaps. J Diabetes Complications 2022; 36:108333. [PMID: 36240668 PMCID: PMC10076101 DOI: 10.1016/j.jdiacomp.2022.108333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 10/31/2022]
Abstract
The world faces a pandemic-level prevalence of type 2 diabetes. In parallel with this massive burden of metabolic disease is the growing prevalence of dementia as the population ages. The two health issues are intertwined. The Lancet Commission on dementia prevention, intervention, and care was convened to tackle the growing global concern of dementia by identifying risk factors. It concluded, along with other studies, that diabetes as well as obesity and the metabolic syndrome more broadly, which are frequently comorbid, raise the risk of developing dementia. Type 2 diabetes is a modifiable risk factor; however, it is uncertain whether anti-diabetic drugs mitigate risk of developing dementia. Reasons are manifold but constitute a critical knowledge gap in the field. This review outlines studies of type 2 diabetes on risk of dementia, illustrating key concepts. Moreover, it identifies knowledge gaps, reviews strategies to help fill these gaps, and concludes with a series of recommendations to mitigate risk and advance understanding of type 2 diabetes and dementia.
Collapse
Affiliation(s)
- Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S Chen
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sarah E Elzinga
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW This article discusses neuroimaging in dementia diagnosis, with a focus on new applications of MRI and positron emission tomography (PET). RECENT FINDINGS Although the historical use of MRI in dementia diagnosis has been supportive to exclude structural etiologies, recent innovations allow for quantification of atrophy patterns that improve sensitivity for supporting the diagnosis of dementia causes. Neuronuclear approaches allow for localization of specific amyloid and tau neuropathology on PET and are available for clinical use, in addition to dopamine transporter scans in dementia with Lewy bodies and metabolic studies with fludeoxyglucose PET (FDG-PET). SUMMARY Using computerized software programs for MRI analysis and cross-sectional and longitudinal evaluations of hippocampal, ventricular, and lobar volumes improves sensitivity in support of the diagnosis of Alzheimer disease and frontotemporal dementia. MRI protocol requirements for such quantification are three-dimensional T1-weighted volumetric imaging protocols, which may need to be specifically requested. Fluid-attenuated inversion recovery (FLAIR) and 3.0T susceptibility-weighted imaging (SWI) sequences are useful for the detection of white matter hyperintensities as well as microhemorrhages in vascular dementia and cerebral amyloid angiopathy. PET studies for amyloid and/or tau pathology can add additional specificity to the diagnosis but currently remain largely inaccessible outside of research settings because of prohibitive cost constraints in most of the world. Dopamine transporter PET scans can help identify Lewy body dementia and are thus of potential clinical value.
Collapse
Affiliation(s)
- Cyrus A. Raji
- Washington University in St. Louis Mallinckrodt Institute of Radiology, Division of Neuroradiology
- Washington University in St. Louis Department of Neurology
- Washington University in St. Louis Neuroimaging Laboratories
- Knight Alzheimer Disease Research Center, Washington University in St. Louis
| | - Tammie L. S. Benzinger
- Washington University in St. Louis Mallinckrodt Institute of Radiology, Division of Neuroradiology
- Washington University in St. Louis Neuroimaging Laboratories
- Knight Alzheimer Disease Research Center, Washington University in St. Louis
- Washington University in St. Louis Department of Neurosurgery
| |
Collapse
|
12
|
Barone E, Di Domenico F, Perluigi M, Butterfield DA. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic Biol Med 2021; 176:16-33. [PMID: 34530075 PMCID: PMC8595768 DOI: 10.1016/j.freeradbiomed.2021.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly followed by vascular dementia. In addition to clinically diagnosed dementia, cognitive dysfunction has been reported in diabetic patients. Recent studies are now beginning to recognize type 2 diabetes mellitus (T2DM), characterized by chronic hyperglycemia and insulin resistance, as a risk factor for AD and other cognitive disorders. While studies on insulin action have remained traditionally in the domain of peripheral tissues, the detrimental effects of insulin resistance in the central nervous system on cognitive dysfunction are increasingly being reported in recent clinical and preclinical studies. Brain functions require continuous supply of glucose and oxygen and a tight regulation of metabolic processes. Loss of this metabolic regulation has been proposed to be a contributor to memory dysfunction associated with neurodegeneration. Within the above scenario, this review will focus on the interplay among oxidative stress (OS), insulin resistance and AMPK dysfunctions in the brain by highlighting how these neurotoxic events contribute to neurodegeneration. We provide an overview on the detrimental effects of OS on proteins regulating insulin signaling and how these alterations impact cell metabolic dysfunctions through AMPK dysregulation. Such processes, we assert, are critically involved in the molecular pathways that underlie AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40506-0055, USA.
| |
Collapse
|