1
|
Islam MR, Sarker U, Azam MG, Hossain J, Alam MA, Ullah R, Bari A, Hossain N, El Sabagh A, Islam MS. Potassium augments growth, yield, nutrient content, and drought tolerance in mung bean (Vigna radiata L. Wilczek.). Sci Rep 2024; 14:9378. [PMID: 38654029 PMCID: PMC11039697 DOI: 10.1038/s41598-024-60129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Uneven rainfall and high temperature cause drought in tropical and subtropical regions which is a major challenge to cultivating summer mung bean. Potassium (K), a major essential nutrient of plants can alleviate water stress (WS) tolerance in plants. A field trial was executed under a rainout shelter with additional K fertilization including recommended K fertilizer (RKF) for relieving the harmful impact of drought in response to water use efficiency (WUE), growth, yield attributes, nutrient content, and yield of mung bean at the Regional Agricultural Research Station, BARI, Ishwardi, Pabna in two successive summer season of 2018 and 2019. Drought-tolerant genotype BMX-08010-2 (G1) and drought-susceptible cultivar BARI Mung-1 (G2) were grown by applying seven K fertilizer levels (KL) using a split-plot design with three replications, where mung bean genotypes were allotted in the main plots, and KL were assigned randomly in the sub-plots. A considerable variation was observed in the measured variables. Depending on the different applied KL and seed yield of mung bean, the water use efficiency (WUE) varied from 4.73 to 8.14 kg ha-1 mm-1. The treatment applying 125% more K with RKF (KL7) under WS gave the maximum WUE (8.14 kg ha-1 mm-1) obtaining a seed yield of 1093.60 kg ha-1. The treatment receiving only RKF under WS (KL2) provided the minimum WUE (4.73 kg ha-1 mm-1) attaining a seed yield of 825.17 kg ha-1. Results showed that various characteristics including nutrients (N, P, K, and S) content in stover and seed, total dry matter (TDM) in different growth stages, leaf area index (LAI), crop growth rate (CGR), root volume (RV), root density (RD), plant height, pod plant-1, pod length, seeds pod-1, seed weight, and seed yield in all pickings increased with increasing K levels, particularly noted with KL7. The highest grain yield (32.52%) was also obtained from KL7 compared to lower K with RKF. Overall, yield varied from 1410.37 kg ha-1 using 281 mm water (KL1; well-watered condition with RKF) to 825.17 kg ha-1 using 175 mm water (KL2). The results exhibited that the application of additional K improves the performance of all traits under WS conditions. Therefore, mung beans cultivating under WS requires additional K to diminish the negative effect of drought, and adequate use of K contributes to accomplishing sustainable productivity.
Collapse
Affiliation(s)
- Mohammad Rafiqul Islam
- Agronomy Division, Regional Agricultural Research Station, Bangladesh Agricultural Research Institute (BARI), Ishwardi, Pabna, 6620, Bangladesh
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | | | - Jamil Hossain
- Pulses Research Centre, BARI, Ishwardi, Pabna, 6620, Bangladesh
| | | | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nazmul Hossain
- Department of Agronomy, Iowa State University, Ames, IA, 50010, USA
| | - Ayman El Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33156, Egypt
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| |
Collapse
|
2
|
Munthali C, Kinoshita R, Onishi K, Rakotondrafara A, Mikami K, Koike M, Tani M, Palta J, Aiuchi D. A Model Nutrition Control System in Potato Tissue Culture and Its Influence on Plant Elemental Composition. PLANTS (BASEL, SWITZERLAND) 2022; 11:2718. [PMID: 36297742 PMCID: PMC9611602 DOI: 10.3390/plants11202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Low or excessive soil fertility is a major constraint to potato production. The influence of each individual nutrient element on potato plants under field studies remains ambiguous due to the influence of environmental variations. Creating an in vitro model plant with deficient or excessive nutrient content will provide a more controlled study and allow for a better understanding of how the concentration of one element can affect the uptake of other elements. Here we designed a tissue culture-based nutrition control system to systematically analyze the effects of essential nutrients on potato plants. Insufficient or excessive nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) contents were created by modifying the Murashige and Skoog (MS) medium. Deficient to toxic plant nutrient statuses were successfully defined by the evaluation of dry biomass and morphological symptoms. The results showed that plant shoot growth, nutrient uptake and content, and nutrient interactions were all significantly impacted by the changes in the MS media nutrient concentrations. These tissue culture systems can be successfully used for further investigations of nutrient effects on potato production in response to biotic and abiotic stresses in vitro.
Collapse
Affiliation(s)
- Chandiona Munthali
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Rintaro Kinoshita
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Kazumitsu Onishi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Aurelie Rakotondrafara
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Kakeru Mikami
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Masanori Koike
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Masayuki Tani
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Jiwan Palta
- Department of Horticulture, University of Wisconsin-Madison, 490 Moore Hall, 1575 Linden Drive, Madison, WI 53706, USA
| | - Daigo Aiuchi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
- Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|