1
|
Denux M, Armenteros M, Weber L, Miller CA, Sántha K, Apprill A. Coral Reef Water Microbial Communities of Jardines de la Reina, Cuba. Microorganisms 2024; 12:1822. [PMID: 39338496 PMCID: PMC11433942 DOI: 10.3390/microorganisms12091822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Globally, coral reef ecosystems are undergoing significant change related to climate change and anthropogenic activities. Yet, the Cuban archipelago of Jardines de la Reina (JR) has experienced fewer stressors due to its geographical remoteness and high level of conservation. This study examines the surface and benthic reef water microbial communities associated with 32 reef sites along the JR archipelago and explores the relationship between the community composition of reef microorganisms examined using bacterial and archaeal small subunit ribosomal RNA gene (16S rRNA gene) sequencing compared to geographic, conservation/protection level, environmental, physicochemical, and reef benthic and pelagic community features. Reef nutrient concentrations were low and microbial communities dominated by picocyanobacteria and SAR11 and SAR86 clade bacteria, characteristic of an oligotrophic system. Reef water microbial community alpha and beta diversity both varied throughout the archipelago and were strongly related to geography. Three sites in the western archipelago showed unique microbial communities, which may be related to the hydrogeography and influences of the channels linking the Ana Maria gulf with the Caribbean Sea. Overall, this work provides the first extensive description of the reef microbial ecology of the Caribbean's 'Crown Jewel' reef system and a framework to evaluate the influence of ongoing stressors on the reef microorganisms.
Collapse
Affiliation(s)
- Manon Denux
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| | - Maickel Armenteros
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán 82040, Mexico
| | - Laura Weber
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| | - Carolyn A. Miller
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| | - Kinga Sántha
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
- Faculty of Geosciences and Environment, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Amy Apprill
- Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543, USA; (M.D.)
| |
Collapse
|
2
|
Thompson C, Silva R, Gibran FZ, Bacha L, de Freitas MAM, Thompson M, Landuci F, Tschoeke D, Zhang XH, Wang X, Zhao W, Gatts PV, de Almeida MG, de Rezende CE, Thompson F. The Abrolhos Nominally Herbivorous Coral Reef Fish Acanthurus chirurgus, Kyphosus sp., Scarus trispinosus, and Sparisoma axillare Have Similarities in Feeding But Species-Specific Microbiomes. MICROBIAL ECOLOGY 2024; 87:110. [PMID: 39215820 PMCID: PMC11365853 DOI: 10.1007/s00248-024-02423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Coral reefs rely heavily on reef fish for their health, yet overfishing has resulted in their decline, leading to an increase in fast-growing algae and changes in reef ecosystems, a phenomenon described as the phase-shift. A clearer understanding of the intricate interplay between herbivorous, their food, and their gut microbiomes could enhance reef health. This study examines the gut microbiome and isotopic markers (δ13C and δ15N) of four key nominally herbivorous reef fish species (Acanthurus chirurgus, Kyphosus sp., Scarus trispinosus, and Sparisoma axillare) in the Southwestern Atlantic's Abrolhos Reef systems. Approximately 16.8 million 16S rRNA sequences were produced for the four fish species, with an average of 317,047 ± 57,007 per species. Bacteria such as Proteobacteria, Firmicutes, and Cyanobacteria were prevalent in their microbiomes. These fish show unique microbiomes that result from co-diversification, diet, and restricted movement. Coral-associated bacteria (Endozoicomonas, Rhizobia, and Ruegeria) were found in abundance in the gut contents of the parrotfish species Sc. trispinosus and Sp. axillare. These parrotfishes could aid coral health by disseminating such beneficial bacteria across the reef. Meanwhile, Kyphosus sp. predominantly had Pirellulaceae and Rhodobacteraceae. Four fish species had a diet composed of turf components (filamentous Cyanobacteria) and brown algae (Dictyopteris). They also had similar isotopic niches, suggesting they shared food sources. A significant difference was observed between the isotopic signature of fish muscular gut tissue and gut contents, pointing to the role that host genetics and gut microbes play in differentiating fish tissues.
Collapse
Affiliation(s)
- Cristiane Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil.
| | - Raphael Silva
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Fernando Z Gibran
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo Do Campo, São Paulo, Brazil
| | - Leonardo Bacha
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Mayanne A M de Freitas
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Mateus Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Felipe Landuci
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
- Biomedical Engineer Program, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Xiao-Hua Zhang
- Microbial Oceanography Lab, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Microbial Oceanography Lab, Ocean University of China, Qingdao, China
| | - Wenbin Zhao
- Microbial Oceanography Lab, Ocean University of China, Qingdao, China
| | - Pedro Vianna Gatts
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, Brazil
| | - Marcelo Gomes de Almeida
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, Brazil
| | - Carlos Eduardo de Rezende
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, Brazil
| | - Fabiano Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil.
| |
Collapse
|
3
|
Grupstra CGB, Gómez-Corrales M, Fifer JE, Aichelman HE, Meyer-Kaiser KS, Prada C, Davies SW. Integrating cryptic diversity into coral evolution, symbiosis and conservation. Nat Ecol Evol 2024; 8:622-636. [PMID: 38351091 DOI: 10.1038/s41559-023-02319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/12/2023] [Indexed: 04/13/2024]
Abstract
Understanding how diversity evolves and is maintained is critical to predicting the future trajectories of ecosystems under climate change; however, our understanding of these processes is limited in marine systems. Corals, which engineer reef ecosystems, are critically threatened by climate change, and global efforts are underway to conserve and restore populations as attempts to mitigate ocean warming continue. Recently, sequencing efforts have uncovered widespread undescribed coral diversity, including 'cryptic lineages'-genetically distinct but morphologically similar coral taxa. Such cryptic lineages have been identified in at least 24 coral genera spanning the anthozoan phylogeny and across ocean basins. These cryptic lineages co-occur in many reef systems, but their distributions often differ among habitats. Research suggests that cryptic lineages are ecologically specialized and several examples demonstrate differences in thermal tolerance, highlighting the critical implications of this diversity for predicting coral responses to future warming. Here, we draw attention to recent discoveries, discuss how cryptic diversity affects the study of coral adaptation and acclimation to future environments, explore how it shapes symbiotic partnerships, and highlight challenges and opportunities for conservation and restoration efforts.
Collapse
Affiliation(s)
| | | | - James E Fifer
- Department of Biology, Boston University, Boston, MA, USA
| | | | | | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
4
|
Veglia AJ, Bistolas KSI, Voolstra CR, Hume BCC, Ruscheweyh HJ, Planes S, Allemand D, Boissin E, Wincker P, Poulain J, Moulin C, Bourdin G, Iwankow G, Romac S, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sunagawa S, Thomas OP, Troublé R, Zoccola D, Correa AMS, Vega Thurber RL. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun Biol 2023; 6:566. [PMID: 37264063 DOI: 10.1038/s42003-023-04917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/24/2023] [Indexed: 06/03/2023] Open
Abstract
Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes. Putative associations between Symbiodiniaceae and dinoRNAV EVEs were corroborated by the characterization of dinoRNAV-like sequences in 17 of 18 scaffold-scale and one chromosome-scale dinoflagellate genome assembly, flanked by characteristically cellular sequences and in proximity to retroelements, suggesting potential mechanisms of integration. EVEs were not detected in dinoflagellate-free (aposymbiotic) cnidarian genome assemblies, including stony corals, hydrocorals, jellyfish, or seawater. The pervasive nature of dinoRNAV EVEs within dinoflagellate genomes (especially Symbiodinium), as well as their inconsistent within-genome distribution and fragmented nature, suggest ancestral or recurrent integration of this virus with variable conservation. Broadly, these findings illustrate how +ssRNA viruses may obscure their genomes as members of nested symbioses, with implications for host evolution, exaptation, and immunity in the context of reef health and disease.
Collapse
Affiliation(s)
- Alex J Veglia
- BioSciences Department, Rice University, Houston, TX, USA
| | | | | | | | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Denis Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/ Tara Oceans-GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, USA
| | - Chris Bowler
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, LIA ROPSE, Monaco, France
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, F-06230, Villefranche-sur-Mer, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, Vladimir-Prelog-Weg 4, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75012, Paris, France
| | - Didier Zoccola
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, Monaco, MC-98000, Principality of Monaco
| | | | | |
Collapse
|
5
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Sheahan K, Zarate D, Chalifour B, Li J. Intraspecific transfer of algal symbionts can occur in photosymbiotic Exaiptasia sea anemones. Symbiosis 2022. [DOI: 10.1007/s13199-022-00891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Cissell EC, Eckrich CE, McCoy SJ. Cyanobacterial mats as benthic reservoirs and vectors for coral black band disease pathogens. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2692. [PMID: 35707998 DOI: 10.1002/eap.2692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The concurrent rise in the prevalence of conspicuous benthic cyanobacterial mats and the incidence of coral diseases independently mark major axes of degradation of coral reefs globally. Recent advances have uncovered the potential for the existence of interactions between the expanding cover of cyanobacterial mats and coral disease, especially black band disease (BBD), and this intersection represents both an urgent conservation concern and a critical challenge for future research. Here, we propose links between the transmission of BBD and benthic cyanobacterial mats. We provide molecular and ecophysiological evidence suggesting that cyanobacterial mats may create and maintain physically favorable benthic refugia for BBD pathogens while directly harboring BBD precursor assemblages, and discuss how mats may serve as direct (mediated via contact) and indirect (mediated via predator-prey-pathogen relationships) vectors for BBD pathogens. Finally, we identify and outline future priority research directions that are aligned with actionable management practices and priorities to support evidence-based coral conservation practices.
Collapse
Affiliation(s)
- Ethan C Cissell
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Caren E Eckrich
- Stichting Nationale Parken (STINAPA) Bonaire, Kralendijk, Bonaire, Caribbean Netherlands
| | - Sophie J McCoy
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
8
|
Maruyama S, Unsworth JR, Sawiccy V, Weis VM. Algae from Aiptasia egesta are robust representations of Symbiodiniaceae in the free-living state. PeerJ 2022; 10:e13796. [PMID: 35923894 PMCID: PMC9341449 DOI: 10.7717/peerj.13796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Many cnidarians rely on their dinoflagellate partners from the family Symbiodiniaceae for their ecological success. Symbiotic species of Symbiodiniaceae have two distinct life stages: inside the host, in hospite, and outside the host, ex hospite. Several aspects of cnidarian-algal symbiosis can be understood by comparing these two life stages. Most commonly, algae in culture are used in comparative studies to represent the ex hospite life stage, however, nutrition becomes a confounding variable for this comparison because algal culture media is nutrient rich, while algae in hospite are sampled from hosts maintained in oligotrophic seawater. In contrast to cultured algae, expelled algae may be a more robust representation of the ex hospite state, as the host and expelled algae are in the same seawater environment, removing differences in culture media as a confounding variable. Here, we studied the physiology of algae released from the sea anemone Exaiptasia diaphana (commonly called Aiptasia), a model system for the study of coral-algal symbiosis. In Aiptasia, algae are released in distinct pellets, referred to as egesta, and we explored its potential as an experimental system to represent Symbiodiniaceae in the ex hospite state. Observation under confocal and differential interference contrast microscopy revealed that egesta contained discharged nematocysts, host tissue, and were populated by a diversity of microbes, including protists and cyanobacteria. Further experiments revealed that egesta were released at night. In addition, algae in egesta had a higher mitotic index than algae in hospite, were photosynthetically viable for at least 48 hrs after expulsion, and could competently establish symbiosis with aposymbiotic Aiptasia. We then studied the gene expression of nutrient-related genes and studied their expression using qPCR. From the genes tested, we found that algae from egesta closely mirrored gene expression profiles of algae in hospite and were dissimilar to those of cultured algae, suggesting that algae from egesta are in a nutritional environment that is similar to their in hospite counterparts. Altogether, evidence is provided that algae from Aiptasia egesta are a robust representation of Symbiodiniaceae in the ex hospite state and their use in experiments can improve our understanding of cnidarian-algal symbiosis.
Collapse
Affiliation(s)
- Shumpei Maruyama
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Julia R. Unsworth
- Department of Biology, Lewis and Clark College, Portland, OR, United States of America
| | - Valeri Sawiccy
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | | | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
9
|
Bosch TCG. Beyond Lynn Margulis’ green hydra. Symbiosis 2022. [DOI: 10.1007/s13199-022-00849-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AbstractLynn Margulis has made it clear that in nature partnerships are the predominant form of life; that life processes can only be understood in terms of the interactions of such partnerships; and that their inherent complexity can only be understood by taking a holistic approach. Here I attempt to relate Lynn Margulis´ observations on the freshwater polyp hydra to the perceptions and problems of today’s Hydra research. To accomplish this, I will synthesize our current understanding of how symbionts influence the phenotype and fitness of hydra. Based on this new findings, a fundamental paradigm shift and a new era is emerging in the way that we consider organisms such as hydra as multi-organismic metaorganisms, just as Lynn Margulis may have thought about it.
Collapse
|
10
|
Bathia J, Schröder K, Fraune S, Lachnit T, Rosenstiel P, Bosch TCG. Symbiotic Algae of Hydra viridissima Play a Key Role in Maintaining Homeostatic Bacterial Colonization. Front Microbiol 2022; 13:869666. [PMID: 35733963 PMCID: PMC9207534 DOI: 10.3389/fmicb.2022.869666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023] Open
Abstract
The freshwater polyp Hydra viridissima (H. viridissima) harbors endosymbiotic Chlorella algae in addition to a species-specific microbiome. The molecular basis of the symbiosis between Hydra and Chlorella has been characterized to be metabolic in nature. Here, we studied the interaction between the extracellularly located microbiota and the algal photobiont, which resides in Hydra’s endodermal epithelium, with main focus on Legionella bacterium. We aimed at evaluating the influence of the symbiotic algae on microbial colonization and in shaping the host microbiome. We report that the microbiome composition of symbiotic and aposymbiotic (algae free) H. viridissima is significantly different and dominated by Legionella spp. Hvir in aposymbiotic animals. Co-cultivation of these animals resulted in horizontal transmission of Legionella spp. Hvir bacteria from aposymbiotic to symbiotic animals. Acquisition of this bacterium increased the release of algae into ambient water. From there, algae could subsequently be taken up again by the aposymbiotic animals. The presence of algal symbionts had negative impact on Legionella spp. Hvir and resulted in a decrease of the relative abundance of this bacterium. Prolonged co-cultivation ultimately resulted in the disappearance of the Legionella spp. Hvir bacterium from the Hydra tissue. Our observations suggest an important role of the photobiont in controlling an invasive species in a metacommunity and, thereby, shaping the microbiome.
Collapse
Affiliation(s)
- Jay Bathia
- Institute for Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Zoological Institute, Kiel University, Kiel, Germany
| | - Katja Schröder
- Zoological Institute, Kiel University, Kiel, Germany
- Department of Anatomy, Kiel University, Kiel, Germany
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Zoological Institute, Kiel University, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
| | - Thomas C. G. Bosch
- Zoological Institute, Kiel University, Kiel, Germany
- *Correspondence: Thomas C. G. Bosch,
| |
Collapse
|
11
|
Znidersic E, Watson DM. Acoustic restoration: Using soundscapes to benchmark and fast-track recovery of ecological communities. Ecol Lett 2022; 25:1597-1603. [PMID: 35474408 PMCID: PMC9321842 DOI: 10.1111/ele.14015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/10/2022] [Indexed: 01/24/2023]
Abstract
We introduce a new approach—acoustic restoration—focusing on the applied utility of soundscapes for restoration, recognising the rich ecological and social values they encapsulate. Broadcasting soundscapes in disturbed areas can accelerate recolonisation of animals and the microbes and propagules they carry; long duration recordings are also ideal sources of data for benchmarking restoration initiatives and evocative engagement tools.
Collapse
Affiliation(s)
- Elizabeth Znidersic
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| | - David M Watson
- Gulbali Institute, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Albury, New South Wales, Australia
| |
Collapse
|
12
|
Grupstra CGB, Lemoine NP, Cook C, Correa AMS. Thank you for biting: dispersal of beneficial microbiota through 'antagonistic' interactions. Trends Microbiol 2022; 30:930-939. [PMID: 35393166 DOI: 10.1016/j.tim.2022.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022]
Abstract
Multicellular organisms harbor populations of microbial symbionts; some of these symbionts can be dispersed through the feeding activities of consumers. Studies of consumer-mediated microbiota dispersal generally focus on pathogenic microorganisms; the dispersal of beneficial microorganisms has received less attention, especially in the context of 'antagonistic' trophic interactions (e.g., herbivory, parasitism, predation). Yet, this 'trophic transmission' of beneficial symbionts has significant implications for microbiota assembly and resource species (e.g., prey) health. For example, trophic transmission of microorganisms could assist with environmental acclimatization and help resource species to suppress other consumers or competitors. Here, we highlight model systems and approaches that have revealed these potential 'silver-linings' of antagonism as well as opportunities and challenges for future research.
Collapse
Affiliation(s)
- C G B Grupstra
- BioSciences Department, Rice University, Houston, TX 77098, USA.
| | - N P Lemoine
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - C Cook
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - A M S Correa
- BioSciences Department, Rice University, Houston, TX 77098, USA
| |
Collapse
|
13
|
Kriefall NG, Kanke MR, Aglyamova GV, Davies SW. Reef environments shape microbial partners in a highly connected coral population. Proc Biol Sci 2022; 289:20212459. [PMID: 35042418 PMCID: PMC8767194 DOI: 10.1098/rspb.2021.2459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
Evidence is mounting that composition of microorganisms within a host can play an essential role in total holobiont health. In corals, for instance, studies have identified algal and bacterial taxa that can significantly influence coral host function and these communities depend on environmental context. However, few studies have linked host genetics to algal and microbial partners across environments within a single coral population. Here, using 2b-RAD sequencing of corals and metabarcoding of their associated algal (ITS2) and bacterial (16S) communities, we show evidence that reef zones (locales that differ in proximity to shore and other environmental characteristics) structure algal and bacterial communities at different scales in a highly connected coral population (Acropora hyacinthus) in French Polynesia. Fore reef (FR) algal communities in Mo'orea were more diverse than back reef (BR) communities, suggesting that these BR conditions constrain diversity. Interestingly, in FR corals, host genetic diversity correlated with bacterial diversity, which could imply genotype by genotype interactions between these holobiont members. Our results illuminate that local reef conditions play an important role in shaping unique host-microbial partner combinations, which may have fitness consequences for dispersive coral populations arriving in novel environments.
Collapse
Affiliation(s)
| | - M. R. Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - G. V. Aglyamova
- Department of Integrative Biology, the University of Texas at Austin, Austin, TX, USA
| | - S. W. Davies
- Biology Department, Boston University, Boston, MA, USA
| |
Collapse
|
14
|
Medina M, Baker DM, Baltrus DA, Bennett GM, Cardini U, Correa AMS, Degnan SM, Christa G, Kim E, Li J, Nash DR, Marzinelli E, Nishiguchi M, Prada C, Roth MS, Saha M, Smith CI, Theis KR, Zaneveld J. Grand Challenges in Coevolution. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.618251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|