1
|
Ashrafi R, Sundberg LR, Hyvärinen P, Karvonen A. Heterogeneity of the rearing environment enhances diversity of microbial communities in intensive farming. Anim Microbiome 2024; 6:75. [PMID: 39707572 DOI: 10.1186/s42523-024-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/24/2024] [Indexed: 12/23/2024] Open
Abstract
Heterogeneity of the rearing environment in farmed animals can improve welfare and stocking success by enhancing natural behaviours, reducing stress, and decreasing pathogen occurrence. Although microbial diversity is often associated with well-being, their direct and indirect effects on health of farmed animals remain underexplored. We examined the impact of structural heterogeneity of aquaculture tanks on microbial communities in tank biofilm and fish gut microbiome. Enrichment (stones and shelters) significantly promoted microbial diversity and community homogeneity in tank biofilm. However, diversity of gut microbiome did not depend on rearing treatment or microbial composition of the environment. Fish in enriched tanks exhibited greater compositional variation in gut microbiome than those in standard tanks. Tanks without enrichments had higher occurrence of potentially pathogenic bacterial families (Corynebacteriaceae and Staphylococcaceae), while enriched tanks had more beneficial gut microbes (Lactobacillus). Microbial diversity in tank biofilm was negatively associated with fish mortality during a natural epidemic of Flavobacterium columnare, suggesting a protective effect of diverse microbial communities. These findings support environmental enrichment in mitigating disease outbreaks through enhanced microbial diversity, providing important implications for disease control and sustainable health management in aquaculture.
Collapse
Affiliation(s)
- Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Hyvärinen
- Aquatic Population Dynamics, Natural Resources Institute Finland (Luke), Paltamo, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Drosdowech S, Bezner S, Daisley B, Chiasson M, Easton A, Rooney N, Huyben D. Influence of feeding black soldier fly (Hermetia illucens), cricket (Gryllodes sigillatus), and superworm (Zophobas morio) on the gut microbiota of rainbow trout (Oncorhynchus mykiss). J Appl Microbiol 2024; 135:lxae295. [PMID: 39580363 DOI: 10.1093/jambio/lxae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/31/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
AIM This study investigates how replacing fishmeal and fish oil with insect meals in feed impacts the gut microbiota in rainbow trout (Oncorhynchus mykiss), a crucial species in aquaculture. METHODS AND RESULTS Dietary inclusion of black soldier fly (Hermetia illucens), cricket (Gryllodes sigillatus), and superworm (Zophobas morio) were evaluated for their impact on intestinal microbial diversity and community composition following a 12-week feeding trial. Fish were fed one of four isonitrogenous and isoenergetic diets: a control diet without insect meal, and diets with 15% defatted black soldier fly meal, full-fat adult cricket meal, or full-fat superworm meal. The microbiota of intestinal digesta and fish feed was characterized using 16S rRNA gene sequencing on the Illumina MiSeq platform. Results revealed significantly lower alpha diversity indices in the cricket treatment compared to the control. Beta diversity analysis showed Bacillota as the dominant phylum across all treatments, with the initial stock population richer in Mycoplasmatota. A novel genus within Mycoplasmataceae was prevalent at Day 0 and in all treatments. Black soldier fly meal increased an unidentified Peptostreptococcaceae genus (bsv123) compared to control and superworm diets, while cricket meal elevated Streptococcus levels. CONCLUSIONS Insect-based diets, particularly with black soldier fly meal, significantly alter beta diversity within the gut microbiota of rainbow trout, with cricket meal reducing alpha diversity and superworm having minimal impact.
Collapse
Affiliation(s)
- Sonja Drosdowech
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Samantha Bezner
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Brendan Daisley
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Marcia Chiasson
- Ontario Aquaculture Research Centre, University of Guelph, 6957 8 Line W, Elora, Ontario N0B 1S0, Canada
| | - Anne Easton
- Ontario Aquaculture Research Centre, University of Guelph, 6957 8 Line W, Elora, Ontario N0B 1S0, Canada
| | - Neil Rooney
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - David Huyben
- Department of Animal Biosciences, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
3
|
Vera-Ponce de León A, Hensen T, Hoetzinger M, Gupta S, Weston B, Johnsen SM, Rasmussen JA, Clausen CG, Pless L, Veríssimo ARA, Rudi K, Snipen L, Karlsen CR, Limborg MT, Bertilsson S, Thiele I, Hvidsten TR, Sandve SR, Pope PB, La Rosa SL. Genomic and functional characterization of the Atlantic salmon gut microbiome in relation to nutrition and health. Nat Microbiol 2024; 9:3059-3074. [PMID: 39402236 DOI: 10.1038/s41564-024-01830-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/13/2024] [Indexed: 11/01/2024]
Abstract
To ensure sustainable aquaculture, it is essential to understand the path 'from feed to fish', whereby the gut microbiome plays an important role in digestion and metabolism, ultimately influencing host health and growth. Previous work has reported the taxonomic composition of the Atlantic salmon (Salmo salar) gut microbiome; however, functional insights are lacking. Here we present the Salmon Microbial Genome Atlas consisting of 211 high-quality bacterial genomes, recovered by cultivation (n = 131) and gut metagenomics (n = 80) from wild and farmed fish both in freshwater and seawater. Bacterial genomes were taxonomically assigned to 14 different orders, including 35 distinctive genera and 29 previously undescribed species. Using metatranscriptomics, we functionally characterized key bacterial populations, across five phyla, in the salmon gut. This included the ability to degrade diet-derived fibres and release vitamins and other exometabolites with known beneficial effects, which was supported by genome-scale metabolic modelling and in vitro cultivation of selected bacterial species coupled with untargeted metabolomic studies. Together, the Salmon Microbial Genome Atlas provides a genomic and functional resource to enable future studies on salmon nutrition and health.
Collapse
Affiliation(s)
- Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Tim Hensen
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
| | - Matthias Hoetzinger
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shashank Gupta
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Bronson Weston
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
| | - Sander M Johnsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Grønlund Clausen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Louisa Pless
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lars Snipen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Morten T Limborg
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ines Thiele
- School of Medicine, University of Galway, Galway, Ireland
- Digital Metabolic Twin Centre, University of Galway, Galway, Ireland
- Discipline of Microbiology, University of Galway, Galway, Ireland
- Ryan Institute, University of Galway, Galway, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
4
|
Gupta S, Vera-Ponce de León A, Kodama M, Hoetzinger M, Clausen CG, Pless L, Verissimo ARA, Stengel B, Calabuig V, Kvingedal R, Skugor S, Westereng B, Harvey TN, Nordborg A, Bertilsson S, Limborg MT, Mørkøre T, Sandve SR, Pope PB, Hvidsten TR, La Rosa SL. The need for high-resolution gut microbiome characterization to design efficient strategies for sustainable aquaculture production. Commun Biol 2024; 7:1391. [PMID: 39455736 PMCID: PMC11511968 DOI: 10.1038/s42003-024-07087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.2% in the diet, had negligible effects on both host gene expression, and gut microbiome structure and function under the studied conditions. While a subsequent trial using a higher (4%) dietary inclusion of β-mannan significantly shifted the gut microbiome composition, there were still no biologically relevant effects on salmon metabolism and physiology. Only a single Burkholderia-Caballeronia-Paraburkholderia (BCP) population demonstrated consistent and significant abundance shifts across both feeding trials, although with no evidence of β-mannan utilization capabilities or changes in gene transcripts for producing metabolites beneficial to the host. In light of these findings, we revisited our omics data to predict and outline previously unreported and potentially beneficial endogenous lactic acid bacteria that should be targeted with future, conceivably more suitable, MDF strategies for salmon.
Collapse
Affiliation(s)
- Shashank Gupta
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arturo Vera-Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Miyako Kodama
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Hoetzinger
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cecilie G Clausen
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Louisa Pless
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ana R A Verissimo
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Bjørge Westereng
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF, Trondheim, Norway
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Turid Mørkøre
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R Sandve
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip B Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Torgeir R Hvidsten
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
5
|
Mueller J, van Muilekom DR, Ehlers J, Suhr M, Hornburg SC, Bang C, Wilkes M, Schultheiß T, Maser E, Rebl A, Goldammer T, Seibel H, Schulz C. Dietary Chlorella vulgaris supplementation modulates health, microbiota and the response to oxidative stress of Atlantic salmon. Sci Rep 2024; 14:23674. [PMID: 39389986 PMCID: PMC11467335 DOI: 10.1038/s41598-024-72531-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Microalgae are emerging as functional feed ingredients in aquaculture due to their immune-stimulating and stress-modulating properties. We investigated the potential of the microalgae Chlorella vulgaris as a feed supplement to improve the health and modulate microbiota and stress responses of Atlantic salmon. Triplicate groups of Atlantic salmon (~ 126 g) were reared in a recirculating aquaculture system (RAS) at 15 °C and received diets supplemented with 2% (CV2) or 14% (CV14) spray-dried C. vulgaris daily, 14% once weekly (CV14w), or a control diet (CD) for 8 weeks. Subsequently, all groups were exposed to an acute one-hour peracetic acid (CH3CO3H; PAA) treatment, a commonly used disinfectant in RAS. While CV14 increased feed conversion (FCR) significantly, feeding the diets CV2 and CV14w improved protein retention efficiency. CV14 significantly modulated beta-diversity in the intestinal digesta and mucosa, but this effect was already visible in fish fed CV2. Feeding CV14 and, to a lesser degree, CV2 increased the relative abundances of Paenarthrobacter and Trichococcus in the digesta and mucosa, which are able to metabolize complex carbohydrates. However, the same diets reduced the abundance of the lactic acid bacteria Lactobacillus and Weissella in the digesta and Floricoccus in the mucosa. Peracetic acid exposure induced systemic stress (increase in plasma glucose and cortisol) and a local immune response in the gill, with the most prominent upregulation of several immune- and stress-regulated genes (clra, cebpb, marco, tnfrsf14, ikba, c1ql2, drtp1) 18 h after exposure in fish fed the control diet. Fish receiving CV14 once a week showed a reduced transcriptional response to PAA exposure. Catalase protein abundance in the liver increased following exposure to PAA, while superoxide dismutase abundance in the gill and liver was increased in response to C. vulgaris inclusion before stress. Overall, the results highlight that a high (14%) inclusion rate of C. vulgaris in feed for Atlantic salmon impairs feed conversion and shifts the intestinal microbiota composition in digesta and mucosa. Weekly feeding of C. vulgaris proves a viable approach in improving protein retention and improving transcriptional resilience towards oxidative stress in increasingly intensive production systems. Thereby this study may motivate future studies on optimizing temporal feeding schedules for health-promoting aquafeeds.
Collapse
Affiliation(s)
- Jonas Mueller
- Department for Marine Aquaculture, Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany.
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany.
| | - Doret R van Muilekom
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jannick Ehlers
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| | - Marvin Suhr
- Institute of Animal Nutrition and Physiology, Kiel University, Kiel, Germany
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marie Wilkes
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Thekla Schultheiß
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | - Alexander Rebl
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Tom Goldammer
- Working Group Fish Genetics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Henrike Seibel
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| | - Carsten Schulz
- Department for Marine Aquaculture, Institute of Animal Breeding and Husbandry, Kiel University, Kiel, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering IMTE, Aquaculture and Aquatic Resources, Büsum, Germany
| |
Collapse
|
6
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
7
|
Wang J, Li Y, Jaramillo-Torres A, Einen O, Jakobsen JV, Krogdahl Å, Kortner TM. Exploring gut microbiota in adult Atlantic salmon (Salmo salar L.): Associations with gut health and dietary prebiotics. Anim Microbiome 2023; 5:47. [PMID: 37789427 PMCID: PMC10548677 DOI: 10.1186/s42523-023-00269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The importance of the gut microbiota for physiological processes in mammals is well established, but the knowledge of their functional roles in fish is still limited. The aims of this study were to investigate associations between variation in taxonomical composition of the gut microbiota and gut health status in Atlantic salmon and to explore possible modulatory effects of dietary prebiotics in one net-pen farm in open water. The fish with initial mean body weight of around 240 g were fed diets based on the same basal composition, either without (Ref diet) or with (Test diet) yeast cell wall based-prebiotics, during the marine production phase from December to September the following year. Sampling was conducted at three sampling time points: January, April, and September, with average water temperature of 3.9 ℃, 3.4 ℃ and 9.6 ℃, respectively. RESULTS As the fish progressed towards September, growth, brush border membrane enzyme activities, and the expression in the gut of most of the observed genes involved in immune (e.g., il8, cd4a, myd88, il1b, gilt, tgfb, cd8b and cd3), barrier (e.g., zo1, occludin, ecad, claudin25b and claudin15), and metabolism increased significantly. Lipid accumulation in pyloric enterocytes decreased remarkably, suggesting improvement of gut health condition. The growth of the fish did not differ between dietary treatments. Further, dietary prebiotics affected the gut health only marginally regardless of duration of administration. Regarding gut microbiota composition, a decrease in alpha diversity (Observed species, Pielou and Shannon) over time was observed, which was significantly associated with an increase in the relative abundance of genus Mycoplasma and decrease in 32 different taxa in genus level including lactic acid bacteria (LAB), such as Lactobacillus, Leuconostoc, and Lactococcus. This indicates that developmental stage of Atlantic salmon is a determinant for microbial composition. Multivariate association analysis revealed that the relative abundance of Mycoplasma was positively correlated with gut barrier gene expression, negatively correlated with plasma glucose levels, and that its relative abundance slightly increased by exposure to prebiotics. Furthermore, certain LAB (e.g., Leuconostoc), belonging to the core microbiota, showed a negative development with time, and significant associations with plasma nutrients levels (e.g., triglyceride and cholesterol) and gene expression related to gut immune and barrier function. CONCLUSIONS As Atlantic salmon grew older under large-scale, commercial farm settings, the Mycoplasma became more prominent with a concomitant decline in LAB. Mycoplasma abundance correlated positively with time and gut barrier genes, while LAB abundance negatively correlated to time. Dietary prebiotics affected gut health status only marginally.
Collapse
Affiliation(s)
- Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun South St, Beijing, China.
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway.
| | - Yanxian Li
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| | | | - Olai Einen
- Cermaq Group AS, Dronning Eufemias gate 16, Oslo, 0191, Norway
| | - Jan Vidar Jakobsen
- Cargill Aqua Nutrition, Prof. Olav Hanssensvei 7A, Stavanger, 4021, Norway
| | - Åshild Krogdahl
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| | - Trond M Kortner
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, P.O. Box 5003, Ås, 1432, Norway
| |
Collapse
|
8
|
Biasato I, Gasco L, Schiavone A, Capucchio MT, Ferrocino I. Gut microbiota changes in insect-fed monogastric species: state-of-the-art and future perspectives. Anim Front 2023; 13:72-80. [PMID: 37583797 PMCID: PMC10425147 DOI: 10.1093/af/vfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Affiliation(s)
- Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco (TO), 10095, Italy
| |
Collapse
|
9
|
Aidos L, Mirra G, Pallaoro M, Herrera Millar VR, Radaelli G, Bazzocchi C, Modina SC, Di Giancamillo A. How Do Alternative Protein Resources Affect the Intestine Morphology and Microbiota of Atlantic Salmon? Animals (Basel) 2023; 13:1922. [PMID: 37370432 DOI: 10.3390/ani13121922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The availability and cost of fishmeal constitute a bottleneck in Atlantic salmon production expansion. Fishmeal is produced from wild fish species and constitutes the major feed ingredient in carnivorous species such as the Atlantic salmon. These natural stocks are at risk of depletion and it is therefore of major importance to find alternative protein sources that meet the nutritional requirements of the Atlantic salmon, without compromising the animals' health. Terrestrial animal by-products have been used in aquaculture feed, but their use is limited by the lack of several essential amino acids and consumer acceptance. In the case of plant ingredients, it is necessary to take into account both their concentration and the extraction methodologies, since, if not dosed correctly, they can cause macro- and microscopic alterations of the structure of the gastrointestinal tract and can also negatively modulate the microbiota composition. These alterations may compromise the digestive functions, growth of the animal, and, ultimately, its well-being. An updated revision of alternative protein sources is provided, with the respective impact on the intestine health in terms of both morphology and microbiota composition. Such information may constitute the premise for the choice and development of Atlantic salmon feeds that guarantee fish health and growth performance without having a significant impact on the surrounding environment, both in terms of depletion of the fish's natural stocks and in terms of pressure on the terrestrial agriculture. The sustainability of aquaculture should be a priority when choosing next-generation ingredients.
Collapse
Affiliation(s)
- Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Giorgio Mirra
- Department of Comparative Biomedicine and Food Science, University of Padua, 35122 Padova, Italy
| | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | | | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35122 Padova, Italy
| | - Chiara Bazzocchi
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | | |
Collapse
|
10
|
Agboola JO, Rocha SDC, Mensah DD, Hansen JØ, Øyås O, Lapeña D, Mydland LT, Arntzen MØ, Horn SJ, Øverland M. Effect of yeast species and processing on intestinal microbiota of Atlantic salmon (Salmo salar) fed soybean meal-based diets in seawater. Anim Microbiome 2023; 5:21. [PMID: 37016467 PMCID: PMC10074822 DOI: 10.1186/s42523-023-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Yeasts are gaining attention as alternative ingredients in aquafeeds. However, the impact of yeast inclusion on modulation of intestinal microbiota of fish fed plant-based ingredients is limited. Thus, the present study investigates the effects of yeast and processing on composition, diversity and predicted metabolic capacity of gut microbiota of Atlantic salmon smolt fed soybean meal (SBM)-based diet. Two yeasts, Cyberlindnera jadinii (CJ) and Wickerhamomyces anomalus (WA), were produced in-house and processed by direct heat-inactivation with spray-drying (ICJ and IWA) or autolyzed at 50 °C for 16 h, followed by spray-drying (ACJ and AWA). In a 42-day feeding experiment, fish were fed one of six diets: a fishmeal (FM)-based diet, a challenging diet with 30% SBM and four other diets containing 30% SBM and 10% of each of the four yeast products (i.e., ICJ, ACJ, IWA and AWA). Microbial profiling of digesta samples was conducted using 16S rRNA gene sequencing, and the predicted metabolic capacities of gut microbiota were determined using genome-scale metabolic models. RESULTS The microbial composition and predicted metabolic capacity of gut microbiota differed between fish fed FM diet and those fed SBM diet. The digesta of fish fed SBM diet was dominated by members of lactic acid bacteria, which was similar to microbial composition in the digesta of fish fed the inactivated yeasts (ICJ and IWA diets). Inclusion of autolyzed yeasts (ACJ and AWA diets) reduced the richness and diversity of gut microbiota in fish. The gut microbiota of fish fed ACJ diet was dominated by the genus Pediococcus and showed a predicted increase in mucin O-glycan degradation compared with the other diets. The gut microbiota of fish fed AWA diet was highly dominated by the family Bacillaceae. CONCLUSIONS The present study showed that dietary inclusion of FM and SBM differentially modulate the composition and predicted metabolic capacity of gut microbiota of fish. The inclusion of inactivated yeasts did not alter the modulation caused by SBM-based diet. Fish fed ACJ diet increased relative abundance of Pediococcus, and mucin O-glycan degradation pathway compared with the other diets.
Collapse
Affiliation(s)
- Jeleel O Agboola
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| | - Sérgio D C Rocha
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Dominic D Mensah
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Jon Ø Hansen
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Ove Øyås
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - David Lapeña
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Liv T Mydland
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Magnus Ø Arntzen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Svein J Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway
| | - Margareth Øverland
- Faculty of Biosciences, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432, Ås, Norway.
| |
Collapse
|