1
|
Liu Q, Wingfield MJ, Duong TA, Wingfield BD, Chen S. Diversity of Calonectria species from leaves and soils in diseased southern China Eucalyptus plantation. Fungal Biol 2024; 128:2007-2021. [PMID: 39174236 DOI: 10.1016/j.funbio.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024]
Abstract
Calonectria leaf blight (CLB) is one of the best-known diseases of Eucalyptus spp., particularly in Asia and South America. Recently, typical symptoms of leaf and shoot blight caused by Calonectria spp. Were observed in a Eucalyptus plantation in the YunNan Province of southwestern China. Isolations were made from diseased leaves and top soil collected below the diseased trees to determine the causal agent of the disease and to consider the distribution characteristics of the Calonectria species. This resulted in 417 isolates, of which 228 were from leaves and 189 were from soil. Based on comparisons of DNA sequences for the act (actin), cmdA (calmodulin), his3 (histone H3), rpb2 (the second largest subunit of RNA polymerase), tef1 (translation elongation factor 1-alpha) and tub2 (β-tubulin) gene regions, as well as morphological characteristics, 11 Calonectria species were identified. These included Calonectria aciculata (0.7 %), Ca. colhounii (1.2 %), Ca. eucalypti (10.6 %) and Ca. honghensis (43.2 %) in the Ca. colhounii species complex, and Ca. aconidialis (15.3 %), Ca. asiatica (9.8 %), Ca. hongkongensis (1.0 %), Ca. ilicicola (6.0 %), Ca. kyotensis (0.5 %), and Ca. yunnanensis (11.3 %) in the Ca. kyotensis species complex. In addition, a novel species, accounting for 0.5 % of the isolates, was discovered and is described here as Ca. dianii sp. nov. in the Ca colhounii species complex. Most (99.1 %) of the isolates collected from the leaves resided in the Ca. colhounii species complex and a majority (95.8 %) of those from the soils were in Ca. kyotensis species complex. These results suggest that Calonectria spp. in the Ca. colhounii species complex infecting leaves might be adapted to that niche and that those in the Ca. kyotensis species complex are better adapted to a soil habitat.
Collapse
Affiliation(s)
- QianLi Liu
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China; Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - ShuaiFei Chen
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), ZhanJiang, 524022, GuangDong Province, China; Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
2
|
Negi N, Ramkrishna, Meena RK, Bhandari MS, Pandey S. Discovery of Botryosphaeria eucalypti sp. nov. from blighted Eucalyptus leaves in India. Microb Pathog 2024; 193:106756. [PMID: 38901752 DOI: 10.1016/j.micpath.2024.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Eucalyptus spp. are undoubtedly one of the most favored plantation trees globally. Accurately identifying Eucalyptus pathogens is therefore crucial for timely disease prevention and control. Recently, symptoms of a leaf blight disease were observed on Eucalyptus trees in plantations at Jhajjar and Karnal in the state of Haryana, northern India. Asexual morphs resembling the features of the Botryosphaeriaceae were consistently isolated from the symptomatic leaves. Morphological features coupled with DNA sequence analysis confirmed a novel species, which is described and illustrated here as Botryosphaeria eucalypti sp. nov. Conidia of the new taxon are longer and wider than those of its phylogenetic neighbors. A distinct phylogenetic position for the new taxon was established through combined analysis of the internal transcribed spacer (ITS), partial translation elongation factor-1α (tef1) and partial β-tubulin (tub2) regions. Recombination analysis provided additional support for the new species hypothesis. The pathogenicity of the novel species was proved on Eucalyptus leaves, and Koch's postulates were fulfilled. The discovery of new Botryosphaeria species is important because it will help in understanding the species diversity, host range, possible threats and disease control in the long run.
Collapse
Affiliation(s)
- Nitika Negi
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India.
| | - Ramkrishna
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India.
| | - Rajendra K Meena
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India.
| | - Maneesh S Bhandari
- Genetics and Tree Improvement Division, ICFRE-Forest Research Institute, Dehradun, India.
| | - Shailesh Pandey
- Forest Pathology Discipline, Forest Protection Division, ICFRE-Forest Research Institute, Dehradun, India.
| |
Collapse
|
3
|
Negi N, Ramkrishna, Bose R, Meena RK, Bhandari MS, Pandey S. Neofusicoccum mangiferae causing leaf spot disease of Eucalyptus: First report from India. CROP PROTECTION 2024; 182:106717. [DOI: 10.1016/j.cropro.2024.106717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Fu S, Sun JE, Tarafder E, Wijayawardene NN, Hu Y, Wang Y, Li Y. Pezizomycotina species associated with rotten plant materials in Guizhou Province, China. MycoKeys 2024; 106:265-285. [PMID: 38974463 PMCID: PMC11224676 DOI: 10.3897/mycokeys.106.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Nine Pezizomycotina strains were isolated from rotten dead branches and leaves collected from Guizhou Province. To obtain their accurate taxonomic placement, we provided the morphological characteristics of conidiophore cells and conidia. Phylogenetic relationships, based on ITS, rpb2, SSU, LSU and tub2 gene sequences, confirmed our strains represented three novel species, Peglioniafalcata, Neoascochytapseudofusiformis and Neomicrosphaeropsiscylindrica. Peglioniafalcata produced falcate conidia and Neoa.pseudofusiformis generated fusiform conidia, while Neom.cylindrica possessed cylindrical conidia. The phylogenetic results also supported them as novel taxa. All the new species in the present study were found as saprophytic on forest litter with high rainfall, which suggest they may have a certain effect on nutrient decomposition and redistribution in forest ecosystems. Thus, it opened a way for further research on related ecological roles and their application production.
Collapse
Affiliation(s)
- Shamin Fu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Jing-E Sun
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Entaj Tarafder
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Nalin N. Wijayawardene
- Guizhou Zhunongjia Agricultural Science and Technology Service Co., Ltd, Guiyang, Guizhou 550025, China
| | - Yan Hu
- Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Yong Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Lu L, Li G, Liu F. High-quality genome resource of Lasiodiplodia pseudotheobromae associated with die-back on Eucalyptus trees. BMC Genom Data 2024; 25:2. [PMID: 38166632 PMCID: PMC10759541 DOI: 10.1186/s12863-023-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
OBJECTIVES Lasiodiplodia pseudotheobromae is an important fungal pathogen associated with die-back, canker and shoot blight in many plant hosts with a wide geographic distribution. The aim of our study was to provide high-quality genome assemblies and sequence annotation resources of L. pseudotheobromae, to facilitate future studies on the systematics, population genetics and genomics of the fungal pathogen L. pseudotheobromae. DATA DESCRIPTION High-quality genomes of five L. pseudotheobromae isolates were sequenced based on Oxford Nanopore technology (ONT) and Illumina HiSeq sequencing platform. The total size of each assembly ranged from 43 Mb to 43.86 Mb and over 11,000 protein-coding genes were predicted from each genome. The proteins of predicted genes were annotated using multiple public databases, among the annotated protein-coding genes, more than 4,300 genes were predicted as potential virulence genes by the Pathogen Host Interactions (PHI) database. Moreover, the genome comparative analysis among L. pseudotheobromae and other closely related species revealed that 7,408 gene clusters were shared among them and 152 gene clusters unique to L. pseudotheobromae. This genome and associated datasets provided here will serve as a useful resource for further analyses of this fungal pathogen species.
Collapse
Affiliation(s)
- LinQin Lu
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang, 524022, China
| | - GuoQing Li
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang, 524022, China
| | - FeiFei Liu
- Research Institute of Fast-growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang, 524022, China.
| |
Collapse
|
6
|
Li WL, Liang RR, Dissanayake AJ, Liu JK. Botryosphaerialean fungi associated with woody oil plants cultivated in Sichuan Province, China. MycoKeys 2023; 97:71-116. [PMID: 37265995 PMCID: PMC10230375 DOI: 10.3897/mycokeys.97.103118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/01/2023] [Indexed: 06/03/2023] Open
Abstract
Woody oil plants are important economic trees which are widely cultivated and distributed throughout China. Surveys conducted during 2020 and 2021 on several woody oil plantations from five regions of Sichuan Province, China, revealed a high diversity of Botryosphaerialean fungi. The identification of 50 botryosphaeriaceous isolates was carried out based on both morphology and multi-gene phylogenetic analysis of internal transcribed spacer region (ITS), translation elongation factor 1-alpha gene (tef1) and β-tubulin gene (tub2). This allowed the identification of twelve previously known Botryosphaeriales species: Aplosporellaprunicola, A.ginkgonis, Barriopsistectonae, Botryosphaeriadothidea, Bo.fabicerciana, Diplodiamutila, Di.seriata, Dothiorellasarmentorum, Neofusicoccumparvum, Sardiniellaguizhouensis, Sphaeropsiscitrigena, and Sp.guizhouensis, and four novel species belonging to the genera Diplodia and Dothiorella, viz. Di.acerigena, Di.pistaciicola, Do.camelliae and Do.zanthoxyli. The dominant species isolated across the surveyed regions were Botryosphaeriadothidea, Sardiniellaguizhouensis and Diplodiamutila, representing 20%, 14% and 12% of the total isolates, respectively. In addition, most isolates were obtained from Pistaciachinensis (14 isolates), followed by Camelliaoleifera (10 isolates). The present study enhances the understanding of Botryosphaeriales species diversity on woody oil plants in Sichuan Province, China.
Collapse
Affiliation(s)
- Wen-Li Li
- School of Life Science and Technology, Center for Informational Biology, Electronic Science and Technology University, Chengdu 611731, ChinaElectronic Science and Technology UniversityChengduChina
| | - Rui-Ru Liang
- School of Life Science and Technology, Center for Informational Biology, Electronic Science and Technology University, Chengdu 611731, ChinaElectronic Science and Technology UniversityChengduChina
| | - Asha J. Dissanayake
- School of Life Science and Technology, Center for Informational Biology, Electronic Science and Technology University, Chengdu 611731, ChinaElectronic Science and Technology UniversityChengduChina
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, Electronic Science and Technology University, Chengdu 611731, ChinaElectronic Science and Technology UniversityChengduChina
| |
Collapse
|
7
|
Li G, Wu W, Lu L, Chen B, Chen S. Characterization of Pseudofusicoccum Species from Diseased Plantation-Grown Acacia mangium, Eucalyptus spp., and Pinus massoniana in Southern China. Pathogens 2023; 12:pathogens12040574. [PMID: 37111460 PMCID: PMC10142214 DOI: 10.3390/pathogens12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Fungi from Pseudofusicoccum (Phyllostictaceae, Botryosphaeriales) have been reported as pathogens, endophytes, or saprophytes from various woody plants in different countries. Recently, Botryosphaeriales isolates were obtained from the dead twigs of Acacia mangium, Eucalyptus spp., Pinus massoniana, and Cunninghamia lanceolata in Guangdong, Guangxi, Hainan, and Fujian Provinces in southern China. This study aimed to understand the diversity, distribution, and virulence of these Pseudofusicoccum species on these trees. A total of 126 Pseudofusicoccum isolates were obtained, and the incidences of Pseudofusicoccum (percentage of trees that yielded Pseudofusicoccum) on A. mangium, P. massoniana, Eucalyptus spp., and C. lanceolata were 21%, 2.6%, 0.5%, and 0%, respectively. Based on the internal transcribed spacer (ITS), translation elongation factor 1-alpha (tef1), and β-tubulin (tub2) loci, 75% of the total isolates were identified as P. kimberleyense, and the remaining isolates were identified as P. violaceum. For P. kimberleyense, the majority of isolates (83%) were from A. mangium, and the rest were from P. massoniana (14%) and Eucalyptus spp. (3%). Similarly, the proportion of isolates of P. violaceum from A. mangium, P. massoniana, and Eucalyptus spp. were 84%, 13%, and 3%, respectively. Inoculation trials showed that the two species produced expected lesions on the tested seedlings of A. mangium, E. urophylla × E. grandis, and P. elliottii. This study provides fundamental information on Pseudofusicoccum associated with diseases in main plantations in southern China.
Collapse
Affiliation(s)
- Guoqing Li
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China
| | - Wenxia Wu
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China
| | - Linqin Lu
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China
| | - Bingyin Chen
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China
| | - Shuaifei Chen
- Research Institute of Fast-Growing Trees (RIFT), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China
| |
Collapse
|
8
|
Si YZ, Sun JW, Wan Y, Chen YN, He J, Li WZ, Li DW, Zhu LH. Neofusicoccum cryptomeriae sp. nov. and N. parvum Cause Stem Basal Canker of Cryptomeria japonica in China. J Fungi (Basel) 2023; 9:jof9040404. [PMID: 37108858 PMCID: PMC10145188 DOI: 10.3390/jof9040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Cryptomeria japonica D. Don is a coniferous tree species widely grown in southern China for its high ornamental value. Recently, during disease surveys in China, a symptom of dieback occurred on C. japonica in Nanjing, Jiangsu Province, China. A total of 130 trees were surveyed and more than 90% showed the same symptom. The crowns of affected trees were brown when viewing from a distance, and the bark showed no difference from the healthy ones. In this study, 157 isolates were isolated from the 3 affected plants of C. japonica, and based on the living culture on PDA, the fungal isolates were preliminarily divided into 6 groups. Thirteen representative isolates were selected for the pathogenicity test, and seven of them showed obvious pathogenicity on C. japonica, causing stem basal canker. These isolates were identified based on comparisons of the DNA sequences of the internal transcribed spacer regions (ITS), partial translation elongation factor 1-alpha (tef1), β-tubulin (tub2), and DNA-directed RNA polymerase II subunit (rpb2) and combined with their morphological characteristics. Results showed that these seven isolates belong to two taxa in Neofusicoccum, including a species new to science. The new species, Neofusicoccum cryptomeriae, was hereby described and illustrated. The other species was N. parvum. Both species were pathogens of stem basal canker of Cryptomeria japonica.
Collapse
Affiliation(s)
- Yuan-Zhi Si
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu PIESAT Information Technology Co., Ltd., Xuzhou 221116, China
| | - Jian-Wei Sun
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Zhouning County Bureau of Forestry, Ningde 355400, China
| | - Yu Wan
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yi-Na Chen
- Jiangsu PIESAT Information Technology Co., Ltd., Xuzhou 221116, China
| | - Jiao He
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Zheng Li
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - De-Wei Li
- The Connecticut Agricultural Experiment Station Valley Laboratory, Windsor, CT 06095, USA
| | - Li-Hua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Dar GJ, Nazir R, Wani SA, Farooq S. Isolation, molecular characterization and first report of Dothiorella gregaria associated with fruit rot of walnuts of Jammu and Kashmir, India. Microb Pathog 2023; 175:105989. [PMID: 36646293 DOI: 10.1016/j.micpath.2023.105989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Walnuts are known for their high levels of antioxidants, which are linked to various health benefits. However, challenges related to distribution and storage, as well as the risk of fungal infections, can affect the quality of walnut kernels. Fungal pathogens from the Botryosphaeriaceae family, including Dothiorella species and Diplodia species, can damage fruit and reduce its antioxidant content. To comprehend the cause of fruit rot in walnuts, Dothiorella gregaria isolates were studied using polyphasic methods, including multiple gene sequences and morphological identification, as well as analysis of polyphenol content and pathogenicity. The walnuts kernels purchased from market places of Jammu and Kashmir (J&K), India were observed to be affected by Dothiorella gregaria species causing the quality detoriation and decrease in polyphenol content thus undeniably with decreased antioxidant properties. D. gregaria Infected walnut kernels were having some brown and black spots and some were having white mycelial growth and however, most samples were asymptomatic. Pathogenicity testing revealed that the pathogen was able to develop all the symptoms under experimental conditions and the reisolated pathogen was morphologically similar to D. gregaria. The samples infected with this pathogen showed considerable decrease in polyphenol content, 10.9 ± 2.66 mgGAE/g (mean ± standard deviation) thus decreased antioxidant quality as compared to the samples which showed zero incidence of this pathogen, 52.50 ± 4.27 mgGAE/g (mean ± standard deviation). Furthermore, the pathogen was studied using polyphasic approach involving morphological, molecular and phylogenetic analysis. Combined nucleotide dataset of nuclear ribosomal ITS and tef1-α revealed that Dothiorella gregaria (NY6) formed a clade with Dothiorlla iberica (MAEC33), Dothiorella sarmentorium (MAEC28) and Dothiorella iberica (CAA905) strains with 83% bootstrap support. Besides, we observed six nucleotide changes, four were insertions or deletions and two were substitutions in the 502-bp region of the ITS rRNA gene when we compared our isolate to the most equivalent sequences submitted to NCBI GenBank. This is the first report of Dothiorella gregaria affecting walnuts purchased from various markets in J&K, India, causing fruit rot in walnuts after harvest. Given that local farmers store and export walnuts, it could pose an emerging threat to their livelihood. Thus, creating post-harvesting interventions for D. gregaria and knowing more about the fruit rot in walnuts can be benefited from morphological and molecular identification using several gene loci, genetic variability in the ITS rRNA gene, and total phenol analysis.
Collapse
Affiliation(s)
- Gulam Jeelani Dar
- Centre of Research for Development (CORD), University of Kashmir, 190006, Jammu and Kashmir, India
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), University of Kashmir, 190006, Jammu and Kashmir, India.
| | - Shakil A Wani
- Division of Veterinary Microbiology & Immunology, SK University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Saleem Farooq
- Centre of Research for Development (CORD), University of Kashmir, 190006, Jammu and Kashmir, India; Department of Environmental Science, University of Kashmir, 190006, Jammu and Kashmir, India
| |
Collapse
|
10
|
Rathnayaka AR, Chethana KWT, Phillips AJL, Liu JK, Samarakoon MC, Jones EBG, Karunarathna SC, Zhao CL. Re-Evaluating Botryosphaeriales: Ancestral State Reconstructions of Selected Characters and Evolution of Nutritional Modes. J Fungi (Basel) 2023; 9:184. [PMID: 36836299 PMCID: PMC9961722 DOI: 10.3390/jof9020184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Botryosphaeriales (Dothideomycetes, Ascomycota) occur in a wide range of habitats as endophytes, saprobes, and pathogens. The order Botryosphaeriales has not been subjected to evaluation since 2019 by Phillips and co-authors using phylogenetic and evolutionary analyses. Subsequently, many studies introduced novel taxa into the order and revised several families separately. In addition, no ancestral character studies have been conducted for this order. Therefore, in this study, we re-evaluated the character evolution and taxonomic placements of Botryosphaeriales species based on ancestral character evolution, divergence time estimation, and phylogenetic relationships, including all the novel taxa that have been introduced so far. Maximum likelihood, maximum parsimony, and Bayesian inference analyses were conducted on a combined LSU and ITS sequence alignment. Ancestral state reconstruction was carried out for conidial colour, septation, and nutritional mode. Divergence times estimates revealed that Botryosphaeriales originated around 109 Mya in the early epoch of the Cretaceous period. All six families in Botryosphaeriales evolved in the late epoch of the Cretaceous period (66-100 Mya), during which Angiosperms also appeared, rapidly diversified and became dominant on land. Families of Botryosphaeriales diversified during the Paleogene and Neogene periods in the Cenozoic era. The order comprises the families Aplosporellaceae, Botryosphaeriaceae, Melanopsaceae, Phyllostictaceae, Planistromellaceae and Saccharataceae. Furthermore, current study assessed two hypotheses; the first one being "All Botryosphaeriales species originated as endophytes and then switched into saprobes when their hosts died or into pathogens when their hosts were under stress"; the second hypothesis states that "There is a link between the conidial colour and nutritional mode in botryosphaerialean taxa". Ancestral state reconstruction and nutritional mode analyses revealed a pathogenic/saprobic nutritional mode as the ancestral character. However, we could not provide strong evidence for the first hypothesis mainly due to the significantly low number of studies reporting the endophytic botryosphaerialean taxa. Results also showed that hyaline and aseptate conidia were ancestral characters in Botryosphaeriales and supported the relationship between conidial pigmentation and the pathogenicity of Botryosphaeriales species.
Collapse
Affiliation(s)
- Achala R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Plant Medicine, National Chiayi University, 300 Syuefu Road, Chiayi City 60004, Taiwan
| | - K. W. Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Alan J. L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Jian-Kui Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Chang-Lin Zhao
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
11
|
Yang EF, Karunarathna SC, Dai DQ, Stephenson SL, Elgorban AM, Al-Rejaie S, Xiong YR, Promputtha I, Samarakoon MC, Tibpromma S. Taxonomy and Phylogeny of Fungi Associated with Mangifera indica from Yunnan, China. J Fungi (Basel) 2022; 8:1249. [PMID: 36547582 PMCID: PMC9780836 DOI: 10.3390/jof8121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe of Yunnan Province (China), fungal taxa belonging to the orders Botryosphaeriales, Calosphaeriales, Chaetothyriales, Diaporthales, and Xylariales were recorded. Morphological examinations coupled with phylogenetic analyses of multigene sequences (ITS, LSU, SSU, tef1-α, rpb1, rpb2, β-tubulin and CAL) were used to identify the fungal taxa. A new genus viz. Mangifericola, four new species viz. Cyphellophora hongheensis, Diaporthe hongheensis, Hypoxylon hongheensis, and Mangifericola hongheensis, four new host and geographical records viz. Aplosporella artocarpi, Hypomontagnella monticulosa, Paraeutypella citricola and Pleurostoma ootheca, and two new collections of Lasiodiplodia are reported.
Collapse
Affiliation(s)
- Er-Fu Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 12211, Saudi Arabia
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 12211, Saudi Arabia
| | - Yin-Ru Xiong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
12
|
Sun JE, Meng CR, Phillips AJL, Wang Y. Two new Botryosphaeria (Botryosphaeriales, Botryosphaeriaceae) species in China. MycoKeys 2022; 94:1-16. [PMID: 36760539 PMCID: PMC9836432 DOI: 10.3897/mycokeys.94.91340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Five ascomycetous strains were isolated from dead branches and leaves of Salix (Salicaceae) and Osmanthusfragrans (Oleaceae), respectively. BLAST searches with ITS sequences in GenBank suggested a high degree of similarity to Botryosphaeriadothidea. To accurately identify these strains, we further analysed their morphological characteristics of asci, ascospores, all conidiophore cells and conidia. Phylogenetic relationships, based on ITS, rpb2, tef1 and tub2 gene sequences, confirmed our strains represented two novel species, which are introduced here as B.salicicola and B.osmanthuse spp. nov.
Collapse
Affiliation(s)
- Jing-E Sun
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Chao-Rong Meng
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Alan J. L. Phillips
- Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), University of Lisbon, Campo Grande, 1749-016 Lisbon, PortugalUniversity of LisbonCampo GrandePortugal
| | - Yong Wang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
13
|
Vučković N, Vico I, Duduk B, Duduk N. Diversity of Botryosphaeriaceae and Diaporthe Species Associated with Postharvest Apple Fruit Decay in Serbia. PHYTOPATHOLOGY 2022; 112:929-943. [PMID: 34664974 DOI: 10.1094/phyto-07-21-0304-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Family Botryosphaeriaceae and the genus Diaporthe (family Diaporthaceae) represent diverse groups of plant pathogens, which include causal agents of leaf spot, shoot blight, branch and stem cankers, dieback, and pre- and postharvest apple fruit decay. Apple fruit with symptoms of light to dark brown decay were collected during and after harvest from 2016 to 2018. Thirty selected isolates, on which pathogenicity was confirmed, were identified and characterized based on multilocus phylogeny and morphology. Five species from the family Botryosphaeriaceae and two from the genus Diaporthe (fam. Diaporthaceae) were discovered. The most commonly isolated was Diplodia seriata followed by Botryosphaeria dothidea. In this work, Diaporthe rudis is described as a new postharvest pathogen of apple fruit. Diplodia bulgarica, Diplodia sapinea, Neofusicoccum yunnanense, and Diaporthe eres are initially described as postharvest apple and D. sapinea as postharvest quince and medlar fruit pathogens in Serbia. Because species of the family Botryosphaeriaceae and the genus Diaporthe are known to cause other diseases on their hosts, have an endophytic nature, and have a wide host range, findings from this study imply that they may become a new challenge for successful fruit production.
Collapse
Affiliation(s)
- Nina Vučković
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| | - Ivana Vico
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| | - Bojan Duduk
- Institute of Pesticides and Environmental Protection, Belgrade, Serbia
| | - Nataša Duduk
- University of Belgrade-Faculty of Agriculture, Belgrade, Serbia
| |
Collapse
|
14
|
Wu NA, Dissanayake AJ, Manawasinghe IS, Rathnayaka AR, Liu JK, Phillips AJ, Promputtha I, Hyde KD. https://botryosphaeriales.org/, an online platform for up-to-date classification and account of taxa of Botryosphaeriales. Database (Oxford) 2021; 2021:baab061. [PMID: 34651182 PMCID: PMC8517499 DOI: 10.1093/database/baab061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/10/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022]
Abstract
Fungi are eukaryotes that inhabit various ecosystems worldwide and have a decomposing effect that other organisms cannot replace. Fungi are divided into two main groups depending on how their sexual spores are formed, viz. Ascomycota and Basidiomycota. The members of Botryosphaeriales (Dothideomycetes, Ascomycota) are ubiquitous. They are pathogenic on a wide range of hosts, causing diverse diseases including dieback, canker, leaf spots and root rots and are also reported as saprobes and endophytes worldwide. As an important fungal group, of which most are plant pathogens, it is necessary to organize data and information on Botryosphaeriales so that scientific literature can be used effectively. For this purpose, a new website, https://botryosphaeriales.org is established to gather all published data together with updates on the present taxonomy of Botryosphaeriales. The website consists of an easy-to-operate searching system and provides an up-to-date classification together with accounts of Botryosphaeriales taxa, including colour illustrations, descriptions, notes and numbers of species in each genus, as well as their classification. Thus, readers will be able to obtain information on botryosphaerialean taxa through this platform. Database URL: https://botryosphaeriales.org/.
Collapse
Affiliation(s)
- N a Wu
- CAS, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Asha J Dissanayake
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Ishara S Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P.R. China
| | - Achala R Rathnayaka
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China
| | - Alan j.l Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisbon, 1749-016, Portugal
| | | | - Kevin D Hyde
- CAS, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P.R. China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, P.R. China
- Department of Biology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
15
|
Ren GC, Wanasinghe DN, Monkai J, Mortimer PE, Hyde KD, Xu JC, Pang A, Gui H. Novel saprobic Hermatomyces species (Hermatomycetaceae, Pleosporales) from China (Yunnan Province) and Thailand. MycoKeys 2021; 82:57-79. [PMID: 34408538 PMCID: PMC8367933 DOI: 10.3897/mycokeys.82.67973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022] Open
Abstract
During our survey of the diversity of woody litter fungi in China and Thailand, three Hermatomyces species were collected from dead woody twigs of Dipterocarpus sp. (Dipterocarpaceae) and Ehretiaacuminata (Boraginaceae). Both morphology and multigene analyses revealed two taxa as new species (Hermatomycesturbinatus and H.jinghaensis) and the remaining collections as new records of H.sphaericus. Hermatomycesturbinatus is characterized by 1) dimorphic conidia, having circular to oval lenticular conidia and 2) turbinate conidia consisting of two columns with two septa composed of 2–3 cells in each column. Hermatomycesjinghaensis is characterized by dimorphic conidia, having circular to oval lenticular conidia and clavate or subcylindrical to cylindrical conidia and consisting of one or two columns with 6–8 cells in each column. Phylogenetic analyses of combined LSU, ITS, tub2, tef1-α and rpb2 sequence data supports the placement of these new taxa within Hermatomycetaceae with high statistical support.
Collapse
Affiliation(s)
- Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.,Guiyang Nursing Vocational College, Guiyang 550081, Guizhou, China
| | - Dhanushka N Wanasinghe
- Center for Mountain futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China.,CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan, China
| | - Jutamart Monkai
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Peter E Mortimer
- Center for Mountain futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China
| | - Kevin D Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.,Guiyang Nursing Vocational College, Guiyang 550081, Guizhou, China
| | - Jian-Chu Xu
- Center for Mountain futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China
| | - Aimin Pang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China
| | - Heng Gui
- Center for Mountain futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, Yunnan, China
| |
Collapse
|
16
|
Botryosphaeria Dothidea and Neofusicoccum Yunnanense Causing Canker and Die-Back of Sequoiadendron Giganteum in Croatia. FORESTS 2021. [DOI: 10.3390/f12060695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sequoiadendron giganteum Lindl. [Buchholz] is a long-lived tree species endemic to the Sierra Nevada Mountains in California. Due to its massive size and beauty, S. giganteum is a popular ornamental tree planted in many parts of the world, including Europe. Since 2017, scattered branch die-back has been observed on S. giganteum trees in Zagreb, Croatia. Other symptoms included resinous branch cankers, reddish-brown discoloration of the sapwood and, in severe cases, crown die-back. Branches showing symptoms of die-back and cankers were collected from six S. giganteum trees in Zagreb and the aim of this study was to identify the causal agent of the disease. The constantly isolated fungi were identified using morphology and phylogenetic analyses based on the internal transcribed spacer (ITS) of the ribosomal DNA (rDNA), and partial sequencing of two housekeeping genes, i.e., translation elongation factor 1-α (TEF 1-α), and β tubulin 2 (TUB2). The fungi were identified as Botryosphaeria dothidea (Moug.) Ces. and De Not. and Neofusicoccum yunnanense G.Q. Li & S.F. Chen. The pathogenicity test was conducted in a plant growth chamber on S. giganteum seedlings and revealed that N. yunnanense was more aggressive compared to B. dothidea. N. yunnanense was able to reproduce symptoms of canker and die-back and kill plants seven weeks after inoculation whereas B. dothidea produced cankers. To the best of our knowledge, this is the first report of B. dothidea and N. yunnanense causing canker and die-back disease of S. giganteum in Croatia. It is also the first record on the identity and pathogenicity of any fungal species associated with S. giganteum in this country. The study expended the known host range of N. yunnanense to include S. giganteum, which is a valuable ornamental tree in Croatian landscapes. Disease management strategies should be developed to mitigate or reduce the impact of the disease.
Collapse
|
17
|
Bezerra JDP, Crous PW, Aiello D, Gullino ML, Polizzi G, Guarnaccia V. Genetic Diversity and Pathogenicity of Botryosphaeriaceae Species Associated with Symptomatic Citrus Plants in Europe. PLANTS (BASEL, SWITZERLAND) 2021; 10:492. [PMID: 33807726 PMCID: PMC7999779 DOI: 10.3390/plants10030492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 01/01/2023]
Abstract
This study represents the first survey studying the occurrence, genetic diversity, and pathogenicity of Botryosphaeriaceae species associated with symptomatic citrus species in citrus-production areas in five European countries. Based on morphological features and phylogenetic analyses of internal transcribed spacer (ITS) of nuclear ribosomal DNA (nrDNA), translation elongation factor 1-alpha (TEF1) and β-tubulin (TUB2) genes, nine species were identified as belonging to the genera Diplodia, Dothiorella, Lasiodiplodia, and Neofusicoccum. Isolates of Neofusicoccum parvum and Diplodia pseudoseriata were the most frequently detected, while Dothiorella viticola had the widest distribution, occurring in four of the five countries sampled. Representative isolates of the nine Botryosphaeriaceae species used in the pathogenicity tests caused similar symptoms to those observed in nature. Isolates assayed were all re-isolated, thereby fulfilling Koch's postulates. Isolates of Diplodia pseudoseriata and Diplodia olivarum are recorded for the first time on citrus and all species found in our study, except N. parvum, are reported for the first time on citrus in Europe.
Collapse
Affiliation(s)
- Jadson Diogo Pereira Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, Goiânia 74605-050, Brazil;
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Pedro Wilhelm Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Dalia Aiello
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy; (D.A.); (G.P.)
| | - Maria Lodovica Gullino
- Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy;
| | - Giancarlo Polizzi
- Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia Vegetale, University of Catania, Via S. Sofia 100, 95123 Catania, Italy; (D.A.); (G.P.)
| | - Vladimiro Guarnaccia
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
- Centre for Innovation in the Agro-Environmental Sector, AGROINNOVA, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy;
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
18
|
Wu W, Chen S. Species Diversity, Mating Strategy and Pathogenicity of Calonectria Species from Diseased Leaves and Soils in the Eucalyptus Plantation in Southern China. J Fungi (Basel) 2021; 7:73. [PMID: 33498546 PMCID: PMC7909555 DOI: 10.3390/jof7020073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Many Calonectria species are causal agents of diseases on several forestry, agricultural and horticultural crops. Calonectria leaf blight is one of the most important diseases associated with Eucalyptus plantations and nurseries in Asia and South America. Recently, symptoms of leaf rot and leaf blight caused by Calonectria species were observed in a one-year-old Eucalyptus experimental plantation in GuangXi Province, southern China. To better understand the species diversity, mating strategy and pathogenicity of Calonectria species isolated from diseased tissues and soils, diseased leaves and soils under the trees from ten Eucalyptus urophylla hybrid genotypes were collected. Three hundred and sixty-eight Calonectria isolates were obtained from diseased Eucalyptus leaves and soils under these trees, and 245 representative isolates were selected based on the sampling substrates and Eucalyptus genotypes and identified by DNA sequence analyses based on the translation elongation factor 1-alpha (tef1), β-tubulin (tub2), calmodulin (cmdA) and histone H3 (his3) gene regions, as well as a combination of morphological characteristics. These isolates were identified as Calonectria hongkongensis (50.2%), C. pseudoreteaudii (47.4%), C. aconidialis (1.6%), C. reteaudii (0.4%) and C. auriculiformis (0.4%). This is the first report of C. reteaudii and C. auriculiformis occurrence in China. Calonectria pseudoreteaudii was isolated from both Eucalyptus diseased leaves and soils; the other four species were only obtained from soils. MAT1-1-1 and MAT1-2-1 gene amplification and mating type assignment results showed that C. pseudoreteaudii is heterothallic and an asexual cycle represents the primary reproductive mode, C. reteaudii and C. auriculiformis are likely to be heterothallic and C. hongkongensis and C. aconidialis are homothallic. Based on the genetic diversity comparisons for C. pseudoreteaudii isolates from diseased leaves and soils, we hypothesize that C. pseudoreteaudii in soils was spread from diseased leaves. Both the mycelia plug and conidia suspension inoculations indicated that all five Calonectria species were pathogenic to the two Eucalyptus genotypes tested and the tolerance of the two genotypes differed. It is necessary to understand the ecological niche and epidemiological characteristics of these Calonectria species and to select disease resistant Eucalyptus genotypes in southern China in the future.
Collapse
Affiliation(s)
- WenXia Wu
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China;
- Nanjing Forestry University (NJFU), Nanjing 210037, China
| | - ShuaiFei Chen
- China Eucalypt Research Centre (CERC), Chinese Academy of Forestry (CAF), Zhanjiang 524022, China;
| |
Collapse
|