1
|
van Heerden A, Pham NQ, Wingfield BD, Wingfield MJ, Wilken PM. Six type-I PKS classes and highly conserved melanin and elsinochrome gene clusters found in diverse Elsinoë species. BMC Genomics 2024; 25:990. [PMID: 39438784 PMCID: PMC11515665 DOI: 10.1186/s12864-024-10920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Elsinoë species are phytopathogenic fungi that cause serious scab diseases on economically important plants. The disease symptoms arise from the effects of a group of phytotoxins known as elsinochromes, produced via a type-I polyketide synthase (PKS) biosynthetic pathway. The elsinochrome gene cluster was first annotated in Elsinoë fawcettii where the main type-I PKS gene was characterized as EfPKS1. A later study showed that this gene and the associated cluster had not been correctly annotated, and that EfPKS1 was actually the anchor gene of the melanin biosynthetic pathway. A new type-I PKS gene EfETB1 associated with elsinochrome production was also identified. The aim of this study was to identify all type-I PKS genes in the genomes of seven Elsinoë species with the goal of independently verifying the PKS containing clusters for both melanin and elsinochrome production. A total of six type-I PKS classes were identified, although there was variation between the species in the number and type of classes present. Genes similar to the E. fawcettii EfPKS1 and EfETB1 type-I PKS genes were associated with melanin and elsinochrome production respectively in all species. The complete melanin and elsinochrome PKS containing clusters were subsequently annotated in all the species with high levels of synteny across Elsinoë species. This study provides a genus-level overview of type-I PKS distribution in Elsinoë species, including an additional line of support for the annotation of the melanin and elsinochrome PKS containing clusters in these important plant pathogens.
Collapse
Affiliation(s)
- Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nam Q Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
2
|
van der Nest MA, Steenkamp ET, De Vos L, Wienk R, Swart V, van den Berg N. Complete mitochondrial genome sequence of the white root rot pathogen Dematophora necatrix (Xylariaceae: Xylariales). Mitochondrial DNA B Resour 2024; 9:1207-1212. [PMID: 39286473 PMCID: PMC11404375 DOI: 10.1080/23802359.2024.2403411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
The mitochondrial genome of Dematophora necatrix is 121,350 base pairs in length with a G + C content of 30.19%. Phylogenetic analysis showed that D. necatrix grouped with other members of the Xylariaceae, with which its mitogenome also shares a broadly similar architecture and gene content. The D. necatrix mitogenome contains 14 protein-coding and 26 tRNA-encoding genes, as well as one copy each of the rnl, rns, rps3 and nat1 genes. However, as much as 80% of this genome is intronic or non-coding. This is likely due to expansions and rearrangements caused by the large number of group I introns and the homing endonucleases and reverse-transcriptases they encode. Our study thus provides a valuable foundation from which to explore the mitochondrion's role in the biology of D. necatrix, and also serves as a resource for investigating the pathogen's population biology and general ecology.
Collapse
Affiliation(s)
- Magriet A van der Nest
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Raven Wienk
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
van Heerden A, Pham NQ, Wingfield BD, Wingfield MJ, Muro Abad JI, Durán A, Wilken PM. LAMP Assay to Detect Elsinoë necatrix, an Important Eucalyptus Shoot and Leaf Pathogen. PLANT DISEASE 2024; 108:2731-2739. [PMID: 38616388 DOI: 10.1094/pdis-01-24-0086-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Eucalyptus scab and shoot malformation caused by Elsinoë necatrix is an emerging disease and a serious threat to the global commercial forestry industry. The disease was first discovered in North Sumatra, Indonesia, and now requires a simple and effective method for early pathogen detection. In this study, a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay was developed for E. necatrix. A unique region in a secondary metabolite gene cluster was used as a target for the assay. To test robustness of the assay, LAMP was verified in 15 strains of E. necatrix. A specificity test against 23 closely related Elsinoë species and three fungal species commonly isolated on Eucalyptus showed that the LAMP assay exclusively identified E. necatrix isolates. The assay had a high level of sensitivity, able to detect 0.01 ng (approximately 400 target copies) of pure E. necatrix DNA. Furthermore, using a simple DNA extraction method, it was possible to use this assay to detect E. necatrix in infected Eucalyptus leaves.
Collapse
Affiliation(s)
- Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nam Q Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Jupiter I Muro Abad
- RGE Technology Center, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, Riau, Indonesia
| | - Alvaro Durán
- RGE Technology Center, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, Riau, Indonesia
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Nsibo DL, Barnes I, Berger DK. Recent advances in the population biology and management of maize foliar fungal pathogens Exserohilum turcicum, Cercospora zeina and Bipolaris maydis in Africa. FRONTIERS IN PLANT SCIENCE 2024; 15:1404483. [PMID: 39148617 PMCID: PMC11324496 DOI: 10.3389/fpls.2024.1404483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Maize is the most widely cultivated and major security crop in sub-Saharan Africa. Three foliar diseases threaten maize production on the continent, namely northern leaf blight, gray leaf spot, and southern corn leaf blight. These are caused by the fungi Exserohilum turcicum, Cercospora zeina, and Bipolaris maydis, respectively. Yield losses of more than 10% can occur if these pathogens are diagnosed inaccurately or managed ineffectively. Here, we review recent advances in understanding the population biology and management of the three pathogens, which are present in Africa and thrive under similar environmental conditions during a single growing season. To effectively manage these pathogens, there is an increasing adoption of breeding for resistance at the small-scale level combined with cultural practices. Fungicide usage in African cropping systems is limited due to high costs and avoidance of chemical control. Currently, there is limited knowledge available on the population biology and genetics of these pathogens in Africa. The evolutionary potential of these pathogens to overcome host resistance has not been fully established. There is a need to conduct large-scale sampling of isolates to study their diversity and trace their migration patterns across the continent.
Collapse
Affiliation(s)
- David L Nsibo
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Dave K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Aylward J, Wilson AM, Visagie CM, Spraker J, Barnes I, Buitendag C, Ceriani C, Del Mar Angel L, du Plessis D, Fuchs T, Gasser K, Krämer D, Li W, Munsamy K, Piso A, Price JL, Sonnekus B, Thomas C, van der Nest A, van Dijk A, van Heerden A, van Vuuren N, Yilmaz N, Duong TA, van der Merwe NA, Wingfield MJ, Wingfield BD. IMA Genome - F19 : A genome assembly and annotation guide to empower mycologists, including annotated draft genome sequences of Ceratocystis pirilliformis, Diaporthe australafricana, Fusarium ophioides, Paecilomyces lecythidis, and Sporothrix stenoceras. IMA Fungus 2024; 15:12. [PMID: 38831329 PMCID: PMC11149380 DOI: 10.1186/s43008-024-00142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pace at which Next Generation Sequence data is being produced continues to accelerate as technology improves. As a result, such data are increasingly becoming accessible to biologists outside of the field of bioinformatics. In contrast, access to training in the methods of genome assembly and annotation are not growing at a similar rate. In this issue, we report on a Genome Assembly Workshop for Mycologists that was held at the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa and make available the 12 draft genome sequences emanating from the event. With the aim of making the process of genome assembly and annotation more accessible to biologists, we provide a step-by-step guide to both genome assembly and annotation, intended to encourage and empower mycologists to use genome data in their research.
Collapse
Affiliation(s)
- Janneke Aylward
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Cobus M Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Joseph Spraker
- Hexagon Bio, 1490 O'Brien Dr, Menlo Park, CA, 94025, USA
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Carla Buitendag
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Callin Ceriani
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Lina Del Mar Angel
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Deanné du Plessis
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Taygen Fuchs
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Katharina Gasser
- Department of Crop Sciences, University of Natural Resources and Life Sciences (BOKU), Institute of Plant Protection, Konrad Lorenz-Strasse 24, Tulln an Der Donau, 3430, Vienna, Austria
| | - Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - WenWen Li
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Kiara Munsamy
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Anja Piso
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Jenna-Lee Price
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Byron Sonnekus
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Chanel Thomas
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Ariska van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alida van Dijk
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicole van Vuuren
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Neriman Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| |
Collapse
|
6
|
Safar HA, Alatar F, Mustafa AS. Three Rounds of Read Correction Significantly Improve Eukaryotic Protein Detection in ONT Reads. Microorganisms 2024; 12:247. [PMID: 38399651 PMCID: PMC10893331 DOI: 10.3390/microorganisms12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Eukaryotes' whole-genome sequencing is crucial for species identification, gene detection, and protein annotation. Oxford Nanopore Technology (ONT) is an affordable and rapid platform for sequencing eukaryotes; however, the relatively higher error rates require computational and bioinformatic efforts to produce more accurate genome assemblies. Here, we evaluated the effect of read correction tools on eukaryote genome completeness, gene detection and protein annotation. METHODS Reads generated by ONT of four eukaryotes, C. albicans, C. gattii, S. cerevisiae, and P. falciparum, were assembled using minimap2 and underwent three rounds of read correction using flye, medaka and racon. The generates consensus FASTA files were compared for total length (bp), genome completeness, gene detection, and protein-annotation by QUAST, BUSCO, BRAKER1 and InterProScan, respectively. RESULTS Genome completeness was dependent on the assembly method rather than on the read correction tool; however, medaka performed better than flye and racon. Racon significantly performed better than flye and medaka in gene detection, while both racon and medaka significantly performed better than flye in protein-annotation. CONCLUSION We show that three rounds of read correction significantly affect gene detection and protein annotation, which are dependent on assembly quality in preference to assembly completeness.
Collapse
Affiliation(s)
- Hussain A. Safar
- OMICS Research Unit, Health Science Centre, Kuwait University, Kuwait City 13110, Kuwait;
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait;
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City 13110, Kuwait
| |
Collapse
|
7
|
Chavarro-Carrero EA, Snelders NC, Torres DE, Kraege A, López-Moral A, Petti GC, Punt W, Wieneke J, García-Velasco R, López-Herrera CJ, Seidl MF, Thomma BPHJ. The soil-borne white root rot pathogen Rosellinia necatrix expresses antimicrobial proteins during host colonization. PLoS Pathog 2024; 20:e1011866. [PMID: 38236788 PMCID: PMC10796067 DOI: 10.1371/journal.ppat.1011866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/27/2023] [Indexed: 01/22/2024] Open
Abstract
Rosellinia necatrix is a prevalent soil-borne plant-pathogenic fungus that is the causal agent of white root rot disease in a broad range of host plants. The limited availability of genomic resources for R. necatrix has complicated a thorough understanding of its infection biology. Here, we sequenced nine R. necatrix strains with Oxford Nanopore sequencing technology, and with DNA proximity ligation we generated a gapless assembly of one of the genomes into ten chromosomes. Whereas many filamentous pathogens display a so-called two-speed genome with more dynamic and more conserved compartments, the R. necatrix genome does not display such genome compartmentalization. It has recently been proposed that fungal plant pathogens may employ effectors with antimicrobial activity to manipulate the host microbiota to promote infection. In the predicted secretome of R. necatrix, 26 putative antimicrobial effector proteins were identified, nine of which are expressed during plant colonization. Two of the candidates were tested, both of which were found to possess selective antimicrobial activity. Intriguingly, some of the inhibited bacteria are antagonists of R. necatrix growth in vitro and can alleviate R. necatrix infection on cotton plants. Collectively, our data show that R. necatrix encodes antimicrobials that are expressed during host colonization and that may contribute to modulation of host-associated microbiota to stimulate disease development.
Collapse
Affiliation(s)
- Edgar A. Chavarro-Carrero
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Nick C. Snelders
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - David E. Torres
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Anton Kraege
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Ana López-Moral
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Gabriella C. Petti
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Wilko Punt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Jan Wieneke
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Rómulo García-Velasco
- Laboratory of Phytopathology, Tenancingo University Center, Autonomous University of the State of Mexico, Tenancingo, State of Mexico, Mexico
| | - Carlos J. López-Herrera
- CSIC, Instituto de Agricultura Sostenible, Dept. Protección de Cultivos, C/Alameda del Obispo s/n, Córdoba, Spain
| | - Michael F. Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Bart P. H. J. Thomma
- Laboratory of Phytopathology, Wageningen University & Research, Wageningen, The Netherlands
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Pham NQ, Duong TA, Wingfield BD, Barnes I, Durán A, Wingfield MJ. Characterisation of the mating-type loci in species of Elsinoe causing scab diseases. Fungal Biol 2023; 127:1484-1490. [PMID: 38097322 DOI: 10.1016/j.funbio.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023]
Abstract
The genus Elsinoe includes many aggressive plant pathogens that infect various economically important agricultural, horticultural and forestry plants. Significant diseases include citrus scab caused by E. fawcettii and E. australis, grapevine spot anthracnose by E. ampelina, and the emerging Eucalyptus scab and shoot malformation disease caused by the recently described E. necatrix. Despite their importance as plant pathogens, little is known regarding the biology of many Elsinoe spp. To gain insights into the reproductive biology of these fungi, we characterized the mating-type loci of seven species using whole genome sequence data. Results showed that the MAT1 locus organization and its flanking genes is relatively conserved in most cases. All seven species manifested a typical heterothallic mating system characterized by having either the MAT1-1 or MAT1-2 idiomorph present in an isolate. These idiomorphs were defined by the MAT1-1-1 or the MAT1-2-1 gene, respectively. A unique MAT1-1 idiomorph containing a truncated MAT1-2-1 gene, and a MAT1-1-1 gene, was identified in E. necatrix and E. fawcettii genomes. Additionally, two idiomorph-specific proteins were found in the MAT1-1 and MAT1-2 idiomorphs of E. australis. Universal mating-type markers confirmed heterothallism across 21 Elsinoe spp., are poised to advance future studies regarding the biology of these fungi.
Collapse
Affiliation(s)
- N Q Pham
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa.
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - I Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| | - A Durán
- Plant Health Program, Research and Development, Asia Pacific Resources International Holdings Ltd. (APRIL), Pangkalan Kerinci, 28300, Riau, Indonesia
| | - M J Wingfield
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
9
|
Welgemoed T, Duong TA, Barnes I, Stukenbrock EH, Berger DK. Population genomic analyses suggest recent dispersal events of the pathogen Cercospora zeina into East and Southern African maize cropping systems. G3 (BETHESDA, MD.) 2023; 13:jkad214. [PMID: 37738420 PMCID: PMC10627275 DOI: 10.1093/g3journal/jkad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/24/2023]
Abstract
A serious factor hampering global maize production is gray leaf spot disease. Cercospora zeina is one of the causative pathogens, but population genomics analysis of C. zeina is lacking. We conducted whole-genome Illumina sequencing of a representative set of 30 C. zeina isolates from Kenya and Uganda (East Africa) and Zambia, Zimbabwe, and South Africa (Southern Africa). Selection of the diverse set was based on microsatellite data from a larger collection of the pathogen. Pangenome analysis of the C. zeina isolates was done by (1) de novo assembly of the reads with SPAdes, (2) annotation with BRAKER, and (3) protein clustering with OrthoFinder. A published long-read assembly of C. zeina (CMW25467) from Zambia was included and annotated using the same pipeline. This analysis revealed 790 non-shared accessory and 10,677 shared core orthogroups (genes) between the 31 isolates. Accessory gene content was largely shared between isolates from all countries, with a few genes unique to populations from Southern Africa (32) or East Africa (6). There was a significantly higher proportion of effector genes in the accessory secretome (44%) compared to the core secretome (24%). PCA, ADMIXTURE, and phylogenetic analysis using a neighbor-net network indicated a population structure with a geographical subdivision between the East African isolates and the Southern African isolates, although gene flow was also evident. The small pangenome and partial population differentiation indicated recent dispersal of C. zeina into Africa, possibly from 2 regional founder populations, followed by recurrent gene flow owing to widespread maize production across sub-Saharan Africa.
Collapse
Affiliation(s)
- Tanya Welgemoed
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Am Botanischen Garten 1-11, Kiel 24118, Germany
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Dave K Berger
- Department of Plant and Soil Sciences, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
10
|
Narh Mensah DL, Wingfield BD, Coetzee MP. A practical approach to genome assembly and annotation of Basidiomycota using the example of Armillaria. Biotechniques 2023; 75:115-128. [PMID: 37681497 DOI: 10.2144/btn-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Technological advancements in genome sequencing, assembly and annotation platforms and algorithms that resulted in several genomic studies have created an opportunity to further our understanding of the biology of phytopathogens, including Armillaria species. Most Armillaria species are facultative necrotrophs that cause root- and stem-rot, usually on woody plants, significantly impacting agriculture and forestry worldwide. Genome sequencing, assembly and annotation in terms of samples used and methods applied in Armillaria genome projects are evaluated in this review. Infographic guidelines and a database of resources to facilitate future Armillaria genome projects were developed. Knowledge gained from genomic studies of Armillaria species is summarized and prospects for further research are provided. This guide can be applied to other diploid and dikaryotic fungal genomics.
Collapse
Affiliation(s)
- Deborah L Narh Mensah
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
- Council for Scientific and Industrial Research - Food Research Institute (CSIR-FRI), PO Box M20, Accra, Ghana
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Martin Pa Coetzee
- Department of Biochemistry, Genetics & Microbiology, Forestry & Agricultural Biotechnology Institute (FABI), Faculty of Natural & Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
11
|
Kusch S, Vaghefi N, Kiss L. The Good, The Bad, and The Misleading: How to Improve the Quality of 'Genome Announcements'? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:393-396. [PMID: 36947747 DOI: 10.1094/mpmi-01-23-0009-le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
When comparing the requirements of diverse journals to publish microbial 'Genome Reports,' we noticed that some mostly focus on benchmarking universal single-copy orthologs scores as a quality measure, while the exclusion of possible contaminating sequences from genomic resources and the possible misidentification of the target microbes receive less attention. To deal with these quality issues, we suggest that DNA barcodes that are widely accepted for the identification of the target microbe species should be extracted from newly reported genome resources and included in phylogenetic analyses to confirm the identity of the sequenced microorganisms before Genome Reports are published. This approach, applied, for example, by the journal IMA Fungus, largely prevents the misidentification of the microbes that are targeted for whole-genome sequencing (WGS). In addition, contig similarity values, including GC content, remapping coverage of WGS reads, and BLASTN searches against the National Center for Biotechnology Information nucleotide database, would also reveal contamination issues. The values of these two recommendations to improve the publication criteria for microbial Genome Reports in diverse journals are demonstrated here through analyses of a draft genome published in Molecular Plant-Microbe Interactions and then retracted due to contaminations. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Niloofar Vaghefi
- Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Levente Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia
| |
Collapse
|