1
|
Rajamanickam K, Rathinavel T, Periyannan V, Ammashi S, Marimuthu S, Nasir Iqbal M. Molecular insight of phytocompounds from Indian spices and its hyaluronic acid conjugates to block SARS-CoV-2 viral entry. J Biomol Struct Dyn 2023; 41:7386-7405. [PMID: 36093954 DOI: 10.1080/07391102.2022.2121757] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Human corona viral infection leads to acute breathing disease and death if not diagnosed and treated properly in time. The disease can be treated with the help of simple natural compounds, which we use in day-to-day life. These natural compounds act against several diseases but their drug targeting mechanism needs to be improved for more efficient and promising applications. In the present study five compounds (gingerol, thymol, thymohydroquinone, cyclocurcumin, hydrazinocurcumin) from three Indian medicinal plants (ginger, black cumin, turmeric) and its hyaluronic acid (HA) conjugates were docked against initially deposited spike structural proteins (PDB ID 6WPT) and its mutant variant D-614G (PDB ID 6XS6). Docking study result reveals that all the HA conjugates showed the most effective inhibitor of S-protein of initially deposited and D-614G variant forms of SARS-CoV-2. The compounds like Gingerol, Thymol, Thymohydroquinone, Cyclocurcumin, Hydrazinocurcumin, Hydroxychloroquinone, and hyaluronic acid conjugates inhibit the viral protein of both wild-type and mutated S-protein of SARS-CoV-2. The molecular docking studies of phytocompounds with initial deposited and variant spike protein targets show superior binding affinity than with the commercial repurposed viral entry inhibitor hydroxychloroquine. Further, the docking result was modeled using MD simulation study shows excellent simulation trajectories between spike proteins and HA conjugates spices constituents than its free form. DFT analysis was carried out to affirm the reason behind the highest binding affinity of HA conjugates over its free form towards SARS-CoV-2 spike protein targets. Further HA conjugates synthesis and its evaluation against SARS-CoV-2 in vitro studies are needed to prove our novel idea for an anti-viral drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karthika Rajamanickam
- Department of Biotechnology, Mahendra Arts and Science College, Namakkal, Tamil Nadu, India
| | | | - Velu Periyannan
- Department of Biotechnology and Biochemistry, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Subramanian Ammashi
- PG and Research Department of Biochemistry, Rajah Serfoji Government College (Autonomous), Thanjavur, Tamil Nadu, India
| | | | - Muhammad Nasir Iqbal
- Department of Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
2
|
Rai M, Singh AV, Paudel N, Kanase A, Falletta E, Kerkar P, Heyda J, Barghash RF, Pratap Singh S, Soos M. Herbal concoction Unveiled: A computational analysis of phytochemicals' pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Curr Res Toxicol 2023; 5:100118. [PMID: 37609475 PMCID: PMC10440360 DOI: 10.1016/j.crtox.2023.100118] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023] Open
Abstract
Herbal medications have an extensive history of use in treating various diseases, attributed to their perceived efficacy and safety. Traditional medicine practitioners and contemporary healthcare providers have shown particular interest in herbal syrups, especially for respiratory illnesses associated with the SARS-CoV-2 virus. However, the current understanding of the pharmacokinetic and toxicological properties of phytochemicals in these herbal mixtures is limited. This study presents a comprehensive computational analysis utilizing novel approach methodologies (NAMs) to investigate the pharmacokinetic and toxicological profiles of phytochemicals in herbal syrup, leveraging in-silico techniques and prediction tools such as PubChem, SwissADME, and Molsoft's database. Although molecular dynamics, docking, and broader system-wide analyses were not considered, future studies hold potential for further investigation in these areas. By combining drug-likeness with molecular simulation, researchers identify diverse phytochemicals suitable for complex medication development examining their pharmacokinetic-toxicological profiles in phytopharmaceutical syrup. The study focuses on herbal solutions for respiratory infections, with the goal of adding to the pool of all-natural treatments for such ailments. This research has the potential to revolutionize environmental and alternative medicine by leveraging in-silico models and innovative analytical techniques to identify novel phytochemicals with enhanced therapeutic benefits and explore network-based and systems biology approaches for a deeper understanding of their interactions with biological systems. Overall, our study offers valuable insights into the computational analysis of the pharmacokinetic and toxicological profiles of herbal concoction. This paves the way for advancements in environmental and alternative medicine. However, we acknowledge the need for future studies to address the aforementioned topics that were not adequately covered in this research.
Collapse
Affiliation(s)
- Mansi Rai
- Department of Microbiology, Central University of Rajasthan NH-8, Bandar Sindri, Dist-Ajmer-305817, Rajasthan, India
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
| | - Namuna Paudel
- Department of Chemistry, Amrit Campus, Institute of Science and Technology, Tribhuvan University, Lainchaur, Kathmandu 44600, Nepal
| | - Anurag Kanase
- Opentrons Labworks Inc., Brooklyn, NY 11201, the United States of America
| | - Ermelinda Falletta
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Pranali Kerkar
- Rutgers School of Public Health, 683 Hoes Lane West Piscataway, NJ 08854, the United States of America
| | - Jan Heyda
- Department of Physical Chemistry, University of Chemistry and Technology Prague, Technicka 5, Prague 6 Dejvice, 166 28, Czech Republic
| | - Reham F. Barghash
- Institute of Chemical Industries Researches, National Research Centre, Dokki, Cairo 12622, Egypt
| | | | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 3, Prague 6 Dejvice, 166 28, Czech Republic
| |
Collapse
|
3
|
Shanmugam A, Venkattappan A, Gromiha MM. Structure based Drug Designing Approaches in SARS-CoV-2 Spike Inhibitor Design. Curr Top Med Chem 2023; 22:2396-2409. [PMID: 36330617 DOI: 10.2174/1568026623666221103091658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
The COVID-19 outbreak and the pandemic situation have hastened the research community to design a novel drug and vaccine against its causative organism, the SARS-CoV-2. The spike glycoprotein present on the surface of this pathogenic organism plays an immense role in viral entry and antigenicity. Hence, it is considered an important drug target in COVID-19 drug design. Several three-dimensional crystal structures of this SARS-CoV-2 spike protein have been identified and deposited in the Protein DataBank during the pandemic period. This accelerated the research in computer- aided drug designing, especially in the field of structure-based drug designing. This review summarizes various structure-based drug design approaches applied to this SARS-CoV-2 spike protein and its findings. Specifically, it is focused on different structure-based approaches such as molecular docking, high-throughput virtual screening, molecular dynamics simulation, drug repurposing, and target-based pharmacophore modelling and screening. These structural approaches have been applied to different ligands and datasets such as FDA-approved drugs, small molecular chemical compounds, chemical libraries, chemical databases, structural analogs, and natural compounds, which resulted in the prediction of spike inhibitors, spike-ACE-2 interface inhibitors, and allosteric inhibitors.
Collapse
Affiliation(s)
- Anusuya Shanmugam
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, 636308, Tamil Nadu, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology ,Madras, Chennai, 600036, Tamil Nadu, India
| | - Anbazhagan Venkattappan
- Department of Chemistry, Vinayaka Mission's Kirupananda Variyar Arts and Science College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, 636308, Tamil Nadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology ,Madras, Chennai, 600036, Tamil Nadu, India
| |
Collapse
|
4
|
Govindarajan DK, Meghanathan Y, Sivaramakrishnan M, Kothandan R, Muthusamy A, Seviour TW, Kandaswamy K. Enterococcus faecalis thrives in dual-species biofilm models under iron-rich conditions. Arch Microbiol 2022; 204:710. [DOI: 10.1007/s00203-022-03309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
|
5
|
Identification of potential inhibitors of brain-specific CYP46A1 from phytoconstituents in Indian traditional medicinal plants. JOURNAL OF PROTEINS AND PROTEOMICS 2022; 13:227-245. [PMCID: PMC9667835 DOI: 10.1007/s42485-022-00098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
|
6
|
Khursheed A, Ahmad S, Saleem M, Khan KUR, Khan J, Orhan IE, Abaci N, Imran M, Tauseef S, Uddin R, Yawer MA, Tousif MI, Ojha SC, Khurshid U. Phytochemical profiling, in vitro biological activity, docking studies, and cytotoxicity assessments of Rondeletia odorata Jacquin: An unexplored plant of the coffee family. Front Chem 2022; 10:1017577. [DOI: 10.3389/fchem.2022.1017577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Rondeletia odorata Jacquin is a flowering plant that belongs to the coffee family. As a rich source of polyphenols with significant antioxidant potential, R. odorata may have health benefits. Therefore, in the current work, ethanolic extract of aerial parts and its n-hexane, ethyl acetate, and n-butanol soluble fractions were analyzed for their antioxidant potential and various enzyme inhibition properties. The total phenolic and flavonoid contents of the crude ethanol extract (ROE) and its n-hexane (ROH), ethyl acetate (ROEA), and n-butanol (ROB) fractions were determined spectrophotometrically, while metabolic profiling was established through UHPLC-MS analysis, which revealed the presence of 58 phytochemicals. Total phenolic and flavonoid contents of ROE extract were measured as 51.92 mg GA.Eq./g of dry extract and 52.35 mg Qu.Eq./g of the dry extract, respectively. In the DPPH radical scavenging activity assay, ROE and ROEA showed the highest potential with values of 62.13 ± 0.62 and 76.31% ± 1.86%, respectively, comparable to quercetin (80.89% ± 0.54%). Similarly, in the FRAP assay, the same pattern of the activity was observed with ROE and ROEA, which displayed absorbance values of 1.32 ± 0.01 and 0.80 ± 0.02 at 700 nm, respectively, which are comparable (1.76 ± 0.02) with the reference compound quercetin, whereas the ROH showed maximum metal-chelating capacity (62.61% ± 1.01%) among all extracts and fractions. Antibacterial activity assay indicated that the ROEA fraction was the most active against Serratia marcescens, Stenotrophomonas maltophilia, Bacillus subtilis, Klebsiella pneumonia, and Staphylococcus aureus, while the rest of the fractions showed good to moderate activity. Enzyme inhibition assays showed that ROEA fraction exhibited the highest activity with IC50 values of 2.78 ± 0.42 and 3.95 ± 0.13 mg/mL against urease and carbonic anhydrase (CA), respectively. Furthermore, the docking studies of some of the major compounds identified in the extract revealed a strong correlation with their inhibitory activity. All extracts and fractions were also tested for their thrombolytic activity, and the ROB fraction showed a notable potential. Antiviral assay led to remarkable outcomes. Thus, it can be inferred that aerial parts of R. odorata are potential sources of bioactive components with several significant pharmacological activities.
Collapse
|
7
|
Solo P, doss MA. Potential inhibitors of SARS-CoV-2 (COVID 19) spike protein of the delta and delta plus variant: In silico studies of medicinal plants of North-East India. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100065. [PMID: 34870160 PMCID: PMC8530778 DOI: 10.1016/j.crphar.2021.100065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
Phytochemicals of 38 Medicinal plants of North-East India, with anti-viral, anti-oxidant or anti-bacterial properties were screened for properties of drug likeness. 231 phytochemicals were screened with LIPINSKI rule of five to obtain 131 candidates, which were further screened with SWISS-ADME, to obtain 50 phytochemicals. These phytochemicals were docked with the spike protein of the Delta variant (B.1.617.2) and Delta-Plus (AY.1) variant of SARS-CoV-2 using Autodock Vina and MOE 09. The target proteins were constructed by homology modeling using Swiss-Model. Hydroxychloroquine, taken as a standard in docking analysis, exhibited a binding energy of -6.5 kcal/mol and -6.1 kcal/mol with respect to the Delta variant and Delta-Plus variant respectively. Among the 50 docked results most flavones showed very good docking scores. 3,5,8-Trimethoxy-6,7,4,5-bis(methylenedioxy)flavone, a Poly-Methoxyflavone, produced a highest docking score of -8.7 kcal/mol with respect to both the spike protein targets. Poly-Methoxyflavones and Poly-Ethoxyflavones exhibited good binding affinity for the target spike protein of SARS-CoV-2, and can be potential anti-viral drug candidates against the existing Delta variant of the SARS-CoV-2.
Collapse
Affiliation(s)
- Peter Solo
- Department of Chemistry, St. Joseph's College (Autonomous), Jakhama, India
- Department of Chemistry, St. Joseph University, Dimapur, India
- Corresponding author. Department of Chemistry, St. Joseph's College, Autonomous, Jakhama, 797005, India.
| | - M. Arockia doss
- Department of Chemistry, St. Joseph University, Dimapur, India
| |
Collapse
|
8
|
Singh R, Goel S, Bourgeade P, Aleya L, Tewari D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55925-55951. [PMID: 34491498 PMCID: PMC8422837 DOI: 10.1007/s11356-021-16280-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/27/2021] [Indexed: 05/08/2023]
Abstract
Coronavirus disease (COVID-19) has been declared as a pandemic by the World Health Organization with rapid spread across 216 countries. COVID-19 pandemic has left its imprints on various health systems globally and caused immense social and economic disruptions. The scientific community across the globe is in a quest for digging the effective treatment for COVID-19 and exploring potential leads from traditional systems of healthcare across the world too. Ayurveda (Indian traditional system of medicine) has a comprehensive aspect of immunity through Rasayana which is a rejuvenation therapy. Here we attempt to generate the potential leads based on the classical text from Ayurveda in general and Rasayana in particular to develop effective antiviral and/or immunomodulator for potential or adjunct therapy in SARS-CoV-2. The Rasayana acts not only by resisting body to restrain or withstand the strength, severity or progression of a disease but also by promoting power of the body to prevent the manifestation of a disease. These Rasayana herbs are common in practice as immunomodulator, antiviral and protectives. The studies on Rasayana can provide an insight into the future course of research for the plausible development of effective management of COVID-19 by the utilization and development of various traditional systems of healthcare. Keeping in view the current pandemic situation, there is an urgent need of developing potential medicines. This study proposes certain prominent medicinal plants which may be further studied for drug development process and also in clinical setup under repurposing of these herbs.
Collapse
Affiliation(s)
- Rajeshwari Singh
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Sumeet Goel
- Central Council for Research in Ayurvedic Sciences, Ministry of AYUSH, Government of India, Janakpuri, New Delhi, 110058, India
| | - Pascale Bourgeade
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France.
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|