1
|
Singh SD, Bharali P, Nagamani S. Exploring bacterial metabolites in microbe-human host dialogue and their therapeutic potential in Alzheimer's diseases. Mol Divers 2024:10.1007/s11030-024-11028-y. [PMID: 39499489 DOI: 10.1007/s11030-024-11028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024]
Abstract
Neurological dysfunction in association with aging, dementia, and cognitive impairment is the major cause of Alzheimer's disease (AD). Current AD therapies often yield unsatisfactory results due to their poor mechanism in treating the underlying mechanism of the disease. Recent studies suggested that metabolites from the gut microbiota facilitate brain-gut communication. A systematic network pharmacology study and the structure- and analog-based approaches are employed to investigate the metabolites produced by gut microbiota to treat AD. The microbiota metabolites available in the gutMGene database were considered in this study. Two servers, namely Swiss Target Prediction (STP) and Similarity Ensemble Approach (SEA), were used to identify the possible AD targets for the selected metabolites. Detailed KEGG pathway and Gene Ontology (GO) analysis on identified hub genes highlighted the importance of IL6, AKT1, and GSK3B in AD pathophysiology. MMTSp (Microbiota Metabolites Target Signaling pathways) network analysis elucidated that there is a strong relationship with microbiota (Paraprevotella xylaniphila YIT 11841, Bifidobacterium dentium, Paraprevotella clara YIT 11840, Enterococcus sp. 45, Bacteroides sp. 45, Bacillus sp. 46, Escherichia sp. 33, Enterococcus casseliflavus, Bacteroides uniformis, Alistipes indistinctus YIT 12060, Bacteroides ovatus, Escherichia sp. 12, and Odoribacter laneus YIT 12061) and AD pathogenesis. In addition to this, we performed molecular docking to study the metabolite interactions in the AD drug targets. The ADME/T properties of these metabolites were also calculated and the results are discussed in detail.
Collapse
Affiliation(s)
- Sarangthem Dinamani Singh
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj Bharali
- Centre for Infectious Diseases, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Selvaraman Nagamani
- Advanced Computation and Data Sciences Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Alves VC, Carro E, Figueiro-Silva J. Unveiling DNA methylation in Alzheimer's disease: a review of array-based human brain studies. Neural Regen Res 2024; 19:2365-2376. [PMID: 38526273 PMCID: PMC11090417 DOI: 10.4103/1673-5374.393106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/05/2023] [Indexed: 03/26/2024] Open
Abstract
The intricacies of Alzheimer's disease pathogenesis are being increasingly illuminated by the exploration of epigenetic mechanisms, particularly DNA methylation. This review comprehensively surveys recent human-centered studies that investigate whole genome DNA methylation in Alzheimer's disease neuropathology. The examination of various brain regions reveals distinctive DNA methylation patterns that associate with the Braak stage and Alzheimer's disease progression. The entorhinal cortex emerges as a focal point due to its early histological alterations and subsequent impact on downstream regions like the hippocampus. Notably, ANK1 hypermethylation, a protein implicated in neurofibrillary tangle formation, was recurrently identified in the entorhinal cortex. Further, the middle temporal gyrus and prefrontal cortex were shown to exhibit significant hypermethylation of genes like HOXA3, RHBDF2, and MCF2L, potentially influencing neuroinflammatory processes. The complex role of BIN1 in late-onset Alzheimer's disease is underscored by its association with altered methylation patterns. Despite the disparities across studies, these findings highlight the intricate interplay between epigenetic modifications and Alzheimer's disease pathology. Future research efforts should address methodological variations, incorporate diverse cohorts, and consider environmental factors to unravel the nuanced epigenetic landscape underlying Alzheimer's disease progression.
Collapse
Affiliation(s)
- Victoria Cunha Alves
- Neurodegenerative Diseases Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
- Neurotraumatology and Subarachnoid Hemorrhage Group, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
| | - Eva Carro
- Network Center for Biomedical Research, Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research Into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Joana Figueiro-Silva
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Chiarini A, Armato U, Gui L, Yin M, Chang S, Dal Prà I. Early divergent modulation of NLRP2's and NLRP3's inflammasome sensors vs. AIM2's one by signals from Aβ·Calcium-sensing receptor complexes in human astrocytes. Brain Res 2024; 1846:149283. [PMID: 39426463 DOI: 10.1016/j.brainres.2024.149283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Alzheimer's disease (AD), the most prevalent human dementia, is driven by accruals of extracellular Aβ42 senile patches and intracellular neurofibrillary tangles of hyperphosphorylated Tau (p-Tau) proteins. AD's concurrent neuroinflammation is prompted by innate immunity-related cytosolic protein oligomers named inflammasomes. Upon proper "first" (priming) and "second" (activating) signals, inflammasomes overproduce proinflammatory Interleukin (IL)-1β, and IL-18 while cleaving pyroptosis-promoting Gasdermin D's N-terminal fragments. Our earlier studies highlighted that in pure monocultures, exogenous Aβ25-35-treated nonproliferating human cortical astrocytes (HCAs) made and released surpluses of endogenous Aβ42-oligomers (-os) and p-Tau-os, just as alike-treated human cortical neurons did. Aβ25-35-exposed HCAs also over-released NO, VEGFA, and IL-6. Aβ•CaSR (Aβ·Calcium-Sensing Receptor) complexes generated intracellular signals mediating all such neurotoxic effects since CaSR's negative allosteric modulators (aka NAMs or calcilytics, e.g., NPS2143) fully suppressed them. However, it had hitherto remained unexplored whether signals from Aβ·CaSR complexes also induced the early expression and/or activation of NOD-like 2 (NLRP2) and 3 (NLRP3) and of PYHIN absent in melanoma 2 (AIM2) inflammasomes in monocultured HCAs. To clarify this topic, we used in-situ-Proximity Ligation, qRT-PCR, double antibody arrays, immunoblots, and Caspase 1/4 enzymatic assays. Aβ·CaSR complexes quickly assembled on HCAs surface and issued intracellular signals activating Akt and JAK/STAT axes. In turn, the latter upregulated NLRP2 and NLRP3 PRRs (pattern recognition receptors) yet downregulated AIM2. These effects were specific, being significantly hindered by NPS2143 and inhibitors of PI3K (LY294002), AMPKα (Dorsomorphin), mTOR (Torin1), and JAK/TYK (Brepoticinib). A wide-spectrum inhibitor, Bay11-7082, intensified the Aβ·CaSR/Akt/JAK/STAT axis-driven opposite control of NLRP3's and AIM2's PRR proteins without affecting NLRP2 PRR upregulation. However, the said effects on the PRRs proteins vanished within 24-h. Moreover, Aβ·CaSR signals neither concurrently changed ASC, pro-IL-1β, and Gasdermin-D (holo- and fragments) protein levels and Caspases 1 and 4 enzymatic activities nor induced pyroptosis. Therefore, Aβ·CaSR cues acted as "first (priming) signals" temporarily increasing NLRP2 and NLRP3 PRRs expression without activating the corresponding inflammasomes. The neatly divergent modulation of NLRP3's vs. AIM2's PRR proteins by Aβ·CaSR cues and by Bay11-7082 suggests that, when bacterial or viral DNA fragments are absent, AIM2 might play "anti-inflammasomal" or other roles in HCAs. However, Bay11-7082's no effect on NLRP2 PRR overexpression also reveals that CaSR's downstream mechanisms controlling inflammasomes' sensors are quite complex in HCAs, and hence, given AD's impact on human health, well worth further studies.
Collapse
Affiliation(s)
- Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Li Gui
- Department of Neurology, Southwest Hospital, Army Medical University, 29 Gaotanyan Street, Chongqing, 400038, China.
| | - Meifang Yin
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Shusen Chang
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, 8 Strada Le Grazie, 37134 Verona, Italy.
| |
Collapse
|
4
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
5
|
Ashayeri Ahmadabad H, Mohammadi Panah S, Ghasemnejad-Berenji H, Ghojavand S, Ghasemnejad-Berenji M, Khezri MR. Metformin and the PI3K/AKT signaling pathway: implications for cancer, cardiovascular, and central nervous system diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03358-3. [PMID: 39225830 DOI: 10.1007/s00210-024-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Recent findings have brought our understanding of diseases at the molecular level, highlighting upstream intracellular pathways as potential therapeutic targets. The PI3K/AKT pathway, a key regulator of cellular responses to environmental changes, is frequently altered in various diseases, making it a promising target for intervention. Metformin is the most known anti-diabetic agent that is known due to its effects on cancer, inflammatory-related diseases, oxidative stress, and other human diseases. It is clearly understood that metformin modulates the activity of the PI3K/AKT pathway leading to a wide variety of outcomes. This interaction has been well-studied in various diseases. Therefore, this review aims to examine PI3K/AKT-modulating properties of metformin in cancer, cardiovascular, and central nervous system diseases. Our findings indicate that metformin is effective in treating cancer and CNS diseases, and plays a role in both the prevention and treatment of cardiovascular diseases. These insights support the potential of metformin in comprehensive strategies for disease management.
Collapse
Affiliation(s)
| | | | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Ghojavand
- Faculty of Pharmacy, Islamic Azad University of Tehran, Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Sengupta P, Sen S, Mukhopadhyay D. The receptor tyrosine kinase IGF1R and its associated GPCRs are co-regulated by the noncoding RNA NEAT1 in Alzheimer's disease. Gene 2024; 918:148503. [PMID: 38670398 DOI: 10.1016/j.gene.2024.148503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The study is based on the complexity of Insulin like growth factor receptor (IGF1R) signaling and its regulation by noncoding RNAs (ncRNAs). IGF1R signaling is an important cascade in Alzheimer's disease (AD); however, its regulation and roles are poorly understood. Due to the presence of β-arrestin and GPCR Receptor Kinase binding sites, this protein has been termed a 'functional hybrid', as it can take part in both kinase and GPCR signaling pathways, further adding to its complexity. The objective of this study is to understand the underlying ncRNA regulation controlling IGF1R and GPCRs in AD to find commonalities in the network. We found through data mining that 45 GPCRs were reportedly deregulated in AD and built clusters based on GO/KEGG pathways to show shared functionality with IGF1R. Eight miRs were further discovered that could coregulate IGF1R and GPCRs. We validated their expression in an AD cell model and probed for common lncRNAs downstream that could regulate these miRs. Seven such candidates were identified and further validated. A combined network comprising IGF1R with nine GPCRs, eight miRs, and seven lncRNAs was created to visualize the interconnectivity within pathways. Betweenness centrality analysis showed a cluster of NEAT1, hsa-miR-15a-5p, hsa-miR-16-5p, and IGF1R to be crucial form a competitive endogenous RNA-based (ceRNA) tetrad that could relay information within the network, which was further validated by cell-based studies. NEAT1 emerged as a master regulator that could alter the levels of IGF1R and associated GPCRs. This combined bioinformatics and experimental study for the first time explored the regulation of IGF1R through ncRNAs from the perspective of neurodegeneration.
Collapse
Affiliation(s)
- Priyanka Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Somenath Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Bidhannagar, Kolkata 700 064, India.
| |
Collapse
|
7
|
Palanivel V, Gupta V, Chitranshi N, Tietz O, Vander Wall R, Blades R, Maha Thananthirige KP, Salkar A, Shen C, Mirzaei M, Gupta V, Graham SL, Basavarajappa D. Neuropeptide Y receptor activation preserves inner retinal integrity through PI3K/Akt signaling in a glaucoma mouse model. PNAS NEXUS 2024; 3:pgae299. [PMID: 39114576 PMCID: PMC11305140 DOI: 10.1093/pnasnexus/pgae299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Neuropeptide Y (NPY), an endogenous peptide composed of 36 amino acids, has been investigated as a potential therapeutic agent for neurodegenerative diseases due to its neuroprotective attributes. This study investigated the neuroprotective effects of NPY in a mouse model of glaucoma characterized by elevated intraocular pressure (IOP) and progressive retinal ganglion cell degeneration. Elevated IOP in mice was induced through intracameral microbead injections, accompanied by intravitreal administration of NPY peptide. The results demonstrated that NPY treatment preserved both the structural and functional integrity of the inner retina and mitigated axonal damage and degenerative changes in the optic nerve under high IOP conditions. Further, NPY treatment effectively reduced inflammatory glial cell activation, as evidenced by decreased expression of glial fibrillary acidic protein and Iba-1. Notably, endogenous NPY expression and its receptors (NPY-Y1R and NPY-Y4R) levels were negatively affected in the retina under elevated IOP conditions. NPY treatment restored these changes to a significant extent. Molecular analysis revealed that NPY mediates its protective effects through the mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. These findings highlight the therapeutic potential of NPY in glaucoma treatment, underscoring its capacity to preserve retinal health, modulate receptor expression under stress, reduce neuroinflammation, and impart protection against axonal impairment.
Collapse
Affiliation(s)
- Viswanthram Palanivel
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Ole Tietz
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Roshana Vander Wall
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Reuben Blades
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Kanishka Pushpitha Maha Thananthirige
- Faculty of Medicine, Health and Human Sciences, Dementia Research Centre, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Akanksha Salkar
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Chao Shen
- Microscopy Unit, Faculty of Science and Engineering, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Stuart L Graham
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Save Sight Institute, The University of Sydney, Sydney, NSW 2000, Australia
| | - Devaraj Basavarajappa
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Yao Y, Liu Q, Ding S, Chen Y, Song T, Shang Y. Scutellaria baicalensis Georgi stems and leaves flavonoids promote neuroregeneration and ameliorate memory loss in rats through cAMP-PKA-CREB signaling pathway based on network pharmacology and bioinformatics analysis. Heliyon 2024; 10:e27161. [PMID: 38533079 PMCID: PMC10963208 DOI: 10.1016/j.heliyon.2024.e27161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
The aim of this study was to investigate the possible molecular mechanism of Scutellaria baicalensis Georgi stems and leaves flavonoids (SSF) in Alzheimer's disease (AD). The active ingredients of SSF and their targets were identified via network pharmacology and bioinformatics analysis. To test the successful establishment of a rat model of AD by Aβ25-35 combined with RHTGF-β1 and AlCl3, the Morris water maze test was used. To intervene, three different doses of SSF were administered. The model group and the control group were included among the parallel groups. A shuttle box test, immunohistochemistry, an enzyme-linked immunosorbent assay, qPCR and Western blot were performed to verify the results. Based on the intersection of genes among AD disease targets, SSF component targets, and differentially expressed genes in the single cell dataset GSE138852 and bulk-seq dataset GSE5281, nine genes related to the action of SSF on AD were identified. SSF have an important anti-AD pathway in the cAMP signaling pathway. SSF can ameliorate the conditioned memory impairment, augment Brdu protein expression and cAMP content; and differentially regulate the mRNA and protein expressions of GPCR, Gαs, AC1, PKA, and VEGF. The cAMP-PKA-CREB pathway in the SSF may mediate the ability of the SSF to ameliorate the composite-induced memory loss and nerve regeneration in rats induced by composite Aβ.
Collapse
Affiliation(s)
- Yinhui Yao
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qianqian Liu
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Shengkai Ding
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Yan Chen
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Tangtang Song
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
| | - Yazhen Shang
- Institute of Traditional Chinese Medicine, Chengde Medical University / Hebei Province Key Research Office of Traditional Chinese Medicine Against Dementia / Hebei Province Key Laboratory of Traditional Chinese Medicine Research and Development / Hebei Key Laboratory of Nerve Injury and Repair, Chengde, China, Chengde, 067000, China
- Faculty of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
9
|
Ndinyanka Fabrice T, Mori M, Pieters J. Coronin 1-dependent cell density sensing and regulation of the peripheral T cell population size. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae002. [PMID: 38737939 PMCID: PMC11007115 DOI: 10.1093/oxfimm/iqae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 05/14/2024] Open
Abstract
The establishment and maintenance of peripheral T cells is important to ensure appropriate immunity. In mammals, T cells are produced in the thymus before seeding the periphery early in life, and thereafter progressive thymus involution impairs new T cell production. Yet, peripheral T cells are maintained lifelong at approximately similar cell numbers. The question thus arises: what are the mechanisms that enable the maintenance of the appropriate number of circulating T cells, ensuring that T cell numbers are neither too low nor too high? Here, we highlight recent research suggesting a key role for coronin 1, a member of the evolutionarily conserved family of coronin proteins, in both allowing T cells to reach as well as maintain their appropriate cell population size. This cell population size controlling pathway was found to be conserved in amoeba, mice and human. We propose that coronin 1 is an integral part of a cell-intrinsic pathway that couples cell density information with prosurvival signalling thereby regulating the appropriate number of peripheral T cells.
Collapse
Affiliation(s)
| | - Mayumi Mori
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Hung YH, Wang HC, Hsu SH, Wang LY, Tsai YL, Su YY, Hung WC, Chen LT. Neuron-derived neurotensin promotes pancreatic cancer invasiveness and gemcitabine resistance via the NTSR1/Akt pathway. Am J Cancer Res 2024; 14:448-466. [PMID: 38455426 PMCID: PMC10915311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Perineural invasion and neurogenesis are frequently observed in pancreatic ductal adenocarcinoma (PDAC) and link to poor outcome. However, how neural factors affect PDAC prognosis and the underlying mechanism as well as counteracting therapeutic are still unclear. In silico systematic analysis was performed with PROGgene to identify potential neural factor and its receptor in pancreatic cancer. In vitro assays including migration, invasion, 3D recruitment, and gemcitabine resistance were performed to study the effect of neuron-derived neurotensin (NTS) on pancreatic cancer behavior. Orthotopic animal study was used to validate the in vitro findings. Gene set enrichment analysis (GSEA) was performed to confirm the results from in silico to in vivo. Expression of NTS and its receptor 1 (NTSR1) predicted poor prognosis in PDAC. NTS synthetic peptide or neuron-derived condition medium promoted pancreatic cancer invasiveness and recruitment in 2D and 3D assays. NTS-induced effects depended on NTSR1 and PI3K activation. GDC-0941, a clinically approved PI3K inhibitor, counteracted NTS-induced effects in vitro. Inhibition of NTSR1 in pancreatic cancer cells resulted in decreased tumor dissemination and diminished PI3K activation in vivo. NTS boosted gemcitabine resistance via NTSR1 in pancreatic cancer. Our results suggest that neural cell-secreted NTS plays an important role in promoting PDAC.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Shih-Han Hsu
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Li-Yun Wang
- Research Center for Animal Biologics, National Pingtung University of Science and TechnologyPingtung 912, Taiwan
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Yung-Yeh Su
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research InstitutesTainan 704, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical UniversityKaohsiung 807, Taiwan
| |
Collapse
|
11
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Ramakrishnan S, Arshad F, BS K, Pon AG, Bosco S, Kumar S, Chidambaram H, Chinnathambi SCB, Kulanthaivelu K, Arunachal G, Alladi S. Primary Microgliopathy Presenting as Degenerative Dementias: A Case Series of Novel Gene Mutations from India. Dement Geriatr Cogn Dis Extra 2024; 14:14-28. [PMID: 38910897 PMCID: PMC11192518 DOI: 10.1159/000538145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Microglia exert a crucial role in homeostasis of white matter integrity, and several studies highlight the role of microglial dysfunctions in neurodegeneration. Primary microgliopathy is a disorder where the pathogenic abnormality of the microglia causes white matter disorder and leads to a neuropsychiatric disease. Triggering receptor expressed on myeloid cells (TREM2), TYRO protein tyrosine kinase binding protein (TYROBP) and colony-stimulating factor 1 receptor (CSF1R) are genes implicated in primary microgliopathy. The clinical manifestations of primary microgliopathy are myriad ranging from neuropsychiatric syndrome, motor disability, gait dysfunction, ataxia, pure dementia, frontotemporal dementia (FTD), Alzheimer's dementia (AD), and so on. It becomes imperative to establish the diagnosis of microgliopathy masquerading as degenerative dementia, especially with promising therapies on horizon for the same. We aimed to describe a case series of subjects with dementia harbouring novel genes of primary microgliopathy, along with their clinical, neuropsychological, cognitive profile and radiological patterns. Methods The prospective study was conducted in a university referral hospital in South India, as a part of an ongoing clinico-genetic research on dementia subjects, and was approved by the Institutional Ethics Committee. All patients underwent detailed assessment including sociodemographic profile, clinical and cognitive assessment, pedigree analysis and comprehensive neurological examination. Subjects consenting for blood sampling underwent genetic testing by whole-exome sequencing (WES). Results A total of 100 patients with dementia underwent genetic analysis using WES and three pathogenic variants, one each of TREM2, TYROBP, and CSF1R and two variants of uncertain significance in CSF1R were identified as cause of primary microgliopathy. TREM2 and TYROBP presented as frontotemporal syndrome whereas CSF1R presented as frontotemporal syndrome and as AD. Conclusion WES has widened the spectrum of underlying neuropathology of degenerative dementias, and diagnosing primary microglial dysfunction with emerging therapeutic options is of paramount importance. The cases of primary microgliopathy due to novel mutations in TREM2, TYROBP, and CSF1R with the phenotype of degenerative dementia are being first time reported from Indian cohort. Our study enriches the spectrum of genetic variants implicated in degenerative dementia and provides the basis for exploring complex molecular mechanisms like microglial dysfunction, as underlying cause for neurodegeneration.
Collapse
Affiliation(s)
- Subasree Ramakrishnan
- Department of Neurology, National Institute of Mental Health, and Neurosciences (NIMHANS), Bengaluru, India
| | - Faheem Arshad
- Department of Neurology, National Institute of Mental Health, and Neurosciences (NIMHANS), Bengaluru, India
| | - Keerthana BS
- Department of Neurology, National Institute of Mental Health, and Neurosciences (NIMHANS), Bengaluru, India
| | - Arun Gokul Pon
- Department of Neurology, National Institute of Mental Health, and Neurosciences (NIMHANS), Bengaluru, India
| | - Susan Bosco
- Department of Human Genetics, NIMHANS, Bengaluru, India
| | - Sandeep Kumar
- Department of Neurology, National Institute of Mental Health, and Neurosciences (NIMHANS), Bengaluru, India
| | | | | | | | | | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health, and Neurosciences (NIMHANS), Bengaluru, India
| |
Collapse
|
13
|
Chinnathambi S. α-Linolenic Acid Vesicles-Mediated Tau Internalization in Microglia. Methods Mol Biol 2024; 2816:117-128. [PMID: 38977593 DOI: 10.1007/978-1-0716-3902-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
In Alzheimer's disease, the synaptic loss is prominent due to the accumulation of Amyloid βeta (Aβ) protein in synapses, which affect neurotransmission, and thus ultimately causes neuronal loss. Tau, a microtubule-associated protein, is a vital protein of intracellular neurofibrillary tangles (NFTs) in AD. Along with the accumulation of aberrant proteins, glial cells, mainly astrocytes and microglia, play a major role in impairing neuronal network. Microglia have the ability to phagocytose Tau and rerelease in exosomes, which causes further spreading of Tau. Reduction in exosome synthesis can reduce spreading of Tau. Modulating microglia to clear the extracellular Tau seeds by its imported degradation would resolve the disease condition in Alzheimer's disease. In this study, we have shown the ability of α-linolenic acid (ALA) to inhibit the Tau aggregation and modulate their internalization property in microglial cells.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.
| |
Collapse
|
14
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
15
|
Guido G, Mangano K, Tancheva L, Kalfin R, Leone GM, Saraceno A, Fagone P, Nicoletti F, Petralia MC. Evaluation of Cell-Specific Alterations in Alzheimer's Disease and Relevance of In Vitro Models. Genes (Basel) 2023; 14:2187. [PMID: 38137009 PMCID: PMC10743149 DOI: 10.3390/genes14122187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder classically characterized by two neuropathological hallmarks: β-amyloid plaques and tau tangles in the brain. However, the cellular and molecular mechanisms involved in AD are still elusive, which dampens the possibility of finding new and more effective therapeutic interventions. Current in vitro models are limited in modelling the complexity of AD pathogenesis. In this study, we aimed to characterize the AD expression signature upon a meta-analysis of multiple human datasets, including different cell populations from various brain regions, and compare cell-specific alterations in AD patients and in vitro models to highlight the appropriateness and the limitations of the currently available models in recapitulating AD pathology. The meta-analysis showed consistent enrichment of the Rho GTPases signaling pathway among different cell populations and in the models. The accuracy of in vitro models was higher for neurons and lowest for astrocytes. Our study underscores the particularly low fidelity in modelling down-regulated genes across all cell populations. The top enriched pathways arising from meta-analysis of human data differ from the enriched pathways arising from the overlap. We hope that our data will prove useful in indicating a starting point in the development of future, more complex, 3D in vitro models.
Collapse
Affiliation(s)
- Giorgio Guido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Block 23, 1113 Sofia, Bulgaria; (L.T.); (R.K.)
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. Block 23, 1113 Sofia, Bulgaria; (L.T.); (R.K.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Gian Marco Leone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy; (G.G.); (K.M.); (G.M.L.); (A.S.)
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| |
Collapse
|
16
|
Sun Q, Wang H, Yang M, Xia H, Wu Y, Liu Q, Tang H. miR-153-3p via PIK3R1 Is Involved in Cigarette Smoke-Induced Neurotoxicity in the Brain. TOXICS 2023; 11:969. [PMID: 38133370 PMCID: PMC10747656 DOI: 10.3390/toxics11120969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Cigarettes contain various chemicals that cause damage to nerve cells. Exposure to cigarette smoke (CS) causes insulin resistance (IR) in nerve cells. However, the mechanisms for a disorder in the cigarette-induced insulin signaling pathway and in neurotoxicity remain unclear. Therefore, we evaluated, by a series of pathology analyses and behavioral tests, the neurotoxic effects of chronic exposure to CS on C57BL/6 mice. Mice exposed to CS with more than 200 mg/m3 total particulate matter (TPM) exhibited memory deficits and cognitive impairment. Pathological staining of paraffin sections of mouse brain tissue revealed that CS-exposed mice had, in the brain, neuronal damage characterized by thinner pyramidal and granular cell layers and fewer neurons. Further, the exposure of SH-SY5Y cells to cigarette smoke extract (CSE) resulted in diminished insulin sensitivity and reduced glucose uptake in a dose-dependent fashion. The PI3K/GSK3 insulin signaling pathway is particularly relevant to neurotoxicity. microRNAs are involved in the PI3K/GSK3β/p-Tau pathway, and we found that cigarette exposure activates miR-153-3p, decreases PI3K regulatory subunits PIK3R1, and induces Tau hyperphosphorylation. Exposure to an miR-153 inhibitor or to a PI3K inhibitor alleviated the reduced insulin sensitivity caused by CS. Therefore, our results indicate that miR-153-3p, via PIK3R1, causes insulin resistance in the brain, and is involved in CS-induced neurotoxicity.
Collapse
Affiliation(s)
- Qian Sun
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020–2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Mingxue Yang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Yao Wu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; (H.W.); (H.X.)
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China; (Q.S.); (M.Y.); (Y.W.)
| |
Collapse
|
17
|
Xie R, Chen F, Ma Y, Hu W, Zheng Q, Cao J, Wu Y. Network pharmacology‒based analysis of marine cyanobacteria derived bioactive compounds for application to Alzheimer's disease. Front Pharmacol 2023; 14:1249632. [PMID: 37927608 PMCID: PMC10620974 DOI: 10.3389/fphar.2023.1249632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
In recent years, the Alzheimer's disease (AD) epidemic has become one of the largest global healthcare crises. Besides, the available systemic therapies for AD are still inadequate. Due to the insufficient therapeutic options, new treatment strategies are urgently needed to achieve a satisfactory therapeutic effect. Marine bio-resources have been accepted as one of the most economically viable and sustainable sources with potential applications for drug discovery and development. In this study, a marine cyanobacteria-Synechococcus sp. XM-24 was selected as the object of research, to systematically investigate its therapeutic potential mechanisms for AD. The major active compounds derived from the Synechococcus sp. biomass were identified via pyrolysis-gas chromatography-mass spectrometry (GC-MS), and 22 compounds were identified in this strain. The most abundant chemical compounds was (E)-octadec-11-enoic acid, with the peak area of 30.6%. Follow by tridecanoic acid, 12-methyl- and hexadecanoic acid, with a peak area of 23.26% and 18.23%, respectively. GC-MS analysis also identified indolizine, isoquinoline, 3,4-dihydro- and Phthalazine, 1-methyl-, as well as alkene and alkane from the strain. After the chemical toxicity test, 10 compounds were finally collected to do the further analysis. Then, network pharmacology and molecular docking were adopted to systematically study the potential anti-AD mechanism of these compounds. Based on the analysis, the 10 Synechococcus-derived active compounds could interact with 128 related anti-AD targets. Among them, epidermal growth factor receptor (EGFR), vascular endothelial growth factor A (VEGFA) and mitogen-activated protein kinase 3 (MAPK3) were the major targets. Furthermore, the compounds N-capric acid isopropyl ester, (E)-octadec-11-enoic acid, and 2H-Pyran-2,4(3H)-dione, dihydro-6-methyl- obtained higher degrees in the compounds-intersection targets network analysis, indicating these compounds may play more important role in the process of anti-AD. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that these active compounds exert the anti-AD effects mainly through PI3K-Akt signaling pathway, neuroactive ligand-receptor interaction and ras signaling pathway. Our study identified Synechococcus-derived bioactive compounds have the potential for application to AD by targeting multiple targets and related pathways, which will provide a foundation for future research on applications of marine cyanobacteria in the functional drug industry.
Collapse
Affiliation(s)
- Rui Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Feng Chen
- Department of Pediatric Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yixuan Ma
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Wen Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Zheng
- State Key Laboratory of Marine Environmental Science, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jinguo Cao
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yi Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
18
|
Anirudhan A, Mattethra GC, Alzahrani KJ, Banjer HJ, Alzahrani FM, Halawani IF, Patil S, Sharma A, Paramasivam P, Ahmed SSSJ. Eleven Crucial Pesticides Appear to Regulate Key Genes That Link MPTP Mechanism to Cause Parkinson's Disease through the Selective Degeneration of Dopamine Neurons. Brain Sci 2023; 13:1003. [PMID: 37508933 PMCID: PMC10377611 DOI: 10.3390/brainsci13071003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Pesticides kill neurons, but the mechanism leading to selective dopaminergic loss in Parkinson's disease (PD) is unknown. Understanding the pesticide's effect on dopaminergic neurons (DA) can help to screen and treat PD. The critical uptake of pesticides by the membrane receptors at DA is hypothesized to activate a signaling cascade and accelerate degeneration. Using MPTP as a reference, we demonstrate the mechanisms of eleven crucial pesticides through molecular docking, protein networks, regulatory pathways, and prioritization of key pesticide-regulating proteins. Participants were recruited and grouped into control and PD based on clinical characteristics as well as pesticide traces in their blood plasma. Then, qPCR was used to measure pesticide-associated gene expression in peripheral blood mononuclear cells between groups. As a result of molecular docking, all eleven pesticides and the MPTP showed high binding efficiency against 274 membrane receptor proteins of DA. Further, the protein interaction networks showed activation of multiple signaling cascades through these receptors. Subsequent analysis revealed 31 biological pathways shared by all 11pesticides and MPTP that were overrepresented by 46 crucial proteins. Among these, CTNNB1, NDUFS6, and CAV1 were prioritized to show a significant change in gene expression in pesticide-exposed PD which guides toward therapy.
Collapse
Affiliation(s)
- Athira Anirudhan
- Central Research Laboratory, Believers Church Medical College Hospital, Kuttapuzha, Thiruvalla 689103, Kerala, India
| | - George Chandy Mattethra
- Central Research Laboratory, Believers Church Medical College Hospital, Kuttapuzha, Thiruvalla 689103, Kerala, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT 84095, USA
| | - Ashutosh Sharma
- Regional Department of Bioengineering, NatProLab-Plant Innovation Lab, Tecnologico de Monterrey, Queretaro 76130, Mexico
| | - Prabu Paramasivam
- School of Medicine, Department of Neurology, University of New Mexico Health Sciences Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shiek S S J Ahmed
- Drug Discovery & Omics Lab, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
19
|
Kim HJ, Hwang JS, Noh KB, Oh SH, Park JB, Shin YJ. A p-Tyr42 RhoA Inhibitor Promotes the Regeneration of Human Corneal Endothelial Cells by Ameliorating Cellular Senescence. Antioxidants (Basel) 2023; 12:1186. [PMID: 37371916 DOI: 10.3390/antiox12061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The development of treatment strategies for human corneal endothelial cells (hCECs) disease is necessary because hCECs do not regenerate in vivo due to the properties that are similar to senescence. This study is performed to investigate the role of a p-Tyr42 RhoA inhibitor (MH4, ELMED Inc., Chuncheon) in transforming growth factor-beta (TGF-β)- or H2O2-induced cellular senescence of hCECs. Cultured hCECs were treated with MH4. The cell shape, proliferation rate, and cell cycle phases were analyzed. Moreover, cell adhesion assays and immunofluorescence staining for F-actin, Ki-67, and E-cadherin were performed. Additionally, the cells were treated with TGF-β or H2O2 to induce senescence, and mitochondrial oxidative reactive oxygen species (ROS) levels, mitochondrial membrane potential, and NF-κB translocation were evaluated. LC3II/LC3I levels were determined using Western blotting to analyze autophagy. MH4 promotes hCEC proliferation, shifts the cell cycle, attenuates actin distribution, and increases E-cadherin expression. TGF-β and H2O2 induce senescence by increasing mitochondrial ROS levels and NF-κB translocation into the nucleus; however, this effect is attenuated by MH4. Moreover, TGF-β and H2O2 decrease the mitochondrial membrane potential and induce autophagy, while MH4 reverses these effects. In conclusion, MH4, a p-Tyr42 RhoA inhibitor, promotes the regeneration of hCECs and protects hCECs against TGF-β- and H2O2-induced senescence via the ROS/NF-κB/mitochondrial pathway.
Collapse
Affiliation(s)
- Hyeon Jung Kim
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Kyung Bo Noh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Sun-Hee Oh
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
- Hallym BioEyeTech Research Center, Hallym University College of Medicine, Seoul 07442, Republic of Korea
| |
Collapse
|
20
|
Chinnathambi S, Das R. Microglia degrade Tau oligomers deposit via purinergic P2Y12-associated podosome and filopodia formation and induce chemotaxis. Cell Biosci 2023; 13:95. [PMID: 37221563 DOI: 10.1186/s13578-023-01028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Tau protein forms neurofibrillary tangles and becomes deposited in the brain during Alzheimer's disease (AD). Tau oligomers are the most reactive species, mediating neurotoxic and inflammatory activity. Microglia are the immune cells in the central nervous system, sense the extracellular Tau via various cell surface receptors. Purinergic P2Y12 receptor can directly interact with Tau oligomers and mediates microglial chemotaxis via actin remodeling. The disease-associated microglia are associated with impaired migration and express a reduced level of P2Y12, but elevate the level of reactive oxygen species and pro-inflammatory cytokines. RESULTS Here, we studied the formation and organization of various actin microstructures such as-podosome, filopodia and uropod in colocalization with actin nucleator protein Arp2 and scaffold protein TKS5 in Tau-induced microglia by fluorescence microscopy. Further, the relevance of P2Y12 signaling either by activation or blockage was studied in terms of actin structure formations and Tau deposits degradation by N9 microglia. Extracellular Tau oligomers facilitate the microglial migration via Arp2-associated podosome and filopodia formation through the involvement of P2Y12 signaling. Similarly, Tau oligomers induce the TKS5-associated podosome clustering in microglial lamella in a time-dependent manner. Moreover, the P2Y12 was evidenced to localize with F-actin-rich podosome and filopodia during Tau-deposit degradation. The blockage of P2Y12 signaling resulted in decreased microglial migration and Tau-deposit degradation. CONCLUSIONS The P2Y12 signaling mediate the formation of migratory actin structures like- podosome and filopodia to exhibit chemotaxis and degrade Tau deposit. These beneficial roles of P2Y12 in microglial chemotaxis, actin network remodeling and Tau clearance can be intervened as a therapeutic target in AD.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, 560029, Karnataka, India.
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
21
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
22
|
Chinnathambi S, Das R, Desale SE. Tau aggregates improve the purinergic receptor P2Y12-associated podosome rearrangements in microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119477. [PMID: 37061007 DOI: 10.1016/j.bbamcr.2023.119477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is associated with protein misfolding, plaque accumulation, neuronal dysfunction, synaptic loss, and cognitive decline. The pathological cascade of AD includes the intracellular Tau hyperphosphorylation and its subsequent aggregation, extracellular Amyloid-β plaque formation and microglia-mediated neuroinflammation. The extracellular release of aggregated Tau is sensed by surveilling microglia through the involvement of various cell surface receptors. Among all, purinergic P2Y12R signaling is involved in microglial chemotaxis towards the damaged neurons. Microglial migration is highly linked with membrane-associated actin remodeling leading to the phagocytosis of extracellular Tau species. Here, we studied the formation of various actin structures such as podosome, lamellipodia and filopodia, in response to extracellular Tau monomers and aggregates. Microglial podosomes are colocalized with actin nucleator protein WASP, Arp2 and TKS5 adaptor protein during Tau-mediated migration. Moreover, the P2Y12 receptors were associated with F-actin-rich podosome structures, which signify the potential of Tau aggregates in microglial chemotaxis through the involvement of actin remodeling.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore 560029, Karnataka, India.
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Karahan H, Smith DC, Kim B, McCord B, Mantor J, John SK, Al-Amin MM, Dabin LC, Kim J. The effect of Abi3 locus deletion on the progression of Alzheimer's disease-related pathologies. Front Immunol 2023; 14:1102530. [PMID: 36895556 PMCID: PMC9988916 DOI: 10.3389/fimmu.2023.1102530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Human genetics studies of Alzheimer's disease (AD) have identified the ABI3 gene as a candidate risk gene for AD. Because ABI3 is highly expressed in microglia, the brain's immune cells, it was suggested that ABI3 might impact AD pathogenesis by regulating the immune response. Recent studies suggest that microglia have multifaceted roles in AD. Their immune response and phagocytosis functions can have beneficial effects in the early stages of AD by clearing up amyloid-beta (Aβ) plaques. However, they can be harmful at later stages due to their continuous inflammatory response. Therefore, it is important to understand the role of genes in microglia functions and their impact on AD pathologies along the progression of the disease. To determine the role of ABI3 at the early stage of amyloid pathology, we crossed Abi3 knock-out mice with the 5XFAD Aβ-amyloidosis mouse model and aged them until 4.5-month-old. Here, we demonstrate that deletion of the Abi3 locus increased Aβ plaque deposition, while there was no significant change in microgliosis and astrogliosis. Transcriptomic analysis indicates alterations in the expression of immune genes, such as Tyrobp, Fcer1g, and C1qa. In addition to the transcriptomic changes, we found elevated cytokine protein levels in Abi3 knock-out mouse brains, strengthening the role of ABI3 in neuroinflammation. These findings suggest that loss of ABI3 function may exacerbate AD progression by increasing Aβ accumulation and inflammation starting from earlier stages of the pathology.
Collapse
Affiliation(s)
- Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Daniel C. Smith
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Byungwook Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brianne McCord
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jordan Mantor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sutha K. John
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Md Mamun Al-Amin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Luke C. Dabin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
Zhou J, Zhang C, Fang X, Zhang N, Zhang X, Zhu Z. Activation of autophagy inhibits the activation of NLRP3 inflammasome and alleviates sevoflurane-induced cognitive dysfunction in elderly rats. BMC Neurosci 2023; 24:9. [PMID: 36709248 PMCID: PMC9883890 DOI: 10.1186/s12868-023-00777-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
AIMS/INTRODUCTION As a common complication in elderly patients after surgery/anesthesia, postoperative cognitive dysfunction (POCD) is mainly characterized by memory, attention, motor, and intellectual retardation. Neuroinflammation is one of the most uncontroversial views in POCD. The sevoflurane-induced neurotoxicity has attracted widespread attention in recent years. However, its mechanism has not been determined. This study aimed to observe the effects of sevoflurane on cognitive function and the changes in inflammatory indices and autophagy protein expression in the prefrontal cortex in aged rats. METHOD Before the experiment, D-galactose was diluted with normal saline into a liquid with a concentration of 125 mg/kg and injected subcutaneously into the neck and back of rats for 42 days to establish the aging rat model. Morris water maze experiments were performed, including positioning navigation (5 days) and space exploration (1 day). The POCD model was established by 3.2% sevoflurane inhalation. The rats were treated with or without MCC950, a potent and selective nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inhibitor, followed by autophagy agonists and autophagy inhibitors. The expression levels of inflammasome-related protein NLRP3 and autophagy-related proteins LC3B and P62 were detected to test the behavior of rats with a water maze. RESULTS We found that sevoflurane exposure affected learning and working memory ability in aged rats. We also observed microglia activation in the prefrontal cortex. NLRP3 protein expression was significantly upregulated after sevoflurane inhalation. NLRP3 inflammasome activation induced increased expression and mRNA expression of cleaved Caspase-1 and inflammatory cytokines IL-1β and IL-18, and increased secretion of peripheral proinflammatory cytokines. The inhibitor MCC950 was used to improve cognitive ability and inflammation in rats and inhibit the secretion of cytokines. In addition, we demonstrated that significant inhibition of autophagy (decreased LC3-II/I and increased P62) was accompanied by increased activation of NLRP3 inflammasomes and more severe neural cell damage. However, autophagy inhibitor rapamycin administration to activate autophagy resulted in the inhibition of NLRP3 inflammasomes, ultimately attenuating neuronal injury. CONCLUSIONS The activation of autophagy suppressed the formation of NLRP3 inflammasomes. It also alleviated cognitive impairment in aged rats.
Collapse
Affiliation(s)
- Junjie Zhou
- grid.417409.f0000 0001 0240 6969Zunyi Medical University, 6 Xuefu West Road, Xinpu New District, Zunyi, 563000 Guizhou China ,grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Chao Zhang
- grid.417409.f0000 0001 0240 6969Zunyi Medical University, 6 Xuefu West Road, Xinpu New District, Zunyi, 563000 Guizhou China ,grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Xu Fang
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Naixin Zhang
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Xiaoxi Zhang
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| | - Zhaoqiong Zhu
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563000 Guizhou China
| |
Collapse
|
25
|
Chun BJ, Aryal SP, Varughese P, Sun B, Bruno JA, Richards CI, Bachstetter AD, Kekenes-Huskey PM. Purinoreceptors and ectonucleotidases control ATP-induced calcium waveforms and calcium-dependent responses in microglia: Roles of P2 receptors and CD39 in ATP-stimulated microglia. Front Physiol 2023; 13:1037417. [PMID: 36699679 PMCID: PMC9868579 DOI: 10.3389/fphys.2022.1037417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Adenosine triphosphate (ATP) and its metabolites drive microglia migration and cytokine production by activating P2X- and P2Y- class purinergic receptors. Purinergic receptor activation gives rise to diverse intracellular calcium (Ca2+ signals, or waveforms, that differ in amplitude, duration, and frequency. Whether and how these characteristics of diverse waveforms influence microglia function is not well-established. We developed a computational model trained with data from published primary murine microglia studies. We simulate how purinoreceptors influence Ca2+ signaling and migration, as well as, how purinoreceptor expression modifies these processes. Our simulation confirmed that P2 receptors encode the amplitude and duration of the ATP-induced Ca2+ waveforms. Our simulations also implicate CD39, an ectonucleotidase that rapidly degrades ATP, as a regulator of purinergic receptor-induced Ca2+ responses. Namely, it was necessary to account for CD39 metabolism of ATP to align the model's predicted purinoreceptor responses with published experimental data. In addition, our modeling results indicate that small Ca2+ transients accompany migration, while large and sustained transients are needed for cytokine responses. Lastly, as a proof-of-principal, we predict Ca2+ transients and cell membrane displacements in a BV2 microglia cell line using published P2 receptor mRNA data to illustrate how our computer model may be extrapolated to other microglia subtypes. These findings provide important insights into how differences in purinergic receptor expression influence microglial responses to ATP.
Collapse
Affiliation(s)
- Byeong J. Chun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| | - Surya P. Aryal
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Peter Varughese
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States
| | - Joshua A. Bruno
- Department of Physics, Loyola University Chicago, Chicago, IL, United States
| | - Chris I. Richards
- Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | | | - Peter M. Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, IL, United States,*Correspondence: Byeong J. Chun, ; Peter M. Kekenes-Huskey,
| |
Collapse
|
26
|
Guo P, Li R, Piao TH, Wang CL, Wu XL, Cai HY. Pathological Mechanism and Targeted Drugs of COPD. Int J Chron Obstruct Pulmon Dis 2022; 17:1565-1575. [PMID: 35855746 PMCID: PMC9288175 DOI: 10.2147/copd.s366126] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/04/2022] [Indexed: 01/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) includes chronic bronchitis, emphysema, and small airway obstruction. Incompletely reversible airflow limitation, inflammation, excessive mucus secretion and bronchial mucosal epithelial lesions are the main pathological basis of the disease. The prevalence of COPD is increasingly worldwide, which has caused the burden on individuals and society. This paper summarizes the pathogenesis of COPD and clarifies the effect and mechanism of the latest targeted drugs for COPD. Besides, we focus on NOD-like receptor thermal protein domain associated protein 3 inflammasome (NLRP3 inflammasome). NLRP3 can promote production of interleukin-1β (IL-1β) and interleukin-18 (IL-18). NLRP3 is an important factor in the migratory aggregation of macrophages and neutrophils and the generation of oxidative stress. Inhibition of NLRP3 inflammasome indirectly blocks the inflammatory effects of IL-1β and IL-18, which may be regarded as an ideal target for COPD treatment.
Collapse
Affiliation(s)
- Peng Guo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Changchun, 130000, People's Republic of China
| | - Rui Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100000, People's Republic of China
| | - Tie Hua Piao
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| | - Chun Lan Wang
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| | - Xiao Lu Wu
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| | - Hong Yan Cai
- Pulmonology Department, The First Clinical Hospital of Jilin Academy of Traditional Chinese Medicine, Changchun, 130000, People's Republic of China
| |
Collapse
|
27
|
Dungan OM, Dormann S, Fernandes S, Duffy BC, Effiong DG, Kerr WG, Chisholm JD. Synthetic studies on the indane SHIP1 agonist AQX-1125. Org Biomol Chem 2022; 20:4016-4020. [PMID: 35506893 DOI: 10.1039/d2ob00555g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
AQX-1125 is an indane based SHIP1 agonist that has been evaluated in the clinic for the treatment of bladder pain syndrome/interstitial cystitis. To support our own studies on SHIP1 agonists as potential treatments for IBD and Crohn's disease, a new synthetic route to the SHIP1 agonist AQX-1125 has been developed. This sequence utilizes a hydroxy-acid intermediate which allows for ready differentiation of the C6 and C7 positions. The role of the C17 alkene in the biological activity of the system is also investigated, and this functional group is not required for SHIP1 agonist activity. While AQX-1125 shows SHIP1 agonist activity in enzyme assays, it does not show activity in cell based assays similar to other SHIP1 agonists, which limits the utility of this molecule.
Collapse
Affiliation(s)
- Otto M Dungan
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Shawn Dormann
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Sandra Fernandes
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Brian C Duffy
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - Daniel G Effiong
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| | - William G Kerr
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA. .,Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John D Chisholm
- Department of Chemistry, Syracuse University, 1-014 Center for Science and Technology, Syracuse, NY 13244, USA.
| |
Collapse
|