1
|
Fang H, Huang S, Li R, Wang P, Jiang Q, Zhong C, Yang Y, Yu W. Combined BSA-Seq and RNA-Seq to Identify Potential Genes Regulating Fruit Size in Bottle Gourd ( Lagenaria siceraria L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:2154. [PMID: 39124272 PMCID: PMC11314176 DOI: 10.3390/plants13152154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Fruit size is a crucial agronomic trait in bottle gourd, impacting both yield and utility. Despite its significance, the regulatory mechanism governing fruit size in bottle gourd remains largely unknown. In this study, we used bottle gourd (small-fruited H28 and large-fruited H17) parent plants to measure the width and length of fruits at various developmental stages, revealing a single 'S' growth curve for fruit expansion. Paraffin section observations indicated that both cell number and size significantly influence bottle gourd fruit size. Through bulked segregant analysis and combined genotype-phenotype analysis, the candidate interval regulating fruit size was pinpointed to 17,747,353 bp-18,185,825 bp on chromosome 9, encompassing 0.44 Mb and including 44 genes. Parental fruits in the rapid expansion stage were subjected to RNA-seq, highlighting that differentially expressed genes were mainly enriched in pathways related to cell wall biosynthesis, sugar metabolism, and hormone signaling. Transcriptome and resequencing analysis, combined with gene function annotation, identified six genes within the localized region as potential regulators of fruit size. This study not only maps the candidate interval of genes influencing fruit size in bottle gourd through forward genetics, but also offers new insights into the potential molecular mechanisms underlying this trait through transcriptome analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wenjin Yu
- College of Agriculture, Guangxi University, Nanning 530004, China; (H.F.); (S.H.); (R.L.); (P.W.); (Q.J.); (C.Z.); (Y.Y.)
| |
Collapse
|
2
|
Gong G, Jia H, Tang Y, Pei H, Zhai L, Huang J. Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.). BMC PLANT BIOLOGY 2024; 24:338. [PMID: 38664642 PMCID: PMC11044598 DOI: 10.1186/s12870-024-05052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
Proper pericarp thickness protects the maize kernel against pests and diseases, moreover, thinner pericarp improves the eating quality in fresh corn. In this study, we aimed to investigate the dynamic changes in maize pericarp during kernel development and identified the major quantitative trait loci (QTLs) for maize pericarp thickness. It was observed that maize pericarp thickness first increased and then decreased. During the growth and formation stages, the pericarp thickness gradually increased and reached the maximum, after which it gradually decreased and reached the minimum during maturity. To identify the QTLs for pericarp thickness, a BC4F4 population was constructed using maize inbred lines B73 (recurrent parent with thick pericarp) and Baimaya (donor parent with thin pericarp). In addition, a high-density genetic map was constructed using maize 10 K SNP microarray. A total of 17 QTLs related to pericarp thickness were identified in combination with the phenotypic data. The results revealed that the heritability of the thickness of upper germinal side of pericarp (UG) was 0.63. The major QTL controlling UG was qPT1-1, which was located on chromosome 1 (212,215,145-212,948,882). The heritability of the thickness of upper abgerminal side of pericarp (UA) was 0.70. The major QTL controlling UA was qPT2-1, which was located on chromosome 2 (2,550,197-14,732,993). In addition, a combination of functional annotation, DNA sequencing analysis and quantitative real-time PCR (qPCR) screened two candidate genes, Zm00001d001964 and Zm00001d002283, that could potentially control maize pericarp thickness. This study provides valuable insights into the improvement of maize pericarp thickness during breeding.
Collapse
Affiliation(s)
- Guantong Gong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Haitao Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yunqi Tang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Hu Pei
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Lihong Zhai
- Basic School of Medicine, Hubei University of Arts and Science, Xiangyang, 441053, China.
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Peng Z, Li H, Liu G, Jia W, Fu D. NAC transcription factor NOR-like1 regulates tomato fruit size. PLANTA 2023; 258:9. [PMID: 37256357 DOI: 10.1007/s00425-023-04166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/24/2023] [Indexed: 06/01/2023]
Abstract
MAIN CONCLUSION NOR-like1 regulates tomato fruit size by targeting SlARF9, SlGRAS2, SlFW3.2, and SlFW11.3 genes involved in cell division and cell expansion. Fruit size is an important agricultural character that determines the yield of crops. Here, we found that NAC transcription factor NOR-like1 regulated fruit size by regulating cell layer number and cell area in tomato. Over-expressing NOR-like1 gene in tomato reduced fruit weight and size, whereas the knock-out of NOR-like1 increased fruit weight and size. At the molecular level, NOR-like1 binds to the promoter of SlGRAS2, SlFW3.2, and SlFW11.3 to repress their transcription, while it also binds to the promoter of ARF9 to activate its transcription. Overall, these results expand the biological function of NOR-like1 and deepen our understanding of the transcriptional network that regulates tomato fruit size.
Collapse
Affiliation(s)
- Zhenzhen Peng
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongli Li
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Gangshuai Liu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wen Jia
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- Laboratory of Fruit Biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
4
|
Huang J, Zhang G, Li Y, Lyu M, Zhang H, Zhang N, Chen R. Integrative genomic and transcriptomic analyses of a bud sport mutant 'Jinzao Wuhe' with the phenotype of large berries in grapevines. PeerJ 2023; 11:e14617. [PMID: 36620751 PMCID: PMC9817954 DOI: 10.7717/peerj.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/01/2022] [Indexed: 01/05/2023] Open
Abstract
Background Bud sport mutation occurs frequently in fruit plants and acts as an important approach for grapevine improvement and breeding. 'Jinzao Wuhe' is a bud sport of the elite cultivar 'Himord Seedless' with obviously enlarged organs and berries. To date, the molecular mechanisms underlying berry enlargement caused by bud sport in grapevines remain unclear. Methods Whole genome resequencing (WGRS) was performed for two pairs of bud sports and their maternal plants with similar phenotype to identify SNPs, InDels and structural variations (SVs) as well as related genes. Furthermore, transcriptomic sequencing at different developmental stages and weighted gene co-expression network analysis (WGCNA) for 'Jinzao Wuhe' and its maternal plant 'Himord Seedless' were carried out to identify the differentially expressed genes (DEGs), which were subsequently analyzed for Gene Ontology (GO) and function annotation. Results In two pairs of enlarged berry bud sports, a total of 1,334 SNPs, 272 InDels and 74 SVs, corresponding to 1,022 target genes related to symbiotic microorganisms, cell death and other processes were identified. Meanwhile, 1,149 DEGs associated with cell wall modification, stress-response and cell killing might be responsible for the phenotypic variation were also determined. As a result, 42 DEGs between 'Himord Seedless' and 'Jinzao Wuhe' harboring genetic variations were further investigated, including pectin esterase, cellulase A, cytochromes P450 (CYP), UDP-glycosyltransferase (UGT), zinc finger protein, auxin response factor (ARF), NAC transcription factor (TF), protein kinase, etc. These candidate genes offer important clues for a better understanding of developmental regulations of berry enlargement in grapevine. Conclusion Our results provide candidate genes and valuable information for dissecting the underlying mechanisms of berry development and contribute to future improvement of grapevine cultivars.
Collapse
Affiliation(s)
- Jianquan Huang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Guan Zhang
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Yanhao Li
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
- College of Horticulture and Gardening, Tianjin Agricultural University, Tianjin, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - He Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Na Zhang
- The Research Institute of Forestry and Pomology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Rui Chen
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| |
Collapse
|
5
|
Seymour GB, Rose JKC. Tomato molecular biology - special collection of papers for molecular horticulture. MOLECULAR HORTICULTURE 2022; 2:21. [PMID: 37789457 PMCID: PMC10515225 DOI: 10.1186/s43897-022-00042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Affiliation(s)
- Graham B Seymour
- School of Biosciences, Division of Plant and Crop Science, University of Nottingham, Loughborough, Leics, LE12 5RD, UK.
| | - Jocelyn K C Rose
- School of Integrative Plant Science, Cornell University, 331 Emerson Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
6
|
Shen LY, Luo H, Wang XL, Wang XM, Qiu XJ, Liu H, Zhou SS, Jia KH, Nie S, Bao YT, Zhang RG, Yun QZ, Chai YH, Lu JY, Li Y, Zhao SW, Mao JF, Jia SG, Mao YM. Chromosome-Scale Genome Assembly for Chinese Sour Jujube and Insights Into Its Genome Evolution and Domestication Signature. FRONTIERS IN PLANT SCIENCE 2021; 12:773090. [PMID: 34899800 PMCID: PMC8652243 DOI: 10.3389/fpls.2021.773090] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 05/03/2023]
Abstract
Sour or wild jujube fruits and dried seeds are popular food all over the world. In this study, we reported a high-quality genome assembly of sour jujube (Ziziphus jujuba Mill. var. spinosa), with a size of 406 Mbp and scaffold N50 of 30.3 Mbp, which experienced only γ hexaploidization event, without recent genome duplication. Population structure analysis identified four jujube subgroups (two domesticated ones, i.e., D1 in West China and D2 in East/SouthEast China, semi-wild, and wild), which underwent an evolutionary history of a significant decline of effective population size during the Last Glacial Period. The respective selection signatures of three subgroups were discovered, such as strong peaks on chromosomes #3 in D1, #1 in D2, and #4 in wild. Genes under the most significant selection on chromosomes #4 in wild were confirmed to be involved in fruit variations among jujube accessions, in transcriptomic analysis. Our study offered novel insights into the jujube population structure and domestication and provided valuable genomic resources for jujube improvement in stress response and fruit flavor in the future.
Collapse
Affiliation(s)
- Lian-Ying Shen
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Hang Luo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiao-Ling Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xue-Meng Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xiao-Jing Qiu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Hui Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shan-Shan Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kai-Hua Jia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shuai Nie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yu-Tao Bao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ren-Gang Zhang
- Beijing Ori-Gene Science and Technology Co., Ltd., Beijing, China
| | - Quan-Zheng Yun
- Beijing Ori-Gene Science and Technology Co., Ltd., Beijing, China
| | - Ying-Hui Chai
- Beijing Ori-Gene Science and Technology Co., Ltd., Beijing, China
| | - Jin-Ying Lu
- Shenzhou Space Biotechnology Group, China Academy of Space Technology (CAST), Beijing, China
| | - Yu Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shu-Wei Zhao
- Hebei Hemuliyuan Agricultural Science and Technology Co. Ltd., Baoding, China
| | - Jian-Feng Mao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Shan-Gang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yong-Min Mao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| |
Collapse
|