1
|
Thomas R, Menon V, Mani R, Pruszak J. Glycan Epitope and Integrin Expression Dynamics Characterize Neural Crest Epithelial-to-Mesenchymal Transition (EMT) in Human Pluripotent Stem Cell Differentiation. Stem Cell Rev Rep 2022; 18:2952-2965. [PMID: 35727432 DOI: 10.1007/s12015-022-10393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The neural crest gives rise to progeny as diverse as peripheral neurons, myelinating cells, cranial muscle, bone and cartilage tissues, and melanocytes. Neural crest derivation encompasses complex morphological change, including epithelial-to-mesenchymal transition (EMT) and migration to the eventual target locations throughout the body. Neural crest cultures derived from stem cells provide an attractive source for developmental studies in human model systems, of immediate biomedical relevance for neurocristopathies, neural cancer biology and regenerative medicine, if only appropriate markers for lineage and cell type definition and quality control criteria were available. Implementing a defined, scalable protocol to generate neural crest cells from embryonic stem cells, we identify stage-defining cluster-of-differentiation (CD) surface markers during human neural crest development in vitro. Acquisition of increasingly mesenchymal phenotype was characterized by absence of neuroepithelial stemness markers (CD15, CD133, CD49f) and by decrease of CD57 and CD24. Increased per-cell-expression of CD29, CD44 and CD73 correlated with established EMT markers as determined by immunofluorescence and immunoblot analysis. The further development towards migratory neural crest was associated with decreased CD24, CD49f (ITGA6) and CD57 (HNK1) versus an enhanced CD49d (ITGA4), CD49e (ITGA5) and CD51/CD61 (ITGAV/ITGB3) expression. Notably, a shift from CD57 to CD51/CD61 was identified as a sensitive surrogate surface indicator of EMT in neural crest in vitro development. The reported changes in glycan epitope and integrin surface expression may prove useful for elucidating neural crest stemness, EMT progression and malignancies.
Collapse
Affiliation(s)
- Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Neuroregeneration Research Institute, McLean Hospital/ Harvard Medical School, Belmont, MB, USA
| | - Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Rakesh Mani
- Institute of Anatomy and Cell Biology, Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria.,Center of Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jan Pruszak
- Neuroregeneration Research Institute, McLean Hospital/ Harvard Medical School, Belmont, MB, USA. .,Institute of Anatomy and Cell Biology, Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria. .,Center of Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University (PMU), Salzburg, Austria.
| |
Collapse
|
2
|
Lim JY, In Park S, Park SA, Jeon JH, Jung HY, Yon JM, Jeun SS, Lim HK, Kim SW. Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer's disease. Stem Cell Res Ther 2021; 12:402. [PMID: 34256823 PMCID: PMC8278635 DOI: 10.1186/s13287-021-02489-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
Background Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer’s disease (AD). Methods hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD. Results We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aβ42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation. Conclusion The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.
Collapse
Affiliation(s)
- Jung Yeon Lim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Sang In Park
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Soon A Park
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jung Ho Jeon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ho Yong Jung
- Institute of Catholic Integrative Medicine (ICIM), Incheon St. Mary's Hospital, The Catholic University of Korea, 56 Dongsu-ro, Bupyeong-gu, Incheon, 21431, Republic of Korea
| | - Jung-Min Yon
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Hyun Kook Lim
- Department of Psychiatry, Yeouido St. Mary's Hospital, The Catholic University of Korea, 63-ro 10, Yeoungdeungpo-gu, Seoul, 07345, Republic of Korea
| | - Sung Won Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpo-Daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
3
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Höving AL, Schmidt KE, Merten M, Hamidi J, Rott AK, Faust I, Greiner JFW, Gummert J, Kaltschmidt B, Kaltschmidt C, Knabbe C. Blood Serum Stimulates p38-Mediated Proliferation and Changes in Global Gene Expression of Adult Human Cardiac Stem Cells. Cells 2020; 9:cells9061472. [PMID: 32560212 PMCID: PMC7349155 DOI: 10.3390/cells9061472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
During aging, senescent cells accumulate in various tissues accompanied by decreased regenerative capacities of quiescent stem cells, resulting in deteriorated organ function and overall degeneration. In this regard, the adult human heart with a generally low regenerative potential is of extreme interest as a target for rejuvenating strategies with blood borne factors that might be able to activate endogenous stem cell populations. Here, we investigated for the first time the effects of human blood plasma and serum on adult human cardiac stem cells (hCSCs) and showed significantly increased proliferation capacities and metabolism accompanied by a significant decrease of senescent cells, demonstrating a beneficial serum-mediated effect that seemed to be independent of age and sex. However, RNA-seq analysis of serum-treated hCSCs revealed profound effects on gene expression depending on the age and sex of the plasma donor. We further successfully identified key pathways that are affected by serum treatment with p38-MAPK playing a regulatory role in protection from senescence and in the promotion of proliferation in a serum-dependent manner. Inhibition of p38-MAPK resulted in a decline of these serum-mediated beneficial effects on hCSCs in terms of decreased proliferation and accelerated senescence. In summary, we provide new insights in the regulatory networks behind serum-mediated protective effects on adult human cardiac stem cells.
Collapse
Affiliation(s)
- Anna L. Höving
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
- Correspondence: (A.L.H.); (C.K.)
| | - Kazuko E. Schmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
| | - Madlen Merten
- AG Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany; (M.M.); (B.K.)
| | - Jassin Hamidi
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
| | - Ann-Katrin Rott
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
| | - Isabel Faust
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
| | - Jan Gummert
- Department of Thoracic and Cardiovascular surgery, Heart and Diabetes Centre NRW, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany;
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany; (M.M.); (B.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (K.E.S.); (J.H.); (A.-K.R.); (J.F.W.G.)
- Correspondence: (A.L.H.); (C.K.)
| | - Cornelius Knabbe
- Institute for Laboratory- and Transfusion Medicine, Heart and Diabetes Centre NRW, Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (I.F.); (C.K.)
| |
Collapse
|
5
|
Vordemvenne T, Wähnert D, Koettnitz J, Merten M, Fokin N, Becker A, Büker B, Vogel A, Kronenberg D, Stange R, Wittenberg G, Greiner JFW, Hütten A, Kaltschmidt C, Kaltschmidt B. Bone Regeneration: A Novel Osteoinductive Function of Spongostan by the Interplay between Its Nano- and Microtopography. Cells 2020; 9:cells9030654. [PMID: 32156086 PMCID: PMC7140719 DOI: 10.3390/cells9030654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Scaffold materials for bone regeneration are crucial for supporting endogenous healing after accidents, infections, or tumor resection. Although beneficial impacts of microtopological or nanotopological cues in scaffold topography are commonly acknowledged, less consideration is given to the interplay between the microscale and nanoscale. Here, micropores with a 60.66 ± 24.48 µm diameter ordered by closely packed collagen fibers are identified in pre-wetted Spongostan, a clinically-approved collagen sponge. On a nanoscale level, a corrugated surface of the collagen sponge is observable, leading to the presence of 32.97 ± 1.41 nm pores. This distinct micro- and nanotopography is shown to be solely sufficient for guiding osteogenic differentiation of human stem cells in vitro. Transplantation of Spongostan into a critical-size calvarial rat bone defect further leads to fast regeneration of the lesion. However, masking the micro- and nanotopographical cues using SiO2 nanoparticles prevents bone regeneration in vivo. Therefore, we demonstrate that the identified micropores allow migration of stem cells, which are further driven towards osteogenic differentiation by scaffold nanotopography. The present findings emphasize the necessity of considering both micro- and nanotopographical cues to guide intramembranous ossification, and might provide an optimal cell- and growth-factor-free scaffold for bone regeneration in clinical settings.
Collapse
Affiliation(s)
- Thomas Vordemvenne
- Protestant Hospital of Bethel Foundation, Department of Trauma and Orthopedic Surgery, Burgsteig 13, 33617 Bielefeld, Germany; (T.V.); (D.W.); (J.K.)
| | - Dirk Wähnert
- Protestant Hospital of Bethel Foundation, Department of Trauma and Orthopedic Surgery, Burgsteig 13, 33617 Bielefeld, Germany; (T.V.); (D.W.); (J.K.)
| | - Julian Koettnitz
- Protestant Hospital of Bethel Foundation, Department of Trauma and Orthopedic Surgery, Burgsteig 13, 33617 Bielefeld, Germany; (T.V.); (D.W.); (J.K.)
| | - Madlen Merten
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (M.M.); (A.V.)
| | - Nadine Fokin
- Thin Films & Physics of Nanostructures, Universitätsstrasse 25, 33615 Bielefeld, Germany; (N.F.); (A.B.); (B.B.); (A.H.)
| | - Andreas Becker
- Thin Films & Physics of Nanostructures, Universitätsstrasse 25, 33615 Bielefeld, Germany; (N.F.); (A.B.); (B.B.); (A.H.)
| | - Björn Büker
- Thin Films & Physics of Nanostructures, Universitätsstrasse 25, 33615 Bielefeld, Germany; (N.F.); (A.B.); (B.B.); (A.H.)
| | - Asaria Vogel
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (M.M.); (A.V.)
| | - Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University Hospital Muenster, Westfaelische Wilhelms University Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149 Muenster, Germany; (D.K.); (R.S.)
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University Hospital Muenster, Westfaelische Wilhelms University Muenster, Albert-Schweitzer-Campus 1, Building D3, 48149 Muenster, Germany; (D.K.); (R.S.)
| | - Günther Wittenberg
- Protestant Hospital of Bethel Foundation, Department of Diagnostic and Interventional Radiology, Burgsteig 13, 33617 Bielefeld, Germany;
| | - Johannes FW Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany (C.K.)
| | - Andreas Hütten
- Thin Films & Physics of Nanostructures, Universitätsstrasse 25, 33615 Bielefeld, Germany; (N.F.); (A.B.); (B.B.); (A.H.)
- Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany (C.K.)
- Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (M.M.); (A.V.)
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany (C.K.)
- Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Correspondence: ; Tel.: +49-521-106-5624
| |
Collapse
|
6
|
Greiner JFW, Merten M, Kaltschmidt C, Kaltschmidt B. Sexual dimorphisms in adult human neural, mesoderm-derived, and neural crest-derived stem cells. FEBS Lett 2019; 593:3338-3352. [PMID: 31529465 DOI: 10.1002/1873-3468.13606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Sexual dimorphisms contribute, at least in part, to the severity and occurrence of a broad range of neurodegenerative, cardiovascular, and bone disorders. In addition to hormonal factors, increasing evidence suggests that stem cell-intrinsic mechanisms account for sex-specific differences in human physiology and pathology. Here, we discuss sex-related intrinsic mechanisms in adult stem cell populations, namely mesoderm-derived stem cells, neural stem cells (NSCs), and neural crest-derived stem cells (NCSCs), and their implications for stem cell differentiation and regeneration. We particularly focus on sex-specific differences in stem cell-mediated bone regeneration, in neuronal development, and in NSC-mediated neuroprotection. Moreover, we review our own recently published observations regarding the sex-dependent role of NF-κB-p65 in neuroprotection of human NCSC-derived neurons and sex differences in NCSC-related disorders, so-called neurocristopathies. These observations are in accordance with the increasing evidence pointing toward sex-specific differences in neurocristopathies and degenerative diseases like Parkinson's disease or osteoporosis. All findings discussed here indicate that sex-specific variability in stem cell biology may become a crucial parameter for the design of future treatment strategies.
Collapse
Affiliation(s)
| | - Madlen Merten
- Molecular Neurobiology, Bielefeld University, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Germany.,Molecular Neurobiology, Bielefeld University, Germany
| |
Collapse
|
7
|
Greiner JF, Gottschalk M, Fokin N, Büker B, Kaltschmidt BP, Dreyer A, Vordemvenne T, Kaltschmidt C, Hütten A, Kaltschmidt B. Natural and synthetic nanopores directing osteogenic differentiation of human stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:319-328. [PMID: 30771503 DOI: 10.1016/j.nano.2019.01.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 10/27/2022]
Abstract
Bone regeneration is a highly orchestrated process crucial for endogenous healing procedures after accidents, infections or tumor therapy. Changes in surface nanotopography are known to directly affect the formation of osteogenic cell types, although no direct linkage to the endogenous nanotopography of bone was described so far. Here we show the presence of pores of 31.93 ± 0.97 nm diameter on the surface of collagen type I fibers, the organic component of bone, and demonstrate these pores to be sufficient to induce osteogenic differentiation of adult human stem cells. We further applied SiO2 nanoparticles thermally cross-linked to a nanocomposite to artificially biomimic 31.93 ± 0.97 nm pores, which likewise led to in vitro production of bone mineral by adult human stem cells. Our findings show an endogenous mechanism of directing osteogenic differentiation of adult stem cells by nanotopological cues and provide a direct application using SiO2 nanocomposites with surface nanotopography biomimicking native bone architecture.
Collapse
Affiliation(s)
| | - Martin Gottschalk
- Thin Films & Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
| | - Nadine Fokin
- Thin Films & Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
| | - Björn Büker
- Thin Films & Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
| | | | - Axel Dreyer
- Thin Films & Physics of Nanostructures, Bielefeld University, Bielefeld, Germany
| | - Thomas Vordemvenne
- Department of Trauma and Orthopedic Surgery, Evangelical Hospital Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Bielefeld, Germany; Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany
| | - Andreas Hütten
- Thin Films & Physics of Nanostructures, Bielefeld University, Bielefeld, Germany; Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Bielefeld, Germany; Molecular Neurobiology, Bielefeld University, Bielefeld, Germany; Bielefeld Institute for Nanoscience (BINAS), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
8
|
Schürmann M, Brotzmann V, Bütow M, Greiner J, Höving A, Kaltschmidt C, Kaltschmidt B, Sudhoff H. Identification of a Novel High Yielding Source of Multipotent Adult Human Neural Crest-Derived Stem Cells. Stem Cell Rev Rep 2018; 14:277-285. [PMID: 29243108 DOI: 10.1007/s12015-017-9797-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Due to their extraordinarily broad differentiation potential and persistence during adulthood, adult neural crest-derived stem cells (NCSCs) are highly promising candidates for clinical applications, particularly when facing the challenging treatment of neurodegenerative diseases or complex craniofacial injuries. Successful application of human NCSCs in regenerative medicine and pharmaceutical research mainly relies on the availability of sufficient amounts of tissue for cell isolation procedures. Facing this challenge, we here describe for the first time a novel population of NCSCs within the middle turbinate of the human nasal cavity. From a surgical point of view, high amounts of tissue are routinely and easily removed during nasal biopsies. Investigating the presence of putative stem cells in obtained middle turbinate tissue by immunohistochemistry, we observed Nestin+/p75NTR+/S100+/α smooth muscle actin (αSMA)- cells, which we successfully isolated and cultivated in vitro. Cultivated middle turbinate stem cells (MTSCs) kept their expression of neural crest and stemness markers Nestin, p75 NTR and S100 and showed the capability of sphere formation and clonal growth, indicating their stem cell character. Application of directed in vitro differentiation assays resulted in successful differentiation of MTSCs into osteogenic and neuronal cell types. Regarding the high amount of tissue obtained during surgery as well as their broad differentiation capability, MTSCs seem to be a highly promising novel neural crest stem cell population for applications in cell replacement therapy and pharmacological research.
Collapse
Affiliation(s)
- Matthias Schürmann
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Viktoria Brotzmann
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Marlena Bütow
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany
| | - Johannes Greiner
- Department of Cell Biology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Anna Höving
- Department of Cell Biology, University of Bielefeld, 33615, Bielefeld, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615, Bielefeld, Germany
- AG Molecular Neurobiology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Teutoburger Straße 50, 33604, Bielefeld, Germany.
| |
Collapse
|
9
|
Niibe K, Zhang M, Nakazawa K, Morikawa S, Nakagawa T, Matsuzaki Y, Egusa H. The potential of enriched mesenchymal stem cells with neural crest cell phenotypes as a cell source for regenerative dentistry. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:25-33. [PMID: 28479933 PMCID: PMC5405184 DOI: 10.1016/j.jdsr.2016.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/30/2016] [Accepted: 09/16/2016] [Indexed: 01/14/2023] Open
Abstract
Effective regenerative treatments for periodontal tissue defects have recently been demonstrated using mesenchymal stromal/stem cells (MSCs). Furthermore, current bioengineering techniques have enabled de novo fabrication of tooth-perio dental units in mice. These cutting-edge technologies are expected to address unmet needs within regenerative dentistry. However, to achieve efficient and stable treatment outcomes, preparation of an appropriate stem cell source is essential. Many researchers are investigating the use of adult stem cells for regenerative dentistry; bone marrow-derived MSCs (BM-MSCs) are particularly promising and presently used clinically. However, current BM-MSC isolation techniques result in a heterogeneous, non-reproducible cell population because of a lack of identified distinct BM-MSC surface markers. Recently, specific subsets of cell surface markers for BM-MSCs have been reported in mice (PDGFRα+ and Sca-1+) and humans (LNGFR+, THY-1+ and VCAM-1+), facilitating the isolation of unique enriched BM-MSCs (so-called “purified MSCs”). Notably, the enriched BM-MSC population contains neural crest-derived cells, which can differentiate into cells of neural crest- and mesenchymal lineages. In this review, characteristics of the enriched BM-MSCs are outlined with a focus on their potential application within future regenerative dentistry.
Collapse
Affiliation(s)
- Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Maolin Zhang
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Kosuke Nakazawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Satoru Morikawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yumi Matsuzaki
- Department of Cancer Biology, Faculty of Medicine, Shimane University, 89-1 Enya-cho Izumo, Shimane 693-8501, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
10
|
Hofemeier AD, Hachmeister H, Pilger C, Schürmann M, Greiner JFW, Nolte L, Sudhoff H, Kaltschmidt C, Huser T, Kaltschmidt B. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells. Sci Rep 2016; 6:26716. [PMID: 27225821 PMCID: PMC4880889 DOI: 10.1038/srep26716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO4(3-) symmetric stretch vibrations at 959 cm(-1) assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis.
Collapse
Affiliation(s)
- Arne D Hofemeier
- Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany.,Biomolecular Photonics, University of Bielefeld, D-33501 Bielefeld, Germany
| | | | - Christian Pilger
- Biomolecular Photonics, University of Bielefeld, D-33501 Bielefeld, Germany
| | | | - Johannes F W Greiner
- Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany.,Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
| | - Lena Nolte
- Biomolecular Photonics, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Holger Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Klinikum Bielefeld, D-33604 Bielefeld, Germany
| | | | - Thomas Huser
- Biomolecular Photonics, University of Bielefeld, D-33501 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Cell Biology, University of Bielefeld, D-33501 Bielefeld, Germany.,Molecular Neurobiology, University of Bielefeld, D-33501 Bielefeld, Germany
| |
Collapse
|
11
|
Cherubino M, Valdatta L, Balzaretti R, Pellegatta I, Rossi F, Protasoni M, Tedeschi A, Accolla RS, Bernardini G, Gornati R. Human adipose-derived stem cells promote vascularization of collagen-based scaffolds transplanted into nude mice. Regen Med 2016; 11:261-71. [PMID: 26965659 PMCID: PMC4976995 DOI: 10.2217/rme-2015-0010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM After in vivo implantation of cell-loaded devices, only the cells close to the capillaries can obtain nutrients to maintain their functions. It is known that factors secreted by stem cells, rather than stem cells themselves, are fundamental to guarantee new vascularization in the area of implant. MATERIALS & METHODS To investigate this possibility, we have grafted mice with Bilayer and Flowable Integra(®) scaffolds, loaded or not with human adipose-derived stem cells. RESULTS Our results support the therapeutic potential of human adipose-derived stem cells to induce new vascular networks of engineered organs and tissues. CONCLUSION This finding suggests that our approach can help to form new vascular networks that allow sufficient vascularization of engineered organs and tissues in cases of difficult wound healing due to ischemic conditions.
Collapse
Affiliation(s)
- Mario Cherubino
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Luigi Valdatta
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Riccardo Balzaretti
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Igor Pellegatta
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Federica Rossi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy
| | - Marina Protasoni
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Alessandra Tedeschi
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Roberto S Accolla
- Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, Via Guicciardini 9, 21100 Varese, Italy
| | - Giovanni Bernardini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy.,"The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano & Università dell'Insubria, Via Mancinelli 7, Milano, Italy
| | - Rosalba Gornati
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Via Dunant 3, Varese, Italy.,"The Protein Factory" Research Center, Politecnico di Milano, ICRM-CNR Milano & Università dell'Insubria, Via Mancinelli 7, Milano, Italy
| |
Collapse
|
12
|
Grimm WD, Giesenhagen B, Hakki S, Schau I, Sirak S, Sletov A, Varga G, Vukovic MA, Widera D. Translational Research and Therapeutic Applications of Neural Crest-Derived Stem Cells in Regenerative Periodontology. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40496-015-0067-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Muñoz WA, Trainor PA. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. Curr Top Dev Biol 2015; 111:3-26. [PMID: 25662256 DOI: 10.1016/bs.ctdb.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.
Collapse
Affiliation(s)
- William A Muñoz
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
14
|
Müller J, Ossig C, Greiner JFW, Hauser S, Fauser M, Widera D, Kaltschmidt C, Storch A, Kaltschmidt B. Intrastriatal transplantation of adult human neural crest-derived stem cells improves functional outcome in parkinsonian rats. Stem Cells Transl Med 2014; 4:31-43. [PMID: 25479965 DOI: 10.5966/sctm.2014-0078] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is considered the second most frequent and one of the most severe neurodegenerative diseases, with dysfunctions of the motor system and with nonmotor symptoms such as depression and dementia. Compensation for the progressive loss of dopaminergic (DA) neurons during PD using current pharmacological treatment strategies is limited and remains challenging. Pluripotent stem cell-based regenerative medicine may offer a promising therapeutic alternative, although the medical application of human embryonic tissue and pluripotent stem cells is still a matter of ethical and practical debate. Addressing these challenges, the present study investigated the potential of adult human neural crest-derived stem cells derived from the inferior turbinate (ITSCs) transplanted into a parkinsonian rat model. Emphasizing their capability to give rise to nervous tissue, ITSCs isolated from the adult human nose efficiently differentiated into functional mature neurons in vitro. Additional successful dopaminergic differentiation of ITSCs was subsequently followed by their transplantation into a unilaterally lesioned 6-hydroxydopamine rat PD model. Transplantation of predifferentiated or undifferentiated ITSCs led to robust restoration of rotational behavior, accompanied by significant recovery of DA neurons within the substantia nigra. ITSCs were further shown to migrate extensively in loose streams primarily toward the posterior direction as far as to the midbrain region, at which point they were able to differentiate into DA neurons within the locus ceruleus. We demonstrate, for the first time, that adult human ITSCs are capable of functionally recovering a PD rat model.
Collapse
Affiliation(s)
- Janine Müller
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christiana Ossig
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Johannes F W Greiner
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Stefan Hauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Mareike Fauser
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Darius Widera
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Alexander Storch
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| | - Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, Bielefeld, Germany; Division of Neurodegenerative Diseases, Department of Neurology, and Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany; German Center for Neurodegenerative Diseases Dresden, Dresden, Germany; Cell Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
15
|
Interaction of adult human neural crest-derived stem cells with a nanoporous titanium surface is sufficient to induce their osteogenic differentiation. Stem Cell Res 2014; 13:98-110. [PMID: 24858494 DOI: 10.1016/j.scr.2014.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/28/2014] [Accepted: 04/29/2014] [Indexed: 11/22/2022] Open
Abstract
Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm), human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.
Collapse
|