1
|
Yu P, Bosholm CC, Zhu H, Duan Z, Atala A, Zhang Y. Beyond waste: understanding urine's potential in precision medicine. Trends Biotechnol 2024; 42:953-969. [PMID: 38369434 DOI: 10.1016/j.tibtech.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024]
Abstract
Urine-derived stem cells (USCs) are a promising source of stem cells for cell therapy, renal toxicity drug testing, and renal disease biomarker discovery. Patients' own USCs can be used for precision medicine. In this review we first describe the isolation and characterization of USCs. We then discuss preclinical studies investigating the use of USCs in cell therapy, exploring the utility of USCs and USC-derived induced pluripotent stem cells (u-iPSCs) in drug toxicity testing, and investigating the use of USCs as biomarkers for renal disease diagnosis. Finally, we discuss the challenges of using USCs in these applications and provide insights into future research directions. USCs are a promising tool for advancing renal therapy, drug testing, and biomarker discovery. Further research is needed to explore their potential.
Collapse
Affiliation(s)
- Pengfei Yu
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China; Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol Christine Bosholm
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hainan Zhu
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Zhongping Duan
- The Fourth Department of Liver Disease, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Anthony Atala
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regeneration Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
2
|
Atia GA, Rashed F, Taher ES, Cho SG, Dayem AA, Soliman MM, Shalaby HK, Mohammed NA, Taymour N, El-Sherbiny M, Ebrahim E, Ramadan MM, Abdelkader A, Abdo M, Aldarmahi AA, Atwa AM, Bafail DA, Abdeen A. Challenges of therapeutic applications and regenerative capacities of urine based stem cells in oral, and maxillofacial reconstruction. Biomed Pharmacother 2024; 177:117005. [PMID: 38945084 DOI: 10.1016/j.biopha.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Urine-derived stem cells (USCs) have gained the attention of researchers in the biomedical field in the past few years . Regarding the several varieties of cells that have been used for this purpose, USCs have demonstrated mesenchymal stem cell-like properties, such as differentiation and immunomodulation. Furthermore, they could be differentiated into several lineages. This is very interesting for regenerative techniques based on cell therapy. This review will embark on describing their separation, and profiling. We will specifically describe the USCs characteristics, in addition to their differentiation potential. Then, we will introduce and explore the primary uses of USCs. These involve thier utilization as a platform to produce stem cells, however, we shall concentrate on the utilization of USCs for therapeutic, and regenerative orofacial applications, providing an in-depth evaluation of this purpose. The final portion will address the limitations and challenges of their implementation in regenerative dentistry.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt.
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, South Korea
| | - Magdalen M Soliman
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Badr University, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez 43512, Egypt
| | - Nourelhuda A Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Mutah, Al-Karak 61710, Jordan
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, 71666, Riyadh 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Elturabi Ebrahim
- Department of Medical Surgical Nursing, Nursing College, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt; Department of Anatomy and Embryology, Faculty Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21582, Saudi Arabia; National Guard, Health Affairs, King Abdullah International Medical Research Centre, Jeddah 21582, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Duaa A Bafail
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 11829, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt.
| |
Collapse
|
3
|
Tong X, Xu Y, Zhang T, Deng C, Xun J, Sun D, Xu D. Exosomes from CD133 + human urine-derived stem cells combined adhesive hydrogel facilitate rotator cuff healing by mediating bone marrow mesenchymal stem cells. J Orthop Translat 2023; 39:100-112. [PMID: 36879794 PMCID: PMC9984782 DOI: 10.1016/j.jot.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Background The inadequate regeneration of natural tissue (mainly fibrocartilage) between tendon and bone during rotator cuff (RC) repair results in an unsatisfactory quality of RC healing. Cell-free therapy based on stem cell exosomes is a safer and more promising approach for tissue regeneration. Here, we investigated the effect of exosomes from human urine-derived stem cells (USCs) and their subpopulations (CD133+USCs) on RC healing. Methods USCs were isolated from urine and sorted by flow cytometry to obtain CD133+ urine-derived stem cells (CD133+ USCs). Urine-derived stem cell exosomes (USC-Exos) and CD133+ urine-derived stem cell exosomes (CD133+ USC-Exos) were subsequently isolated from the cell supernatant and identified by transmission electron microscopy (TEM), particle size analysis, and Western blot. We performed in vitro functional assays to evaluate the effects of USC-Exos and CD133+ USC-Exos on human bone marrow mesenchymal stem cells (BMSCs) proliferation, migration, osteogenic differentiation, and chondrogenic differentiation. In vivo experiments were performed by local injection of exosome-hydrogel complexes for the treatment of RC injury. The effects of CD133+ USC-Exos and USC-Exos on RC healing were assessed from imaging, histological, and biomechanical tests. Results CD133+ USCs were positive for CD29, CD44, CD73, CD90, CD133, but negative for CD34 and CD45. Differentiation ability test results showed that both USCs and CD133+ USCs had the potential for osteogenic, chondrogenic, and adipogenic differentiation, but CD133+ USCs had stronger chondrogenic differentiation ability. CD133+ USC-Exos and USC-Exos could be efficiently taken up by BMSCs and promote their migration, osteogenic and chondrogenic differentiation. However, CD133+ USC-Exos could promote the chondrogenic differentiation of BMSCs more than USC-Exos. Compared with USC-Exos, CD133+ USC-Exos could promote the healing of bone-tendon interface (BTI) more effectively, which might be related to its ability to promote the differentiation of BMSCs into chondroblasts. Although the two exosomes exhibited the same effect in promoting subchondral bone repair in BTI, the CD133+ USC-Exos group had higher histological scores and stronger biomechanical properties. Conclusion CD133+ USC-Exos hydrogel complex may become a promising therapeutic approach for RC healing based on stem cell exosomes. The translational potential of this article This is the first study to assess the specific role of CD133+ USC-Exos in RC healing which may be related to the activation of BMSCs by CD133+ USC-Exos towards chondrogenic differentiation. Further, our study provides a reference for possible future treatment of BTI by applying CD133+ USC-Exos hydrogel complex.
Collapse
Affiliation(s)
- Xiaopeng Tong
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chao Deng
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jinrui Xun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Deyi Sun
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Daqi Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
4
|
Zhang X, Chen JL, Xing F, Duan X. Three-dimensional printed polylactic acid and hydroxyapatite composite scaffold with urine-derived stem cells as a treatment for bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:71. [PMID: 36190568 PMCID: PMC9529701 DOI: 10.1007/s10856-022-06686-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Bone defects still pose various challenges in osteology. As one treatment method for bone defects, tissue engineering requires biomaterials with good biocompatibility and stem cells with good differentiation. This study aimed to fabricate a 3D-printed polylactic acid and hydroxyapatite (PLA/HA) composite scaffold with urine-derived stem cells (USCs) to study its therapeutic effect in a rat model of skull defects. USCs were isolated and extracted from the urine of healthy adult males and inoculated onto PLA/HA and PLA scaffolds fabricated by 3D printing technology. A total of 36 skull defect models in eighteen Sprague-Dawley rats were randomly divided into a control group (no treatment of the defects), PLA group (treated with PLA scaffolds with USCs), and PLA/HA group (treated with PLA/HA scaffolds with USCs). The therapeutic efficacy was evaluated by real-time PCR, microcomputed tomography (micro-CT), and immunohistochemistry at 4, 8, and 12 weeks. We found that the PLA/HA scaffold loaded with USCs effectively promoted new bone regeneration in the defect area. CT images showed that in the PLA/HA group, the defect area was almost entirely covered by newly formed bone (coverage of 96.7 ± 1.6%), and the coverage was greater than that in the PLA group (coverage of 74.6 ± 1.9%) at 12 weeks. Histology and immunohistochemical staining showed the highest new bone formation on the PLA/HA scaffolds containing USCs in the defect site at 12 weeks. These findings demonstrate the broad application prospects of PLA/HA scaffolds with USCs in bone tissue engineering. Graphical abstract.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Jia-Lei Chen
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Xin Duan
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
- Department of Orthopedics, Ganzi Tibetan Autonomous Prefecture People's Hospital, Ganzi Prefecture, 626700, Sichuan, China.
| |
Collapse
|
5
|
Sadeghian-Nodoushan F, Nikukar H, Soleimani M, Jalali- Jahromi A, Hosseinzadeh S, Khojasteh A. A smart magnetic hydrogel containing exosome promotes osteogenic commitment of human adipose-derived mesenchymal stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1123-1131. [PMID: 36246059 PMCID: PMC9526893 DOI: 10.22038/ijbms.2022.64682.14237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022]
Abstract
Objectives Exosomes, as nano-sized extracellular vehicles acting as cell-to-cell communicators, are novel promising therapeutics in the area of bone tissue engineering. Moreover, magnetic nanoparticles, whose integration with other appropriate components is viewed as an intriguing approach to strengthen bone tissue engineering efficacy. We investigated the effect of magnetic enriched with exosomes on osteogenic differentiation. Materials and Methods Exosomes were isolated from human adipose-derived mesenchymal stem cells by Exo-spin™ kit (MSC-EX). Alginate (Alg) scaffold containing 1% (w/w) cobalt ferrite nanoparticles (CoFe2O4) was produced. MSC-EX were gently loaded onto Alg and Alg-cobalt ferrite (Alg-CF) scaffolds yielding Alg-EX and Alg-CF-EX scaffolds. The effects of MSC-Ex and magnetic hydrogel composite under an external static magnetic field (SMF) on proliferation and differentiation of MSCs were evaluated by alkaline phosphatase (ALP) activity measurement, alizarin red staining, and energy dispersive X-ray (EDX) analysis. Results Our results showed that Alg and Alg-CF scaffolds were not only cytotoxic but also supported AdMSCs proliferation. MSC-EX loading of the scaffolds enhanced AdMSCs proliferation significantly. According to the results, Alg-CF-EX scaffolds under magnetic stimulation exhibited the most potent effect on osteogenic differentiation of cultured AdMSCs as evidenced by higher ALP activity and mineralization. Conclusion We provided evidence that the combination of Alg hydrogel, CFNPs, and MSC-EX resulted in the construction of a bone tissue-engineering scaffold that highly supports the osteogenic commitment of MSCs.
Collapse
Affiliation(s)
- Fatemeh Sadeghian-Nodoushan
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Nikukar
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran,Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azarmidokht Jalali- Jahromi
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Corresponding authors: Simzar Hosseinzadeh. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-88666136; ; Arash Khojasteh. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-88666136;
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran,Department of Health and Medical Sciences, University of Antwerp, Antwerp, Belgium ,Corresponding authors: Simzar Hosseinzadeh. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-88666136; ; Arash Khojasteh. Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Tel: +98-21-88666136;
| |
Collapse
|
6
|
Urine-Derived Stem Cells for Epithelial Tissues Reconstruction and Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14081669. [PMID: 36015295 PMCID: PMC9415563 DOI: 10.3390/pharmaceutics14081669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Epithelial tissue injury can occur on any surface site of the body, particularly in the skin or urethral mucosa tissue, due to trauma, infection, inflammation, and toxic compounds. Both internal and external body epithelial tissue injuries can significantly affect patients’ quality of life, increase healthcare spending, and increase the global economic burden. Transplantation of epithelial tissue grafts is an effective treatment strategy in clinical settings. Autologous bio-engineered epithelia are common clinical skin substitutes that have the specific advantages of avoiding tissue rejection, obviating ethical concerns, reducing the risk of infection, and decreasing scarring compared to donor grafts. However, epithelial cells are often obtained from the individual’s skin and mucosa through invasive methods, which cause further injury or damage. Urine-derived stem cells (USC) of kidney origin, obtained via non-invasive acquisition, possess high stemness properties, self-renewal ability, trophic effects, multipotent differentiation potential, and immunomodulatory ability. These cells show versatile potential for tissue regeneration, with extensive evidence supporting their use in the repair of epidermal and urothelial injuries. We discuss the collection, isolation, culture, characterization, and differentiation of USC. We also discuss the use of USC for cellular therapies as well as the administration of USC-derived paracrine factors for epidermal and urothelial tissue repair. Specifically, we will discuss 3D constructions involving multiple types of USC-loaded hydrogels and USC-seeded scaffolds for use in cosmetic production testing, drug development, and disease modeling. In conclusion, urine-derived stem cells are a readily accessible autologous stem cell source well-suited for developing personalized medical treatments in epithelial tissue regeneration and drug testing.
Collapse
|
7
|
Wu S, Chen Z, Yu X, Duan X, Chen J, Liu G, Gong M, Xing F, Sun J, Huang S, Zhou X. A sustained release of BMP2 in urine-derived stem cells enhances the osteogenic differentiation and the potential of bone regeneration. Regen Biomater 2022; 9:rbac015. [PMID: 35529046 PMCID: PMC9070791 DOI: 10.1093/rb/rbac015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cell-based tissue engineering is one of the optimistic approaches to replace current treatments for bone defects. Urine-derived stem cells (USCs) are obtained non-invasively and become one of the promising seed cells for bone regeneration. An injectable BMP2-releasing chitosan microspheres/type I collagen hydrogel (BMP2-CSM/Col I hydrogel) was fabricated. USCs proliferated in a time-dependent fashion, spread with good extension and interconnected with each other in different hydrogels both for 2D and 3D models. BMP2 was released in a sustained mode for more than 28 days. Sustained-released BMP2 increased the ALP activities and mineral depositions of USCs in 2D culture, and enhanced the expression of osteogenic genes and proteins in 3D culture. In vivo, the mixture of USCs and BMP2-CSM/Col I hydrogels effectively enhanced bone regeneration, and the ratio of new bone volume to total bone volume was 38% after 8 weeks of implantation. Our results suggested that BMP2-CSM/Col I hydrogels promoted osteogenic differentiation of USCs in 2D and 3D culture in vitro and USCs provided a promising cell source for bone tissue engineering in vivo. As such, USCs-seeded hydrogel scaffolds are regarded as an alternative approach in the repair of bone defects.
Collapse
Affiliation(s)
- Shuang Wu
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Zhao Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xi Yu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xin Duan
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jialei Chen
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Guoming Liu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Min Gong
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610000, China
| | - Fei Xing
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Jiachen Sun
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Shishu Huang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Xiang Zhou
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610000, China
| |
Collapse
|
8
|
Huang YZ, He T, Cui J, Jiang YL, Zeng JF, Zhang WQ, Xie HQ. Urine-Derived Stem Cells for Regenerative Medicine: Basic Biology, Applications, and Challenges. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:978-994. [PMID: 35049395 DOI: 10.1089/ten.teb.2021.0142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regenerative medicine based on stem cell research has the potential to provide advanced health care for human beings. Recent studies demonstrate that stem cells in human urine can serve as an excellent source of graft cells for regenerative therapy, mainly due to simple, low-cost, and noninvasive cell isolation. These cells, termed human urine-derived stem cells (USCs), are highly expandable and can differentiate into various cell lineages. They share many biological properties with mesenchymal stem cells, such as potent paracrine effects and immunomodulation ability. The advantage of USCs has motivated researchers to explore their applications in regenerative medicine, including genitourinary regeneration, musculoskeletal repair, skin wound healing, and disease treatment. Although USCs have showed many positive outcomes in preclinical studies, and although the possible applications of USCs for animal therapy have been reported, many issues need to be addressed before clinical translation. This article provides a comprehensive review of USC biology and recent advances in their application for tissue regeneration. Challenges in the clinical translation of USC-based therapy are also discussed. Impact statement Recently, stem cells isolated from urine, referred to as urine-derived stem cells (USCs), have gained much interest in the field of regenerative medicine. Many advantages of human USCs have been found for cell-based therapy: (i) the cell isolation procedure is simple and low cost; (ii) they have remarkable proliferation ability, multidifferentiation potential, and paracrine effects; and (iii) they facilitate tissue regeneration in many animal models. With the hope to facilitate the development of USC-based therapy, we describe the current understanding of USC biology, summarize recent advances in their applications, and discuss future challenges in clinical translation.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Tao He
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Breast Surgery, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jun-Feng Zeng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wen-Qian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
9
|
Hu JJ, Lei XX, Jiang YL, Zou CY, Song YT, Wu CY, Tang LQ, Lu D, Li-Ling J, Yang H, Xie HQ. Scarless vocal fold regeneration by urine-derived stem cells and small intestinal submucosa hydrogel composites through enhancement of M2 macrophage Polarization, neovascularization and Re-epithelialization. SMART MATERIALS IN MEDICINE 2022; 3:339-351. [DOI: 10.1016/j.smaim.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
10
|
Zhang W, Hu J, Huang Y, Wu C, Xie H. Urine-derived stem cells: applications in skin, bone and articular cartilage repair. BURNS & TRAUMA 2021; 9:tkab039. [PMID: 34859109 PMCID: PMC8633594 DOI: 10.1093/burnst/tkab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/18/2021] [Indexed: 02/05/2023]
Abstract
As an emerging type of adult stem cell featuring non-invasive acquisition, urine-derived stem cells (USCs) have shown great potential for applications in tissue engineering and regenerative medicine. With a growing amount of research on the topic, the effectiveness of USCs in various disease models has been shown and the underlying mechanisms have also been explored, though many aspects still remain unclear. In this review, we aim to provide an up-to-date overview of the biological characteristics of USCs and their applications in skin, bone and articular cartilage repair. In addition to the identification procedure of USCs, we also summarize current knowledge of the underlying repair mechanisms and application modes of USCs. Potential concerns and perspectives have also been summarized.
Collapse
Affiliation(s)
- Wenqian Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jungen Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yizhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenyu Wu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
11
|
Vado Y, Puras G, Rosique M, Martin C, Pedraz JL, Jebari-Benslaiman S, de Pancorbo MM, Zarate J, Perez de Nanclares G. Design and Validation of a Process Based on Cationic Niosomes for Gene Delivery into Novel Urine-Derived Mesenchymal Stem Cells. Pharmaceutics 2021; 13:pharmaceutics13050696. [PMID: 34064902 PMCID: PMC8151286 DOI: 10.3390/pharmaceutics13050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Mesenchymal stem cells (MSCs) are stem cells present in adult tissues. They can be cultured, have great growth capacity, and can differentiate into several cell types. The isolation of urine-derived mesenchymal stem cells (hUSCs) was recently described. hUSCs present additional benefits in the fact that they can be easily obtained noninvasively. Regarding gene delivery, nonviral vectors based on cationic niosomes have been used and are more stable and have lower immunogenicity than viral vectors. However, their transfection efficiency is low and in need of improvement. Methods: We isolated hUSCs from urine, and the cell culture was tested and characterized. Different cationic niosomes were elaborated using reverse-phase evaporation, and they were physicochemically characterized. Then, they were screened into hUSCs for transfection efficiency, and their internalization was evaluated. Results: GPxT-CQ at a lipid/DNA ratio of 5:1 (w/w) had the best transfection efficiency. Intracellular localization studies confirmed that nioplexes entered mainly via caveolae-mediated endocytosis. Conclusions: In conclusion, we established a protocol for hUSC isolation and their transfection with cationic niosomes, which could have relevant clinical applications such as in gene therapy. This methodology could also be used for creating cellular models for studying and validating pathogenic genetic variants, and even for performing functional studies. Our study increases knowledge about the internalization of tested cationic niosomes in these previously unexplored cells.
Collapse
Affiliation(s)
- Yerai Vado
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, BioAraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Araba, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Melania Rosique
- BIOMICs Research Group, Microfluidics Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Araba, Spain; (M.R.); (M.M.d.P.)
| | - Cesar Martin
- Biofisika Institute (UPV/EHU, CSIC), Department Biochemistry and Molecular Biology, University of the Basque Country University (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (C.M.); (S.J.-B.)
| | - Jose Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC), Department Biochemistry and Molecular Biology, University of the Basque Country University (UPV/EHU), 48940 Leioa, Bizkaia, Spain; (C.M.); (S.J.-B.)
| | - Marian M. de Pancorbo
- BIOMICs Research Group, Microfluidics Cluster UPV/EHU, Lascaray Research Center, University of the Basque Country UPV/EHU, 01009 Vitoria-Gasteiz, Araba, Spain; (M.R.); (M.M.d.P.)
| | - Jon Zarate
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Araba, Spain; (Y.V.); (G.P.); (J.L.P.); (J.Z.)
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi) Genetics Laboratory, BioAraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Araba, Spain
- Correspondence: ; Tel.: +34-945007097
| |
Collapse
|
12
|
Tong W, Li J, Feng X, Wang C, Xu Y, He C, Xu W. Kaiso regulates osteoblast differentiation and mineralization via the Itga10/PI3K/AKT signaling pathway. Int J Mol Med 2021; 47:41. [PMID: 33576467 PMCID: PMC7891822 DOI: 10.3892/ijmm.2021.4874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/30/2020] [Indexed: 01/31/2023] Open
Abstract
Bone homeostasis is maintained by a dynamic balance between bone formation and bone resorption. The cellular activities of osteoblasts and osteoclasts are the primary factors that maintain this dynamic balance. The transcription factor Kaiso has been identified as a regulator of cell proliferation and differentiation in various cells. However, research into its role in bone homeostasis is currently lacking. In the present study, cell and animal experiments were conducted to investigate the role of Kaiso in bone homeostasis. The present study identified that Kaiso was downregulated during osteoblast differentiation in MC3T3-E1 cells. Gain- and loss-of-function studies in MC3T3-E1 cells demonstrated that Kaiso served a critical role in osteoblast differentiation in vitro. The findings were further confirmed in vivo. The results of the sequence analysis indicated that Kaiso influenced osteoblast differentiation and mineralization by regulating the PI3K/AKT signaling pathway. Moreover, integrin subunit α10 (Itga10) was identified as a direct target of Kaiso via chromatin immunoprecipitation and luciferase reporter assays. Collectively, these findings suggested that Kaiso regulated the differentiation of osteoblasts via the Itga10/PI3K/AKT pathway, which represents a therapeutic target for bone formation or bone resorption-related diseases.
Collapse
Affiliation(s)
- Wenwen Tong
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jia Li
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Wang
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yihong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chongru He
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
13
|
Sun J, Jiang X, Luo J, Zhao L, Xu Z, Xiao W. Effect of platelet-derived growth factor (PDGF-BB) and bone morphogenic protein 2 (BMP-2) transfection of rBMSCs compounded with platelet-rich plasma on adipogenic differentiation. ACTA ACUST UNITED AC 2020; 54:e9944. [PMID: 33331538 PMCID: PMC7727098 DOI: 10.1590/1414-431x20209944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/21/2020] [Indexed: 01/08/2023]
Abstract
The aim of this study was to inhibit adipogenic differentiation by transfecting two growth factors, platelet-derived growth factor (PDGF-BB) and bone morphogenic protein 2 (BMP-2), into modified rat bone marrow mesenchymal stem cells (rBMSCs) and then compounded with platelet-rich plasma (PRP). To achieve rBMSCs, the osteoporosis model of rats was established, and then the rBMSCs from the rats were isolated and identified. Co-transfection of rBMSCs with PDGF-BB-GFP and BMP-2 and detection of PDGF-BB/BMP-2 expression in transfected BMSCs was assessed by qRT-PCR and western blot, respectively. Moreover, the effect of the two growth factors transfection of rBMSCs on adipogenic differentiation was evaluated by oil red O staining and western blot, respectively. Finally, construction of the two growth factors transfection of rBMSCs compounded with PRP and detection of adipogenic differentiation were assessed by oil red O staining, CCK-8, and western blot, respectively. In vitro studies revealed that the two growth factors transfection of rBMSCs compounded with PRP promoted cell viability and inhibited adipogenic differentiation and could be promising for inhibiting adipogenic differentiation.
Collapse
Affiliation(s)
- Jin Sun
- Department of Orthopedics, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, Guangdong, China
| | - Xin Jiang
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Junnan Luo
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Liheng Zhao
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Zuhua Xu
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wende Xiao
- Department of Orthopedics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Eslami A, Dehbashi M, Ashja-Arvan M, Salehi H, Azimzadeh M, Ganjalikhani-Hakemi M. Assessment of ability of human adipose derived stem cells for long term overexpression of IL-11 and IL-13 as therapeutic cytokines. Cytotechnology 2020; 72:773-784. [PMID: 32935166 PMCID: PMC7547926 DOI: 10.1007/s10616-020-00421-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/02/2020] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stem cells (ADSCs) are a type of mesenchymal stem cells with the therapeutic effects that make them one of the best sources for cell therapy. In this study, we aimed to assess the ability of human ADSCs for constant expression of IL-11 and IL-13, simultaneously. In this study, the characterized hADSCs were transduced with a lentiviral vector (PCDH-513B) containing IL-11 and IL-13 genes, and the ability of long-term expression of the transgenes was evaluated by ELISA technique on days 15, 45 and 75 after transduction. Our results indicated a high rate of transduction (more than 90%) in the isolated hADSCs. Our data showed the highest rate of expression on days 75 after transduction which was 242.67 pg/ml for IL-11 and 303.6 pg/ml for IL-13 compared with 35.2 pg/ml and 35.6 pg/ml in untreated cells, respectively (p = 0.001). Besides, MTT assay showed transduction of hADSCs with lentiviral viruses containing IL-11 and IL-13 had no adverse effect on hADSCs proliferation (p-value = 0.89). Finally, we successfully constructed a hADSC population stably overexpressing IL-11 as the neurotrophic cytokine and IL-13 as the anti-inflammatory cytokine and this transduced cells can be used for further studies in EAE mice model.
Collapse
Affiliation(s)
- Asma Eslami
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Moein Dehbashi
- Division of Genetics, Department of Cell and Molecular Biology, Faculty of Biological Sciences and Technologies, University of Isfahan, 81746-73441 Isfahan, Iran
| | - Mehnoosh Ashja-Arvan
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Azimzadeh
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
15
|
Urine-Derived Stem Cells: Applications in Regenerative and Predictive Medicine. Cells 2020; 9:cells9030573. [PMID: 32121221 PMCID: PMC7140531 DOI: 10.3390/cells9030573] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/17/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022] Open
Abstract
Despite being a biological waste, human urine contains a small population of cells with self-renewal capacity and differentiation potential into several cell types. Being derived from the convoluted tubules of nephron, renal pelvis, ureters, bladder and urethra, urine-derived stem cells (UDSC) have a similar phenotype to mesenchymal stroma cells (MSC) and can be reprogrammed into iPSC (induced pluripotent stem cells). Having simple, safer, low-cost and noninvasive collection procedures, the interest in UDSC has been growing in the last decade. With great potential in regenerative medicine applications, UDSC can also be used as biological models for pharmacology and toxicology tests. This review describes UDSC biological characteristics and differentiation potential and their possible use, including the potential of UDSC-derived iPSC to be used in drug discovery and toxicology, as well as in regenerative medicine. Being a new cellular platform amenable to noninvasive collection for disease stratification and personalized therapy could be a future application for UDSC.
Collapse
|
16
|
Xing F, Li L, Sun J, Liu G, Duan X, Chen J, Liu M, Long Y, Xiang Z. Surface mineralized biphasic calcium phosphate ceramics loaded with urine-derived stem cells are effective in bone regeneration. J Orthop Surg Res 2019; 14:419. [PMID: 31818319 PMCID: PMC6902489 DOI: 10.1186/s13018-019-1500-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/27/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Segmental bone defects caused by trauma, tumors, or infection are a serious challenge for orthopedists in the world. Recent developments in tissue engineering have provided a new treatment for segmental bone defects. Urine-derived stem cells (USCs) can be obtained noninvasively and might be a new kind of seed cells used in bone tissue regeneration. Therefore, the first aim of the present study was to investigate the biological characteristics of USCs. The second aim of the present study was to study the osteogenic effect of surface mineralized biphasic calcium phosphate ceramics (BCPs) loaded with USCs in vitro and in vivo. METHODS We isolated USCs from the urine of healthy adult donors and evaluated the biological characteristics of USCs in vitro. We mineralized the surface of BCPs by simulated body fluid (SBF). Cell adhesion and proliferation of USCs on the surface mineralized BCPs were evaluated. Osteogenic proteins and genes of USCs on the surface mineralized BCPs were texted by enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-PCR) assay. Critical-sized segmental bone defects model in New Zealand white rabbits were established and randomly divided into 4 groups (surface mineralized BCPs loaded with USCs, BCPs loaded with USCs, surface mineralized BCPs, and BCPs) based on the implant they received. The therapeutic efficacy of the scaffolds in a large bone defect at post-implantation was evaluated by imaging and histological examination. RESULTS USCs isolated in our study expressed stem cell-specific phenotypes and had a stable proliferative capacity and multipotential differentiation capability. Surface mineralized BCPs promoted osteogenic proteins and genes expression of USCs without affecting the proliferation of USCs. After 10 weeks, the amount of new bone formation was the highest in the group of surface mineralized BCPs loaded with USCs. CONCLUSION USCs, from non-invasive sources, have good application prospects in the field of bone tissue engineering. Surface mineralized BCPs can significantly enhance osteogenic potential of USCs without changing biological characteristics of BCPs. Surface mineralized BCPs loaded with USCs are effective in repairing of critical-sized segmental bone defects in rabbits.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Lang Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Jiachen Sun
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Guoming Liu
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xin Duan
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Jialei Chen
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Ming Liu
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Ye Long
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| | - Zhou Xiang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
17
|
Bougioukli S, Vakhshori V, Ortega B, Sugiyama O, Lieberman J. Regulated ex vivo regional gene therapy for bone repair using an inducible caspase-9 suicide gene system. Gene Ther 2019; 26:230-239. [PMID: 30962534 DOI: 10.1038/s41434-019-0069-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/04/2019] [Accepted: 03/01/2019] [Indexed: 12/25/2022]
Abstract
In order to adapt ex vivo regional gene therapy for clinical applications in orthopaedic surgery, safety issues must be considered. In this study we developed a suicide approach using a dual gene expression two step transcriptional amplification lentiviral vector (LV-TSTA) encoding BMP-2 and an inducible caspase 9 (iC9) system that selectively induces apoptosis upon activation with a chemical inducer of dimerization (CID). Transduction of rat bone marrow stromal cells (RBMSCs) with LV-TSTA-iC9/BMP-2 led to abundant BMP-2 production (90.3 ± 7.9 ng/24 h/106 cells) in vitro and stimulated bone formation in a mouse muscle pouch in the absence of CID. Moreover it was shown that CID could be used to selectively induce apoptosis in iC9-transduced cells both in vitro and in vivo. Double exposure to serial dilutions of CID decreased in vitro production of BMP-2 by 85-87% and Luc activity by 97-99% in iC9/BMP-2 or iC9/Luc-transduced cells respectively. Early administration of CID (Days 0-1 post-op) in mice implanted with iC9/BMP-2-transduced RBMSCs was effective in blocking bone formation, indicating that CID was toxic to the transduced cells. In iC9/Luc-implanted mice, late administration of two doses of CID (Days 27-28 post-op) significantly reduced the luciferase signal. The current study provides proof of concept for the potential clinical application of regulated gene therapy to promote bone repair.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brandon Ortega
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Wu R, Huang C, Wu Q, Jia X, Liu M, Xue Z, Qiu Y, Niu X, Wang Y. Exosomes secreted by urine-derived stem cells improve stress urinary incontinence by promoting repair of pubococcygeus muscle injury in rats. Stem Cell Res Ther 2019; 10:80. [PMID: 30849996 PMCID: PMC6408860 DOI: 10.1186/s13287-019-1182-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Background Previous studies revealed that urine-derived stem cells (USCs) could promote myogenesis after the impairment of the sphincter muscles. However, the effects of exosomes secreted by USCs (USCs-Exo) were not elucidated. Exosomes are nanosized membrane vesicles secreted by the cells. They have been proved to be effective in protecting against tissue injury and therapeutic in tissue repair. USCs are ideal sources of exosomes because of the noninvasive obtaining method and self-renewal abilitiy. This study aimed to show the therapeutic effects of USCs-Exo on improving stress urinary incontinence (SUI). Methods Rat SUI models were established in this study using vaginal balloon inflation, and urodynamic and histological examination were carried out after exosome application. The proliferation and differentiation of muscle satellite cells (SCs) were evaluated using EdU, Cell Counting Kit 8, immunofluorescence staining, and Western blot analysis. mRNAs and proteins related to the activation of SCs were detected by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Results After exosome injection, the urodynamic parameters significantly improved and the injured muscle tissue recovered well. The activation, proliferation, and differentiation of SCs were promoted. The phosphorylation of extracellular-regulated protein kinases (ERK) was enhanced. When ERK was inhibited, the promoting effect of USCs-Exo treatment disappeared. Conclusion The findings of this study elucidated the functional roles of USCs-Exo in satellite cell ERK phosphorylation and identified a novel agent for skeletal muscle regeneration, providing a basis for further exploring a cell-free correction for SUI. Electronic supplementary material The online version of this article (10.1186/s13287-019-1182-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruoyu Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Chengsheng Huang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Qingkai Wu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Xiang Jia
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Mengyu Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Zhuowei Xue
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yu Qiu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
19
|
Xing F, Liu G, Duan X, Xiang Z. [The application of urine derived stem cells in regeneration of musculoskeletal system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1477-1482. [PMID: 30417628 PMCID: PMC8414118 DOI: 10.7507/1002-1892.201804024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 10/13/2018] [Indexed: 02/05/2023]
Abstract
Objective To review the application of urine derived stem cells (USCs) in regeneration of musculoskeletal system. Methods The original literature about USCs in the regeneration of musculoskeletal system was extensively reviewed and analyzed. Results The source of USCs is noninvasive and extensive. USCs express MSCs surface markers with stable proliferative and multi-directional differentiation capabilities, and are widely used in bone, skin, nerve, and other skeletal and muscle system regeneration fields and show a certain repair capacity. Conclusion USCs from non-invasive sources have a wide application prospect in the regeneration of musculoskeletal system, but the definite biological mechanism of its repair needs further study.
Collapse
Affiliation(s)
- Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Guoming Liu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xin Duan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
20
|
Roohaniesfahani I, Wang J, No YJ, de Candia C, Miao X, Lu Z, Shi J, Kaplan DL, Jiang X, Zreiqat H. Modulatory effect of simultaneously released magnesium, strontium, and silicon ions on injectable silk hydrogels for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:976-987. [PMID: 30423786 DOI: 10.1016/j.msec.2018.10.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/08/2018] [Accepted: 10/13/2018] [Indexed: 01/31/2023]
Abstract
Injectable silk hydrogels are ideal carriers of therapeutic agents due to their biocompatibility and low immunogenicity. Injectable silk hydrogels for bone regeneration have been previously developed but often utilize expensive biologics. In this study, we have developed an injectable silk composite incorporated with a triphasic ceramic called MSM-10 (54 Mg2SiO4, 36 Si3Sr5 and 10 MgO (wt%)) capable of simultaneously releasing magnesium, silicon, and strontium ions into its environment. These ions have been previously reported to possess therapeutic effects for bone regeneration. MSM-10 particles were incorporated into the silk hydrogels at various weight percentages [0.1 (SMH-0.1), 0.6 (SMH-0.6), 1 (SMH-1) and 2 (SMH-2)]. The effects of the released ions on the physicochemical and biological properties of the silk hydrogel were comprehensively evaluated. Increased MSM-10 loading was found to hinder the gelation kinetics of the silk hydrogel through the reduction of beta-sheet phase formation, which in turn affected the required sonication time for gelation, compressive strength, force of injection, microstructure and in vitro degradation rate. Primary human osteoblasts seeded on SMH-0.6 demonstrated increased proliferation and early alkaline phosphatase activity, as well as enhanced osteogenic gene expression compared to pure silk hydrogel and SMH-0.1. In vivo results in subcutaneous mouse models showed both decreased fibrous capsule formation and increased number of new blood vessels around the injected SMH-0.1 and SMH-0.6 implants compared to pure silk hydrogels. The results in this study indicate that the ions released from MSM-10 is able to influence the physicochemical and biological properties of silk hydrogels, and SMH-0.6 in particular shows promising properties for bone regeneration.
Collapse
Affiliation(s)
- Iman Roohaniesfahani
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia.
| | - Jie Wang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Young Jung No
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - Christian de Candia
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - Xinchao Miao
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zufu Lu
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - Jeffrey Shi
- School of Chemical and Biomolecular Engineering, Faculty of Engineering and IT, University of Sydney, Sydney, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Xinquan Jiang
- Department of Prosthodontics, Oral Bioengineering and Regenerative Medicine Lab, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of AMME, Faculty of Engineering and IT, University of Sydney, Sydney, Australia.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the recent advances in gene therapy as a treatment for bone regeneration. While most fractures heal spontaneously, patients who present with fracture nonunion suffer from prolonged pain, disability, and often require additional operations to regain musculoskeletal function. RECENT FINDINGS In the last few years, BMP gene delivery by means of electroporation and sonoporation resulted in repair of nonunion bone defects in mice, rats, and minipigs. Ex vivo transfection of porcine mesenchymal stem cells (MSCs) resulted in bone regeneration following implantation in vertebral defects of minipigs. Sustained release of VEGF gene from a collagen-hydroxyapatite scaffold to the mandible of a human patient was shown to be safe and osteoinductive. In conclusion, gene therapy methods for bone regeneration are systematically becoming more efficient and show proof-of-concept in clinically relevant animal models. Yet, on the pathway to clinical use, more investigation is needed to determine the safety aspects of the various techniques in terms of biodistribution, toxicity, and tumorigenicity.
Collapse
Affiliation(s)
- Galina Shapiro
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Raphael Lieber
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
| | - Dan Gazit
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA
| | - Gadi Pelled
- Skeletal Biotech Laboratory, The Hebrew University-Hadassah Faculty of Dental Medicine, Ein Kerem, 91120, Jerusalem, Israel.
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP-8304, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, 90048, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, 90048, USA.
| |
Collapse
|
22
|
Characterization of rabbit urine-derived stem cells for potential application in lower urinary tract tissue regeneration. Cell Tissue Res 2018; 374:303-315. [PMID: 30066105 DOI: 10.1007/s00441-018-2885-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 07/04/2018] [Indexed: 12/11/2022]
Abstract
Tissue-engineered urethra with autologous cells seeded on biodegradable scaffolds offers an alternative for lower urinary tract reconstruction. Rabbit is most commonly used as an animal model in urethra and bladder tissue repair. The goal of this study is to characterize rabbit urine-derived stem cells (rUSC) and induce these cells to differentiate into urothelial and smooth muscle cells as an autologous cell source for potential use in lower urinary tract tissue regeneration in a rabbit model. We successfully cultured rUSC from 12 urine samples and 13 bladder wash samples of six rabbits. rUSC colonies appeared more in the bladder wash solution (2-4/15 ml) than those in the urine samples (1-2 clones/15 ml urine). The cells displayed rice grain-like in morphology. Mean population doubling of rUSC was 48.5 ± 6.2 and average doubling time was 25.7 ± 8.4 h, indicating that a single of rUSC clone generated about 4 × 1014 cells in 50 days. The rUSC were positive for CD29, CD90 and CD105 but negative for CD31, CD34 and CD45 in flow cytometry. When exposed to PDGF-BB and TGF-β1, these cells could differentiate into spindle-like cells, expressing smooth muscle-specific proteins, including α-smooth muscle action, desmin and myosin. Urothelially differentiated rUSC expressed urothelial-specific proteins, i.e., AE1/AE3 and E-cadherin when exposed to epidermal growth factor (EGF). Osteogenic-differentiated rUSC expressed osteogenic marker, i.e., alkaline phosphatase when exposed to serum containing DMEM low-glucose medium with osteogenic supplements. In conclusion, rUSC can be isolated from bladder wash or urine samples and cultured in vitro. There stem cells possess strong proliferative ability and are capable of differentiating in urothelial, myogenic and osteogenic lineages. Thus, rUSC are a potential alternative autologous cell source for lower urinary tract repair with tissue engineering technology in a rabbit model.
Collapse
|
23
|
Liu G, Wu R, Yang B, Deng C, Lu X, Walker SJ, Ma PX, Mou S, Atala A, Zhang Y. Human Urine-Derived Stem Cell Differentiation to Endothelial Cells with Barrier Function and Nitric Oxide Production. Stem Cells Transl Med 2018; 7:686-698. [PMID: 30011128 PMCID: PMC6127250 DOI: 10.1002/sctm.18-0040] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/10/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells (ECs) play a key role in revascularization within regenerating tissue. Stem cells are often used as an alternative cell source when ECs are not available. Several cell types have been used to give rise to ECs, such as umbilical cord vessels, or differentiated from somatic stem cells, embryonic, or induced pluripotent stem cells. However, the latter carry the potential risk of chronic immune rejection and oncogenesis. Autologous endothelial precursors are an ideal resource, but currently require an invasive procedure to obtain them from the patient's own blood vessels or bone marrow. Thus, the goal of this study was to determine whether urine-derived stem cells (USCs) could differentiate into functional ECs in vitro. Urine-derived cells were then differentiated into cells of the endothelial lineage using endothelial differentiation medium for 14 days. Changes in morphology and ultrastructure, and functional endothelial marker expression were assessed in the induced USCs in vitro. Grafts of the differentiated USCs were then subcutaneously injected into nude mice. Induced USCs expressed significantly higher levels of specific markers of ECs (CD31, vWF, eNOS) in vitro and in vivo, compared to nondifferentiated USCs. In addition, the differentiated USC formed intricate tubular networks and presented similar tight junctions, and migration and invasion ability, as well as ability to produce nitric oxide (NO) compared to controls. Using USCs as autologous EC sources for vessel, tissue engineering strategies can yield a sufficient number of cells via a noninvasive, simple, and low-cost method suitable for rapid clinical translation. Stem Cells Translational Medicine 2018 Stem Cells Translational Medicine 2018;7:686-698.
Collapse
Affiliation(s)
- Guihua Liu
- Reproductive Centre, Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People's Republic of China.,Wake Forest Institute of Regenerative Medicine
| | - Rongpei Wu
- Wake Forest Institute of Regenerative Medicine.,Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People's Republic of China
| | - Bin Yang
- Wake Forest Institute of Regenerative Medicine.,Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chunhua Deng
- Department of Urology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guang Dong, People's Republic of China
| | - Xiongbing Lu
- Department of Urology, The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | | | - Peter X Ma
- School of Dentistry, Ann Arbor, Michigan, USA
| | - Steve Mou
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | | |
Collapse
|
24
|
Human urine-derived stem cells play a novel role in the treatment of STZ-induced diabetic mice. J Mol Histol 2018; 49:419-428. [PMID: 29675567 DOI: 10.1007/s10735-018-9772-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Human urine-derived stem cells (hUSCs) are a potential stem cell source for cell therapy. However, the effect of hUSCs on glucose metabolism regulation in type 1 diabetes was not clear. Therefore, the aim of the study was to evaluate whether hUSCs have protective effect on streptozotocin (STZ)-induced diabetes. hUSCs were extracted and cultivated with a special culture medium. Flow cytometry analysis was applied to detect cell surface markers. BALB/c male nude mice were either injected with high-dose STZ (HD-STZ) or multiple low-dose STZ (MLD-STZ). Serum and pancreatic insulin were measured, islet morphology and its vascularization were investigated. hUSCs highly expressed CD29, CD73, CD90 and CD146, and could differentiate into, at least, bone and fat in vitro. Transplantation of hUSCs into HD-STZ treated mice prolonged the median survival time and improved their blood glucose, and into those with MLD-STZ improved the glucose tolerance, islet morphology and increased the serum and pancreas insulin content. Furthermore, CD31 expression increased significantly in islets of BALB/c nude mice treated with hUSCs compared to those of un-transplanted MLD-STZ mice. hUSCs could improve the median survival time and glucose homeostasis in STZ-treated mice through promoting islet vascular regeneration and pancreatic beta-cell survival.
Collapse
|
25
|
Urine-Derived Stem Cells: The Present and the Future. Stem Cells Int 2017; 2017:4378947. [PMID: 29250119 PMCID: PMC5698822 DOI: 10.1155/2017/4378947] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Stem cell research provides promising strategies in improving healthcare for human beings. As a noninvasively obtained and easy-to-culture cell resource with relatively low expense, urine-derived stem cells have special advantages. They have been extensively studied on its proliferation ability and differentiation potential and were being reprogrammed to model diseases during the last decade. In this review, we intend to summarize the latest progress on the research of urine-derived stem cells for its broad application mainly in regenerative medicine and disease modeling, as well as in what is challenging currently. This minireview will highlight the potential application of urine-derived stem cells and provides possible direction of further research in the future.
Collapse
|
26
|
Gao P, Han P, Jiang D, Yang S, Cui Q, Li Z. Effects of the donor age on proliferation, senescence and osteogenic capacity of human urine-derived stem cells. Cytotechnology 2017; 69:751-763. [PMID: 28409292 DOI: 10.1007/s10616-017-0084-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022] Open
Abstract
To study the effects of the donor age on the application potential of human urine-derived stem cells (hUSCs) in bone tissue engineering, by comparing proliferation, senescence and osteogenic differentiation of hUSCs originated from volunteers with different ages. The urine samples were collected from 19 healthy volunteers (6 cases from children group aged from 5 to 14, 5 cases from middle-aged group aged from 30 to 40, and 8 cases from the elder group aged from 65 to 75), and hUSCs were isolated and cultured. The cell morphology was observed by microscope and the cell surface markers were identified by flow cytometry. Their abilities to undergo osteogenic, adipogenic and chondrogenic differentiation were determined in vitro, and cell proliferation analyses were performed using Cell Counting Kit-8 (CCK8) Assay. The senescence of hUSCs among three groups was assessed by senescence-associated β galactosidase staining. After osteogenic differentiation, the alkaline phosphatase (ALP) activity of hUSCs was measured and expression of osteogenic-related runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) was determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The hUSCs isolated from urine samples were adherent cells displayed "rice gain"-like and "spindle-shaped" morphology, expressing surface markers of mesenchymal stem cells (MSCs) (CD73, CD90, CD105) and the peripheral cell marker (CD146), but not hematopoietic stem cell markers (CD34, CD45) or the embryonic stem cell marker (OCT3/4). The obtained hUSCs could be induced into osteogenic, adipogenic or chondrogenic differentiation. The hUSCs from the children group showed higher proliferation and lower tendency to senescence than those from the middle-aged and elder groups. After osteogenic induction, the ALP activity and RUNX2 and OCN expression of hUSCs from the children group were higher than those from the elder group. While no significant differences were observed when comparing the middle-aged group with the children group or the elder group. Donor age could influence the potency of hUSCs on proliferation, senescence and capacity of osteogenic differentiation. hUSCs from children group have shown higher proliferation, lower tendency to senescence, and stronger osteogenic capacity, which means to be more suitable for basic research and have better clinical application. Furthermore, hUSCs from all groups suggest the application potential in bone tissue engineering as seed cells.
Collapse
Affiliation(s)
- Peng Gao
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Surgery, Harbin Children's Hospital, Harbin, China
| | - Peilin Han
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dapeng Jiang
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Urology, Shanghai Xinhua Hospital, Shanghai, China
| | - Shulong Yang
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
27
|
TSG-6 secreted by mesenchymal stem cells suppresses immune reactions influenced by BMP-2 through p38 and MEK mitogen-activated protein kinase pathway. Cell Tissue Res 2017; 368:551-561. [PMID: 28247086 DOI: 10.1007/s00441-017-2581-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/26/2016] [Indexed: 12/31/2022]
Abstract
Bone morphogenetic protein 2 (BMP-2) has a critical function in bone and cartilage development and in repairing damaged organs and tissue. However, clinical use of BMP-2 at doses of 0.5-1 mg/ml for orthopedics has been associated with severe postoperative swelling requiring emergency surgical intervention. We determined whether a high concentration of BMP-2 induces inflammatory responses in macrophages and the suppression of osteogenesis in hMSCs. We obtained human periodontal ligament stem cells and bone marrow stem cells from the maxilla, i.e., human mesenchymal stem cells (hMSCs), from the periodontal ligament of extracted third molar teeth and from the bone marrow of the maxilla, respectively. Osteogenic differentiation was measured by alkaline phosphatase activity and alizarin red S staining. Proteins were assessed by flow cytometry, enzyme-linked immunosorbent assay, Western blot and immunocytochemistry. Changes of gene expression were measured by reverse transcription plus the polymerase chain reaction (RT-PCR) and real-time PCR. A high BMP-2 concentration inhibited the early stages of osteogenesis in hMSCs. Co-culturing THP-1 cells (human monocytic cells) with hMSCs reduced the late stages of osteogenesis compared with those seen in hMSCs alone. In addition, high-dose BMP-2 induced the expression of inflammatory cytokines in THP-1 cells and the expression of the anti-inflammatory cytokine tumor-necrosis-factor-α-inducible gene 6 protein (TSG-6) in hMSCs. Consistent with the anti-inflammatory effects of hMSCs when co-cultured with THP-1 cells, interleukin-1β expression was downregulated by TSG-6 treatment of THP-1 cells. Our findings suggest that a high BMP-2 concentration triggers inflammation that causes inflammatory cytokine release from THP-1 cells, leading to the suppression of osteogenesis, whereas TSG-6 secreted by hMSCs suppresses inflammatory reactions through p38 and ERK in the mitogen-activated protein kinase pathway.
Collapse
|
28
|
Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther 2017; 8:28. [PMID: 28173861 PMCID: PMC5297126 DOI: 10.1186/s13287-017-0479-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 01/22/2023] Open
Abstract
Background Laminin, a major basement membrane component that has direct contact with pericytes under physiological conditions, actively regulates the proliferation and differentiation/fate determination of pericytes. Recently, two types of pericytes (type I and type II) with different molecular markers and functions have been identified in skeletal muscles. Whether laminin differentially regulates the proliferation and differentiation of these two subpopulations remains unclear. Methods Wild-type and pericytic laminin-deficient mice under Nestin-GFP background were used to determine if laminin differentially regulates the proliferation and differentiation of type I and type II pericytes. Specifically, type I and type II pericytes were isolated from these mice, and their proliferation and differentiation were examined in vitro. Moreover, in vivo studies were also performed. Results We demonstrate that, although laminin inhibits the proliferation of both type I and type II pericytes in vitro, loss of laminin predominantly induces proliferation of type II pericytes in vivo. In addition, laminin negatively regulates the adipogenic differentiation of type I pericytes and positively regulates the myogenic differentiation of type II pericytes in vitro. Conclusions Laminin differentially regulates the proliferation and differentiation of type I and type II pericytes. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0479-4) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Du X, Huang F, Zhang S, Yao Y, Chen Y, Chen Y, Huang H, Bai B. Carboxymethylcellulose with phenolic hydroxyl microcapsules enclosinggene-modified BMSCs for controlled BMP-2 release in vitro. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1710-1720. [PMID: 28129696 DOI: 10.1080/21691401.2017.1282499] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiufan Du
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Fangli Huang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Shujiang Zhang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yongchang Yao
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yi Chen
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Yushu Chen
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Hongxuan Huang
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| | - Bo Bai
- Orthopaedic Department of the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, China
| |
Collapse
|
30
|
Zhang J, Liu X, Li H, Chen C, Hu B, Niu X, Li Q, Zhao B, Xie Z, Wang Y. Exosomes/tricalcium phosphate combination scaffolds can enhance bone regeneration by activating the PI3K/Akt signaling pathway. Stem Cell Res Ther 2016; 7:136. [PMID: 27650895 PMCID: PMC5028974 DOI: 10.1186/s13287-016-0391-3] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/06/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Recently, accumulating evidence has shown that exosomes, the naturally secreted nanocarriers of cells, can exert therapeutic effects in various disease models in the absence of parent cells. However, application of exosomes in bone defect repair and regeneration has been rarely reported, and little is known regarding their underlying mechanisms. METHODS Exosomes derived from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-Exos) were combined with tricalcium phosphate (β-TCP) to repair critical-sized calvarial bone defects, and the efficacy was assessed by histological examination. We evaluated the in vitro effects of hiPSC-MSC-Exos on the proliferation, migration, and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs) by cell-counting, scratch assays, and qRT-PCR, respectively. Gene expression profiling and bioinformatics analyses were also used to identify the underlying mechanisms in the repair. RESULTS We found that the exosome/β-TCP combination scaffolds could enhance osteogenesis as compared to pure β-TCP scaffolds. In vitro assays showed that the exosomes could release from β-TCP and could be internalized by hBMSCs. In addition, the internalization of exosomes into hBMSCs could profoundly enhance the proliferation, migration, and osteogenic differentiation of hBMSCs. Furthermore, gene expression profiling and bioinformatics analyses demonstrated that exosome/β-TCP combination scaffolds significantly altered the expression of a network of genes involved in the PI3K/Akt signaling pathway. Functional studies further confirmed that the PI3K/Akt signaling pathway was the critical mediator during the exosome-induced osteogenic responses of hBMSCs. CONCLUSIONS We propose that the exosomes can enhance the osteoinductivity of β-TCP through activating the PI3K/Akt signaling pathway of hBMSCs, which means that the exosome/β-TCP combination scaffolds possess better osteogenesis activity than pure β-TCP scaffolds. These results indicate that naturally secreted nanocarriers-exosomes can be used as a bioactive material to improve the bioactivity of the biomaterials, and that hiPS-MSC-Exos combined with β-TCP scaffolds can be potentially used for repairing bone defects.
Collapse
Affiliation(s)
- Jieyuan Zhang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Xiaolin Liu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Haiyan Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030 China
| | - Chunyuan Chen
- Graduate School of Nanchang University, 461 Bayi Road, Nanchang, 330006 China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Xin Niu
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Qing Li
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Bizeng Zhao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Zongping Xie
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| | - Yang Wang
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, 600 Yishan Road, Shanghai, 200233 China
| |
Collapse
|
31
|
de Misquita MRDOF, Bentini R, Goncalves F. The performance of bone tissue engineering scaffolds in in vivo animal models: A systematic review. J Biomater Appl 2016; 31:625-636. [DOI: 10.1177/0885328216656476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone tissue engineering is an excellent alternative for the regeneration of large bone defects caused by trauma or bone pathologies. Scaffolds, stem cells, and bioactive molecules are the three key components of bone regeneration. Although a wide range of biomaterials of various compositions and structures has been proposed in the literature, these materials are rarely used in clinical applications. Therefore, more standardized studies are required to design scaffolds that enable better bone regeneration and are suitable for clinical use. The aim of this systematic review was to compare the performance of scaffolds used in preclinical animal studies to determine which class of materials has achieved a higher rate of bone neoformation (osteoinduction and osteoconduction). The selected studies were divided into three groups according to the following experimental models: studies that used subcutaneous models, bone defects in calvaria, and bone defects in long bones. Despite the large number of parameters in the included studies, we generally concluded that biomaterials containing calcium phosphates had important osteoinductive effects and were essential for better performance of the materials. Furthermore, natural polymers generally had better performance than synthetic polymers did, especially when the materials were associated with stem cells. The combination of materials from different classes was the most promising strategy for bone tissue regeneration.
Collapse
Affiliation(s)
| | | | - Flavia Goncalves
- Universidade Ibirapuera – Unidade Chacara Flora, Sao Paulo, Brazil
| |
Collapse
|
32
|
ADAM10 is essential for cranial neural crest-derived maxillofacial bone development. Biochem Biophys Res Commun 2016; 475:308-14. [PMID: 27221046 DOI: 10.1016/j.bbrc.2016.05.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022]
Abstract
Growth disorders of the craniofacial bones may lead to craniofacial deformities. The majority of maxillofacial bones are derived from cranial neural crest cells via intramembranous bone formation. Any interruption of the craniofacial skeleton development process might lead to craniofacial malformation. A disintegrin and metalloprotease (ADAM)10 plays an essential role in organ development and tissue integrity in different organs. However, little is known about its function in craniofacial bone formation. Therefore, we investigated the role of ADAM10 in the developing craniofacial skeleton, particularly during typical mandibular bone development. First, we showed that ADAM10 was expressed in a specific area of the craniofacial bone and that the expression pattern dynamically changed during normal mouse craniofacial development. Then, we crossed wnt1-cre transgenic mice with adam10-flox mice to generate ADAM10 conditional knockout mice. The stereomicroscopic, radiographic, and von Kossa staining results showed that conditional knockout of ADAM10 in cranial neural crest cells led to embryonic death, craniofacial dysmorphia and bone defects. Furthermore, we demonstrated that impaired mineralization could be triggered by decreased osteoblast differentiation, increased cell death. Overall, these findings show that ADAM10 plays an essential role in craniofacial bone development.
Collapse
|
33
|
Tollemar V, Collier ZJ, Mohammed MK, Lee MJ, Ameer GA, Reid RR. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine. Genes Dis 2016; 3:56-71. [PMID: 27239485 PMCID: PMC4880030 DOI: 10.1016/j.gendis.2015.09.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 02/08/2023] Open
Abstract
Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials.
Collapse
Affiliation(s)
- Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| | - Zach J. Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Guillermo A. Ameer
- Department of Surgery, Feinberg School of Medicine, Chicago, IL 60611, USA
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Russell R. Reid
- Laboratory of Craniofacial Biology and Development, Section of Plastic and Reconstructive Surgery, Department of Surgery, The University of Chicago Medicine, Chicago, IL 60637, USA
| |
Collapse
|