1
|
Perry AG, Kahn A, Mercuri J, Rini K, Chang J, Pathak RA. Preclinical and clinical evidence for using perinatal tissue allografts in nerve sparing robot assisted radical prostatectomy to hasten recovery of functional outcomes: a literature review. BMC Urol 2024; 24:208. [PMID: 39342266 PMCID: PMC11438271 DOI: 10.1186/s12894-024-01593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
INTRODUCTION Localized prostate cancer (PCa) is one of the most common malignancies in the United States. Despite continued refinement of robot assisted radical prostatectomy (RARP) surgical methods, post-surgical erectile dysfunction and urinary incontinence remain significant challenges due to iatrogenic injury of local nervous tissue. Thus, the development of therapeutic strategies, including the use of biologic adjuncts to protect and/or enhance recovery and function of nerves following RARP is of growing interest. Perinatal tissue allografts have been investigated as one such biologic adjunct to nerve sparing RARP. However, knowledge regarding their clinical efficacy in hastening return of potency and continence as well as the potential underpinning biological mechanisms involved remains understudied. Thus, the objective of this literature review was to summarize published basic science and clinical studies supporting and evaluating the use of perinatal allografts for nerve repair and their clinical efficacy as adjuncts to RARP, respectively. METHODS The literature as of May 2024 was reviewed non-systematically using PubMed, EMBASE, Scopus, and Web of Science databases. The search terms utilized were "robotic prostatectomy", "prostate cancer", "nerve sparing", "perinatal tissue", "allograft", "potency", and "continence" alone or in combination. All articles were reviewed and judged for scientific merit by authors RP and JM, only peer-reviewed studies were considered. RESULTS Eight studies of perinatal tissue allograph use in RARP were deemed worthy of inclusion in this nonsystematic review. CONCLUSIONS Incontinence and impotence remain significant comorbidities despite continued advancement in surgical technique. However, basic science research has demonstrated potential neurotrophic, anti-fibrotic, and anti-inflammatory properties of perinatal tissue allografts, and clinical studies have shown that patients who receive an intra-operative prostatic perinatal membrane wrap have faster return to potency and continence.
Collapse
Affiliation(s)
- Alan G Perry
- Department of Urology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Amanda Kahn
- Department of Urology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA
| | - Jeremy Mercuri
- Samaritan Biologics, Cordova, TN, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| | | | | | - Ram A Pathak
- Department of Urology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
2
|
Jiang T, Huang J, Xu B, Ge Z, Li Y, Wei L, Yu L, Li J. Human amniotic epithelial stem cell-derived dopaminergic neuron-like cells ameliorate motor dysfunction in a rat model of Parkinson's disease. Life Sci 2024; 351:122816. [PMID: 38862064 DOI: 10.1016/j.lfs.2024.122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
AIMS Parkinson's disease (PD) remains a substantial clinical challenge due to the progressive loss of midbrain dopaminergic (DA) neurons in nigrostriatal pathway. In this study, human amniotic epithelial stem cells (hAESCs)-derived dopaminergic neuron-like cells (hAESCs-DNLCs) were generated, with the aim of providing new therapeutic approach to PD. MATERIALS AND METHODS hAESCs, which were isolated from discarded placentas, were induced to differentiate into hAESCs-DNLCs by following a "two stages" induction protocol. The differentiation efficiency was assessed by quantitative real-time PCR (qRT-PCR), immunocytochemistry (ICC), and ELISA. Immunogenicity, cell viability and tumorigenicity of hAESCs-DNLC were analyzed before in vivo experiments. Subsequently, hAESCs-DNLCs were transplanted into PD rats, behavioral tests were monitored after graft, and the regeneration of DA neurons was detected by immunohistochemistry (IHC). Furthermore, to trace hAESCs-DNLCs in vivo, cells were pre-labeled with PKH67 green fluorescence. KEY FINDINGS hAESCs were positive for pluripotent markers and highly expressed neural stem cells (NSCs) markers. Based on this, we established an induction method reliably generates hAESCs-DNLCs, which was evidenced by epithelium-to-neuron morphological changes, elevated expressions of neuronal and DA neuronal markers, and increased secretion of dopamine. Moreover, hAESCs-DNLCs maintained high cell viability, no tumorigenicity and low immunogenicity, suggesting hAESCs-DNLCs an attractive implant for PD therapy. Transplantation of hAESCs-DNLCs into PD rats significantly ameliorated motor disorders, as well as enhanced the reinnervation of TH+ DA neurons in nigrostriatal pathway. SIGNIFICANCE Our study has demonstrated evident therapeutic effects of hAESCs-DNLCs, and provides a safe and promising solution for PD.
Collapse
Affiliation(s)
- Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Jianan Huang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China; Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, Zhejiang Province, PR China
| | - Bo Xu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Zhen Ge
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou 310013, Zhejiang Province, PR China
| | - Yi Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Leiting Wei
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China.
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China; College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui 323000, Zhejiang Province, PR China.
| |
Collapse
|
3
|
Brown MG, Brady DJ, Healy KM, Henry KA, Ogunsola AS, Ma X. Stem Cells and Acellular Preparations in Bone Regeneration/Fracture Healing: Current Therapies and Future Directions. Cells 2024; 13:1045. [PMID: 38920674 PMCID: PMC11201612 DOI: 10.3390/cells13121045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/25/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Bone/fracture healing is a complex process with different steps and four basic tissue layers being affected: cortical bone, periosteum, fascial tissue surrounding the fracture, and bone marrow. Stem cells and their derivatives, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, hematopoietic stem cells, skeletal stem cells, and multipotent stem cells, can function to artificially introduce highly regenerative cells into decrepit biological tissues and augment the healing process at the tissue level. Stem cells are molecularly and functionally indistinguishable from standard human tissues. The widespread appeal of stem cell therapy lies in its potential benefits as a therapeutic technology that, if harnessed, can be applied in clinical settings. This review aims to establish the molecular pathophysiology of bone healing and the current stem cell interventions that disrupt or augment the bone healing process and, finally, considers the future direction/therapeutic options related to stem cells and bone healing.
Collapse
Affiliation(s)
- Marcel G. Brown
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Davis J. Brady
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kelsey M. Healy
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Kaitlin A. Henry
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ayobami S. Ogunsola
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Xue Ma
- Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
- Department of Orthopaedic Surgery and Rehabilitation, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
4
|
Sulcanese L, Prencipe G, Canciello A, Cerveró-Varona A, Perugini M, Mauro A, Russo V, Barboni B. Stem-Cell-Driven Chondrogenesis: Perspectives on Amnion-Derived Cells. Cells 2024; 13:744. [PMID: 38727280 PMCID: PMC11083072 DOI: 10.3390/cells13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Regenerative medicine harnesses stem cells' capacity to restore damaged tissues and organs. In vitro methods employing specific bioactive molecules, such as growth factors, bio-inductive scaffolds, 3D cultures, co-cultures, and mechanical stimuli, steer stem cells toward the desired differentiation pathways, mimicking their natural development. Chondrogenesis presents a challenge for regenerative medicine. This intricate process involves precise modulation of chondro-related transcription factors and pathways, critical for generating cartilage. Cartilage damage disrupts this process, impeding proper tissue healing due to its unique mechanical and anatomical characteristics. Consequently, the resultant tissue often forms fibrocartilage, which lacks adequate mechanical properties, posing a significant hurdle for effective regeneration. This review comprehensively explores studies showcasing the potential of amniotic mesenchymal stem cells (AMSCs) and amniotic epithelial cells (AECs) in chondrogenic differentiation. These cells exhibit innate characteristics that position them as promising candidates for regenerative medicine. Their capacity to differentiate toward chondrocytes offers a pathway for developing effective regenerative protocols. Understanding and leveraging the innate properties of AMSCs and AECs hold promise in addressing the challenges associated with cartilage repair, potentially offering superior outcomes in tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Sulcanese
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Angelo Canciello
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Monia Perugini
- Department of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Department of Biosciences and Agri-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (G.P.); (A.C.); (A.C.-V.); (A.M.); (V.R.); (B.B.)
| |
Collapse
|
5
|
Jafari A, Mirzaei Y, Mer AH, Rezaei-Tavirani M, Jafari Z, Niknejad H. Comparison of the effects of preservation methods on structural, biological, and mechanical properties of the human amniotic membrane for medical applications. Cell Tissue Bank 2024; 25:305-323. [PMID: 37840108 DOI: 10.1007/s10561-023-10114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Amniotic membrane (AM), the innermost layer of the placenta, is an exceptionally effective biomaterial with divers applications in clinical medicine. It possesses various biological functions, including scar reduction, anti-inflammatory properties, support for epithelialization, as well as anti-microbial, anti-fibrotic and angio-modulatory effects. Furthermore, its abundant availability, cost-effectiveness, and ethical acceptability make it a compelling biomaterial in the field of medicine. Given the potential unavailability of fresh tissue when needed, the preservation of AM is crucial to ensure a readily accessible and continuous supply for clinical use. However, preserving the properties of AM presents a significant challenge. Therefore, the establishment of standardized protocols for the collection and preservation of AM is vital to ensure optimal tissue quality and enhance patient safety. Various preservation methods, such as cryopreservation, lyophilization, and air-drying, have been employed over the years. However, identifying a preservation method that effectively safeguards AM properties remains an ongoing endeavor. This article aims to review and discuss different sterilization and preservation procedures for AM, as well as their impacts on its histological, physical, and biochemical characteristics.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ali Hussein Mer
- Department of Nusring, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq
| | | | - Zahra Jafari
- 9th Dey Manzariye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Huang J, Jiang T, Li J, Qie J, Cheng X, Wang Y, Zhou T, Liu J, Han H, Yao K, Yu L. Biomimetic Corneal Stroma for Scarless Corneal Wound Healing via Structural Restoration and Microenvironment Modulation. Adv Healthc Mater 2024; 13:e2302889. [PMID: 37988231 DOI: 10.1002/adhm.202302889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Corneal injury-induced stromal scarring causes the most common subtype of corneal blindness, and there is an unmet need to promote scarless corneal wound healing. Herein, a biomimetic corneal stroma with immunomodulatory properties is bioengineered for scarless corneal defect repair. First, a fully defined serum-free system is established to derive stromal keratocytes (hAESC-SKs) from a current Good Manufacturing Practice (cGMP)-grade human amniotic epithelial stem cells (hAESCs), and RNA-seq is used to validate the phenotypic transition. Moreover, hAESC-SKs are shown to possess robust immunomodulatory properties in addition to the keratocyte phenotype. Inspired by the corneal stromal extracellular matrix (ECM), a photocurable gelatin-based hydrogel is fabricated to serve as a scaffold for hAESC-SKs for bioengineering of a biomimetic corneal stroma. The rabbit corneal defect model is used to confirm that this biomimetic corneal stroma rapidly restores the corneal structure, and effectively reshapes the tissue microenvironment via proteoglycan secretion to promote transparency and inhibition of the inflammatory cascade to alleviate fibrosis, which synergistically reduces scar formation by ≈75% in addition to promoting wound healing. Overall, the strategy proposed here provides a promising solution for scarless corneal defect repair.
Collapse
Affiliation(s)
- Jianan Huang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Traditional Chinese Medicine and Health Industry, Lishui University, Lishui, 323000, P. R. China
| | - Jiqiao Qie
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Xiaoyu Cheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Yiyao Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Tinglian Zhou
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Jia Liu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing, 400038, P. R. China
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, 310009, P. R. China
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection & College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
7
|
Cerverò-Varona A, Canciello A, Peserico A, Haidar Montes AA, Citeroni MR, Mauro A, Russo V, Moffa S, Pilato S, Di Giacomo S, Dufrusine B, Dainese E, Fontana A, Barboni B. Graphene oxide accelerates TGFβ-mediated epithelial-mesenchymal transition and stimulates pro-inflammatory immune response in amniotic epithelial cells. Mater Today Bio 2023; 22:100758. [PMID: 37600353 PMCID: PMC10432246 DOI: 10.1016/j.mtbio.2023.100758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/22/2023] Open
Abstract
The application of biomaterials on immune regenerative strategies to deal with unsolved pathologies is getting attention in the field of tissue engineering. In this context, graphene oxide (GO) has been proposed as an immune-mimetic material largely used for developing stem cell-based regenerative therapies, since it has shown to influence stem cell behavior and modulate their immune response. Similarly, amniotic epithelial stem cells (AECs) are getting an increasing clinical interest as source of stem cells due to their great plasticity and immunomodulatory paracrine activities, even though GO bio-mimetic effects still remain unknown. To this aim, GO-functionalized glass coverslips have been used for AECs culture. The results demonstrated how GO-coating is able to induce and accelerate the Epithelial-Mesenchymal Transition (EMT), in a process mediated by the intracellular activation of TGFβ1-SMAD2/3 signaling pathway. The trans-differentiation towards mesenchymal phenotype provides AECs of migratory ability and substantially changes the pattern of cytokines secretion upon inflammatory stimulus. Indeed, GO-exposed AECs enhance their pro-inflammatory interleukins production thus inducing a more efficient activation of macrophages and, at the same time, by slightly reducing their inhibitory action on peripheral blood mononuclear cells proliferation. Therefore, the adhesion of AECs on GO-functionalized surfaces might contribute to the generation of a tailored microenvironment useful to face both the phases of the inflammation, thereby fostering the regenerative process.
Collapse
Affiliation(s)
- Adrian Cerverò-Varona
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Angelo Canciello
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Alessia Peserico
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Arlette Alina Haidar Montes
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Maria Rita Citeroni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Annunziata Mauro
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Valentina Russo
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Samanta Moffa
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Serena Pilato
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Stefano Di Giacomo
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Beatrice Dufrusine
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Enrico Dainese
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| | - Antonella Fontana
- Department of Pharmacy, University “G. D’Annunzio”, Via Dei Vestini, 66100, Chieti, Italy
| | - Barbara Barboni
- Department of Biosciences and Agro-Food and Environmental Technologies, University of Teramo,64100, Teramo, Italy
| |
Collapse
|
8
|
Erceg Ivkošić I, Fureš R, Ćosić V, Mikelin N, Bulić L, Dobranić D, Brlek P, Primorac D. Unlocking the Potential of Mesenchymal Stem Cells in Gynecology: Where Are We Now? J Pers Med 2023; 13:1253. [PMID: 37623503 PMCID: PMC10455325 DOI: 10.3390/jpm13081253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
Stem cells, with their remarkable capacity for differentiation into diverse cell types, are vital for the development as well as maintenance of health and homeostasis. Two unique abilities set them apart from other cells: self-renewal and the capacity for differentiation. They play important roles in embryogenesis, development, regeneration, and various other processes. Over the last decade, there has been increased interest in their potential use in the treatment of numerous diseases and disorders across multiple fields of medicine in acute, chronic, innate, and acquired diseases. Stem cells are key to maintaining the body's homeostasis and regulating growth and tissue functions. There are several types of stem cells-embryonic, adult, and human-induced pluripotent cells. Currently, mesenchymal stem cells are of great interest due to their regenerative, immunomodulatory, analgesic, and antimicrobial (anti-inflammatory) effects. Recent studies have shown the potent regenerative effect of stem cell therapy in gynecologic diseases such as infertility, Asherman syndrome, lichen sclerosus, polycystic ovary syndrome, premature ovarian insufficiency, genitourinary syndrome of menopause, and rectovaginal fistulas. Moreover, the successful isolation of oogonial stem cells could lead to a revolution in the field of gynecology and the potential treatment of the conditions discussed. This review aims to provide a better understanding of the latest therapeutic options involving stem cells and raise awareness of this promising yet not widely known topic in gynecology and medicine in general.
Collapse
Affiliation(s)
- Ivana Erceg Ivkošić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Rajko Fureš
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Gynecology and Obstetrics, Zabok General Hospital and Croatian Veterans Hospital, 49210 Zabok, Croatia
| | - Vesna Ćosić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Poliklinika Ćosić, d.o.o., 35000 Slavonski Brod, Croatia
| | - Nika Mikelin
- Health Center of the Zagreb County, 10000 Zagreb, Croatia
| | - Luka Bulić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
| | | | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia (L.B.)
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
9
|
Morandi F, Airoldi I, Faini A, Horenstein A, Malavasi F, Matysiak N, Kopaczka K, Marimpietri D, Gramignoli R. Immune-regulatory properties carried by human amnion epithelial cells: Focus on the role of HLA-G and adenosinergic ectoenzymes. Hum Immunol 2023:S0198-8859(23)00068-X. [PMID: 37169599 DOI: 10.1016/j.humimm.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Human amnion epithelial cells (hAEC) can be efficiently isolated from full-term amnion membrane and have been gaining recognition as advanced medical products. Such cells originate directly from the embryo during the early phase of development and exert a crucial function in the establishment of a tolerogenic environment, to avoid maternal immune rejection. Amnion cell immuno-modulation may be exploited, but additional efforts are required to establish the mechanisms underlying such capacity. The way to fully clarify such an issue is so far long. Here we overview current knowledge on the effects on innate or adaptive immune cells offered by intact hAEC or secreted mediators, pinpointing the mechanisms to date elucidated by our group and others. We move from the description of hAEC general features to molecular intermediaries generating effects directly or indirectly on immune cells. We focus on the role of non-canonical HLA class I molecules, with emphasis on HLA-G, but expand such analysis on adenosinergic mediators, cytokines, and hAEC-derived microvesicles. Finally, we report the ongoing clinical trials exploiting hAEC multipotency and immune modulation.
Collapse
Affiliation(s)
- F Morandi
- UOSD Cell Factory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy.
| | - I Airoldi
- UOSD Cell Factory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - A Faini
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - A Horenstein
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - F Malavasi
- Laboratory of Immunogenetics, Department of Medical Sciences, University of Torino, 10126 Torino, Italy; Fondazione Ricerca Molinette, Torino, Italy
| | - N Matysiak
- Department of Histology and Cell Pathology in Zabrze, Medical University of Silesia in Katowice, Poland
| | - K Kopaczka
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - D Marimpietri
- UOSD Cell Factory, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - R Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Ferdousi F, Sasaki K, Fukumitsu S, Kuwata H, Nakajima M, Isoda H. A Descriptive Whole-Genome Transcriptomics Study in a Stem Cell-Based Tool Predicts Multiple Tissue-Specific Beneficial Potential and Molecular Targets of Carnosic Acid. Int J Mol Sci 2023; 24:ijms24098077. [PMID: 37175790 PMCID: PMC10179098 DOI: 10.3390/ijms24098077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Carnosic acid (CA) is a phenolic diterpene widely distributed in herbal plants, rosemary and sage. Although its medicinal properties, such as antioxidant, antimicrobial, and neuroprotective effects, have been well-documented, its relevant biochemical processes and molecular targets have not been fully explored yet. In the present study, we conducted an untargeted whole-genome transcriptomics analysis to investigate CA-induced early biological and molecular events in human amniotic epithelial stem cells (hAESCs) with the aim of exploring its multiple tissue-specific functionalities and potential molecular targets. We found that seven days of CA treatment in hAESCs could induce mesoderm-lineage-specific differentiation. Tissue enrichment analysis revealed that CA significantly enriched lateral plate mesoderm-originated cardiovascular and adipose tissues. Further tissue-specific PPI analysis and kinase and transcription factor enrichment analyses identified potential upstream regulators and molecular targets of CA in a tissue-specific manner. Gene ontology enrichment analyses revealed the metabolic, antioxidant, and antifibrotic activities of CA. Altogether, our comprehensive whole-genome transcriptomics analyses offer a thorough understanding of the possible underlying molecular mechanism of CA.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
| | - Satoshi Fukumitsu
- NIPPN Corporation, Tokyo 243-0041, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
| | | | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8572, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-0821, Japan
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba 305-8577, Japan
- MED R&D Corporation, Tsukuba 305-8572, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
11
|
Samandari MH, Tamizifar A, Hosseinian M, Adibi S, Razavi SM. Amniotic membrane as an accelator in mandibular bone defects repair. Dent Res J (Isfahan) 2023; 20:13. [PMID: 36820136 PMCID: PMC9937928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/06/2021] [Accepted: 01/24/2022] [Indexed: 02/24/2023] Open
Abstract
Background The fetal amniotic membrane is a biological graft with unique qualities which all lead to wound protection, reducing discomfort, and achieving adequate epithelialization. Materials and Methods In this animal study, the second and third premolars of the mandible of 4 dogs were extracted. After 4 weeks, 20 mm of mandibular premolar site area were resected on both sides. The created defects on both sides were filled with xenograft. On one side, an amniotic membrane was placed over the graft particles and the reflected flap was sutured. The amount of bone formation in the defects was measured after 4 weeks for two of the dogs and after 8 weeks for the other two, using a caliper. Three histopathological samples from both sides were taken. The collected data were subjected to statistical analysis (Wilcoxon signed-rank and paired sample t-test) using SPSS software at a significant P = 0.05. Results In the test group, the quantity of bone was 56.81, whereas in the control group bone quantity was 37.38 with statistically significant differences (P = 0.025). In the amniotic membrane group, the inflammation intensity after the graft procedure was moderate (50%) in comparison to the control group where the inflammation was severe (62.5%) (P = 0.041). Conclusion The amniotic membrane can induce positive osteoinduction effects and be helpful in repairmen of bone defects such as the natural periosteum.
Collapse
Affiliation(s)
- Mohammad Hasan Samandari
- Dental Implant Research Center, Department of Oral and Maxillofacial Surgery, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Mohammad Hasan Samandari, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| | - Alireza Tamizifar
- Dental Implant Research Center, Department of Oral and Maxillofacial Surgery, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Hosseinian
- Department of Oral and Maxillofacial Surgeon in Private Practice, Tehran, Iran
| | - Shahriar Adibi
- Department of Veterinary, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohammad Razavi
- Dental Implant Research Center,Department of Oral and Maxillofacial Pathology, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Basile M, Centurione L, Passaretta F, Stati G, Soritau O, Susman S, Gindraux F, Silini A, Parolini O, Di Pietro R. Mapping of the Human Amniotic Membrane: In Situ Detection of Microvesicles Secreted by Amniotic Epithelial Cells. Cell Transplant 2023; 32:9636897231166209. [PMID: 37077027 PMCID: PMC10126782 DOI: 10.1177/09636897231166209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/21/2023] Open
Abstract
The potential clinical applications of human amniotic membrane (hAM) and human amniotic epithelial cells (hAECs) in the field of regenerative medicine have been known in literature since long. However, it has yet to be elucidated whether hAM contains different anatomical regions with different plasticity and differentiation potential. Recently, for the first time, we highlighted many differences in terms of morphology, marker expression, and differentiation capabilities among four distinct anatomical regions of hAM, demonstrating peculiar functional features in hAEC populations. The aim of this study was to investigate in situ the ultrastructure of the four different regions of hAM by means of transmission electron microscopy (TEM) to deeply understand their peculiar characteristics and to investigate the presence and localization of secretory products because to our knowledge, there are no similar studies in the literature. The results of this study confirm our previous observations of hAM heterogeneity and highlight for the first time that hAM can produce extracellular vesicles (EVs) in a heterogeneous manner. These findings should be considered to increase efficiency of hAM applications within a therapeutic context.
Collapse
Affiliation(s)
- Mariangela Basile
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti-Pescara, Chieti, Italy
| | - Lucia Centurione
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Francesca Passaretta
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti-Pescara, Chieti, Italy
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta,” Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
13
|
Campinoti S, Almeida B, Goudarzi N, Bencina S, Grundland Freile F, McQuitty C, Natarajan D, Cox IJ, Le Guennec A, Khati V, Gaudenzi G, Gramignoli R, Urbani L. Rat liver extracellular matrix and perfusion bioreactor culture promote human amnion epithelial cell differentiation towards hepatocyte-like cells. J Tissue Eng 2023; 14:20417314231219813. [PMID: 38143931 PMCID: PMC10748678 DOI: 10.1177/20417314231219813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/25/2023] [Indexed: 12/26/2023] Open
Abstract
Congenital and chronic liver diseases have a substantial health burden worldwide. The most effective treatment available for these patients is whole organ transplantation; however, due to the severely limited supply of donor livers and the side effects associated with the immunosuppressive regimen required to accept allograft, the mortality rate in patients with end-stage liver disease is annually rising. Stem cell-based therapy aims to provide alternative treatments by either cell transplantation or bioengineered construct transplantation. Human amnion epithelial cells (AEC) are a widely available, ethically neutral source of cells with the plasticity and potential of multipotent stem cells and immunomodulatory properties of perinatal cells. AEC have been proven to be able to achieve functional improvement towards hepatocyte-like cells, capable of rescuing animals with metabolic disorders; however, they showed limited metabolic activities in vitro. Decellularised extracellular matrix (ECM) scaffolds have gained recognition as adjunct biological support. Decellularised scaffolds maintain native ECM components and the 3D architecture instrumental of the organ, necessary to support cells' maturation and function. We combined ECM-scaffold technology with primary human AEC, which we demonstrated being equipped with essential ECM-adhesion proteins, and evaluated the effects on AEC differentiation into functional hepatocyte-like cells (HLC). This novel approach included the use of a custom 4D bioreactor to provide constant oxygenation and media perfusion to cells in 3D cultures over time. We successfully generated HLC positive for hepatic markers such as ALB, CYP3A4 and CK18. AEC-derived HLC displayed early signs of hepatocyte phenotype, secreted albumin and urea, and expressed Phase-1 and -2 enzymes. The combination of liver-specific ECM and bioreactor provides a system able to aid differentiation into HLC, indicating that the innovative perfusion ECM-scaffold technology may support the functional improvement of multipotent and pluripotent stem cells, with important repercussions in the bioengineering of constructs for transplantation.
Collapse
Affiliation(s)
- Sara Campinoti
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Bruna Almeida
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Negin Goudarzi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Stefan Bencina
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
| | - Fabio Grundland Freile
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Department of Medical and Molecular Genetics, School of Basic and Medical Bioscience, Faculty of Life Science and Medicine, King’s College London, London, UK
| | - Claire McQuitty
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Dipa Natarajan
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - I Jane Cox
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Adrien Le Guennec
- Centre for Biomolecular Spectroscopy, Randall Centre for Cell and Molecular Biophysics, Kings College London, London, UK
| | - Vamakshi Khati
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Solna, Sweden
| | - Giulia Gaudenzi
- Department of Global Public Health, Karolinska Institutet, Solna, Sweden
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Solna, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Huddinge, Sweden
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
14
|
Samandari M, Tamizifar A, Hosseinian M, Adibi S, Razavi S. Amniotic membrane as an accelator in mandibular bone defects repair. Dent Res J (Isfahan) 2023. [DOI: 10.4103/1735-3327.367912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
15
|
Selection of red fluorescent protein for genetic labeling of mitochondria and intercellular transfer of viable mitochondria. Sci Rep 2022; 12:19841. [PMID: 36400807 PMCID: PMC9674635 DOI: 10.1038/s41598-022-24297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The phenomenon of intercellular mitochondrial transfer has attracted great attention in various fields of research, including stem cell biology. Elucidating the mechanism of mitochondrial transfer from healthy stem cells to cells with mitochondrial dysfunction may lead to the development of novel stem cell therapies to treat mitochondrial diseases, among other advances. To visually evaluate and analyze the mitochondrial transfer process, dual fluorescent labeling systems are often used to distinguish the mitochondria of donor and recipient cells. Although enhanced green fluorescent protein (EGFP) has been well-characterized for labeling mitochondria, other colors of fluorescent protein have been less extensively evaluated in the context of mitochondrial transfer. Here, we generated different lentiviral vectors with mitochondria-targeted red fluorescent proteins (RFPs), including DsRed, mCherry (both from Discosoma sp.) Kusabira orange (mKOκ, from Verrillofungia concinna), and TurboRFP (from Entacmaea quadricolor). Among these proteins, mitochondria-targeted DsRed and its variant mCherry often generated bright aggregates in the lysosome while other proteins did not. We further validated that TurboRFP-labeled mitochondria were successfully transferred from amniotic epithelial cells, one of the candidates for donor stem cells, to mitochondria-damaged recipient cells without losing the membrane potential. Our study provides new insight into the genetic labeling of mitochondria with red fluorescent proteins, which may be utilized to analyze the mechanism of intercellular mitochondrial transfer.
Collapse
|
16
|
Takano C, Horie M, Taiko I, Trinh QD, Kanemaru K, Komine-Aizawa S, Hayakawa S, Miki T. Inhibition of Epithelial-Mesenchymal Transition Maintains Stemness in Human Amniotic Epithelial Cells. Stem Cell Rev Rep 2022; 18:3083-3091. [PMID: 35931939 DOI: 10.1007/s12015-022-10420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 10/15/2022]
Abstract
Human amniotic epithelial cells (hAECs), which are a type of placental stem cell, express stem cell marker genes and are capable of differentiating into all three germ layers under appropriate culture conditions. hAECs are known to undergo TGF-β-dependent epithelial-mesenchymal transition (EMT); however, the impact of EMT on the stemness or differentiation of hAECs has not yet been determined. Here, we first confirmed that hAECs undergo EMT immediately after starting primary culture. Comprehensive transcriptome analysis using RNA-seq revealed that inhibition of TGF-β-dependent EMT maintained the expression of stemness-related genes, including NANOG and POU5F1, in hAECs. Moreover, the maintenance of stemness did not affect the nontumorigenic characteristics of hAECs. We showed for the first time that TGF-β-dependent EMT negatively affected the stemness of hAECs, providing novel insight into cellular processes of placental stem cells.
Collapse
Affiliation(s)
- Chika Takano
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan.,Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Isamu Taiko
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Quang Duy Trinh
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Kazunori Kanemaru
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Toshio Miki
- Department of Physiology, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Davidson JO, van den Heuij LG, Dhillon SK, Miller SL, Lim R, Jenkin G, Gunn AJ, Bennet L. Lack of Neuroprotection with a Single Intravenous Infusion of Human Amnion Epithelial Cells after Severe Hypoxia–Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2022; 23:ijms23158393. [PMID: 35955531 PMCID: PMC9369428 DOI: 10.3390/ijms23158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Hypoxic–ischemic encephalopathy (HIE) around the time of birth results from loss of oxygen (hypoxia) and blood supply (ischemia). Exogenous infusion of multi-potential cells, including human amnion epithelial cells (hAECs), can reduce hypoxic–ischemic (HI) brain injury. However, there are few data on treatment of severe HI in large animal paradigms at term. The aim of the current study was to determine whether infusion of hAECs early after injury may reduce brain damage after ischemia in near-term fetal sheep. Methods: Chronically instrumented fetal sheep (0.85 gestation) received 30 min of global cerebral ischemia followed by intravenous infusion of hAECs from 2 h after the end of ischemia (ischemia-hAEC, n = 6) or saline (ischemia-vehicle, n = 7). Sham control animals received sham ischemia with vehicle infusion (sham control, n = 8). Results: Ischemia was associated with significant suppression of EEG power and spectral edge frequency until the end of the experiment and a secondary rise in cortical impedance from 24 to 72 h, which were not attenuated by hAEC administration. Ischemia was associated with loss of neurons in the cortex, thalamus, striatum and hippocampus, loss of white matter oligodendrocytes and increased microglial numbers in the white matter, which were not affected by hAEC infusion. Conclusions: A single intravenous administration of hAECs did not reduce electrographic or histological brain damage after 30 min of global cerebral ischemia in near-term fetal sheep.
Collapse
Affiliation(s)
- Joanne O. Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
- Correspondence:
| | - Lotte G. van den Heuij
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| |
Collapse
|
18
|
Ferdousi F, Isoda H. Regulating Early Biological Events in Human Amniotic Epithelial Stem Cells Using Natural Bioactive Compounds: Extendable Multidirectional Research Avenues. Front Cell Dev Biol 2022; 10:865810. [PMID: 35433672 PMCID: PMC9011193 DOI: 10.3389/fcell.2022.865810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Stem cells isolated from perinatal tissue sources possess tremendous potential for biomedical and clinical applications. On the other hand, emerging data have demonstrated that bioactive natural compounds regulate numerous cellular and biochemical functions in stem cells and promote cell migration, proliferation, and attachment, resulting in maintaining stem cell proliferation or inducing controlled differentiation. In our previous studies, we have reported for the first time that various natural compounds could induce targeted differentiation of hAESCs in a lineage-specific manner by modulating early biological and molecular events and enhance the therapeutic potential of hAESCs through modulating molecular signaling. In this perspective, we will discuss the advantages of using naturally occurring active compounds in hAESCs and their potential implications for biological research and clinical applications.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,R&D Center for Tailor-made QOL, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
19
|
Extraembryonic Mesenchymal Stromal/Stem Cells in Liver Diseases: A Critical Revision of Promising Advanced Therapy Medicinal Products. Cells 2022; 11:cells11071074. [PMID: 35406638 PMCID: PMC8997603 DOI: 10.3390/cells11071074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Liver disorders have been increasing globally in recent years. These diseases are associated with high morbidity and mortality rates and impose high care costs on the health system. Acute liver failure, chronic and congenital liver diseases, as well as hepatocellular carcinoma have been limitedly treated by whole organ transplantation so far. But novel treatments for liver disorders using cell-based approaches have emerged in recent years. Extra-embryonic tissues, including umbilical cord, amnion membrane, and chorion plate, contain multipotent stem cells. The pre-sent manuscript discusses potential application of extraembryonic mesenchymal stromal/stem cells, focusing on the management of liver diseases. Extra-embryonic MSC are characterized by robust and constitutive anti-inflammatory and anti-fibrotic properties, indicating as therapeutic agents for inflammatory conditions such as liver fibrosis or advanced cirrhosis, as well as chronic inflammatory settings or deranged immune responses.
Collapse
|
20
|
Di Mattia M, Mauro A, Delle Monache S, Pulcini F, Russo V, Berardinelli P, Citeroni MR, Turriani M, Peserico A, Barboni B. Hypoxia-Mimetic CoCl2 Agent Enhances Pro-Angiogenic Activities in Ovine Amniotic Epithelial Cells-Derived Conditioned Medium. Cells 2022; 11:cells11030461. [PMID: 35159271 PMCID: PMC8834320 DOI: 10.3390/cells11030461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Amniotic epithelial stem cells (AECs) are largely studied for their pro-regenerative properties. However, it remains undetermined if low oxygen (O2) levels that AECs experience in vivo can be of value in maintaining their biological properties after isolation. To this aim, the present study has been designed to evaluate the effects of a hypoxia-mimetic agent, cobalt chloride (CoCl2), on AECs’ stemness and angiogenic activities. First, a CoCl2 dose-effect was performed to select the concentration able to induce hypoxia, through HIF-1α stabilization, without promoting any cytotoxicity effect assessed through the analysis of cell vitality, proliferation, and apoptotic-related events. Then, the identified CoCl2 dose was evaluated on the expression and angiogenic properties of AECs’ stemness markers (OCT-4, NANOG, SOX-2) by analysing VEGF expression, angiogenic chemokines’ profiles, and AEC-derived conditioned media activity through an in vitro angiogenic xeno-assay. Results demonstrated that AECs are sensitive to the cytotoxicity effects of CoCl2. The unique concentration leading to HIF-1α stabilization and nuclear translocation was 10 µM, preserving cell viability and proliferation up to 48 h. CoCl2 exposure did not modulate stemness markers in AECs while progressively decreasing VEGF expression. On the contrary, CoCl2 treatment promoted a significant short-term release of angiogenic chemokines in culture media (CM). The enrichment in bio-active factors was confirmed by the ability of CoCl2-derived CM to induce HUVEC growth and the cells’ organization in tubule-like structures. These findings demonstrate that an appropriate dose of CoCl2 can be adopted as a hypoxia-mimetic agent in AECs. The short-term, chemical-induced hypoxic condition can be targeted to enhance AECs’ pro-angiogenic properties by providing a novel approach for stem cell-free therapy protocols.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Annunziata Mauro
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
- Correspondence:
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.D.M.); (F.P.)
- StemTeCh Group, Via L. Polacchi 11, 66100 Chieti, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.D.M.); (F.P.)
| | - Valentina Russo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Paolo Berardinelli
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Maria Rita Citeroni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Maura Turriani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Alessia Peserico
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| | - Barbara Barboni
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (V.R.); (P.B.); (M.R.C.); (M.T.); (A.P.); (B.B.)
| |
Collapse
|
21
|
Russo V, El Khatib M, Prencipe G, Citeroni MR, Faydaver M, Mauro A, Berardinelli P, Cerveró-Varona A, Haidar-Montes AA, Turriani M, Di Giacinto O, Raspa M, Scavizzi F, Bonaventura F, Stöckl J, Barboni B. Tendon Immune Regeneration: Insights on the Synergetic Role of Stem and Immune Cells during Tendon Regeneration. Cells 2022; 11:434. [PMID: 35159244 PMCID: PMC8834336 DOI: 10.3390/cells11030434] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/11/2022] Open
Abstract
Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.
Collapse
Affiliation(s)
- Valentina Russo
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Giuseppe Prencipe
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maria Rita Citeroni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Melisa Faydaver
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Adrián Cerveró-Varona
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Arlette A. Haidar-Montes
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Maura Turriani
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| | - Marcello Raspa
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Ferdinando Scavizzi
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Fabrizio Bonaventura
- National Research Council (CNR), Campus International Development (EMMA-INFRAFRONTIER-IMPC), Institute of Biochemistry and Cellular Biology (IBBC), 00015 Monterotondo Scalo, Italy; (M.R.); (F.S.); (F.B.)
| | - Johannes Stöckl
- Centre for Pathophysiology, Infectiology and Immunology, Institute of Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Barbara Barboni
- Unit of Basic and Applied Sciences, Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, 64100 Teramo, Italy; (V.R.); (M.E.K.); (M.R.C.); (M.F.); (A.M.); (P.B.); (A.C.-V.); (A.A.H.-M.); (M.T.); (O.D.G.); (B.B.)
| |
Collapse
|
22
|
Tanaka M, Tokodai K, Sato M, Yamada S, Okita H, Ito T, Saito M, Hoshiai T, Miyagi S, Miki T, Unno M, Kamei T, Goto M. Distribution of Amniotic Epithelial Cells After Intraportal Infusion in a Rat Model. Transplant Proc 2022; 54:513-515. [PMID: 35039159 DOI: 10.1016/j.transproceed.2021.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Human amniotic epithelial cells (hAECs) are increasingly gaining attention as novel sources for cell transplantation. In clinical practice, intraportal infusion is considered one of the leading approaches for transplantation; however, this has not yet been validated for in vivo transplantation of hAECs. Thus, this study aims to investigate the distribution of hAECs post intraportal infusion and compare this distribution with other cell administration routes. METHODS Wistar/ST rats were divided into 4 groups (n = 3 for each) based on cell administration route: group 1, intraportal; group 2, the spleen; group 3, tail veins; and group 4, penile veins. Subsequently, hAECs (1 × 107) stained with XenoLight DiR were infused into each recipient. Cell distribution was evaluated using an in vivo imaging system. RESULTS DiR signals were detected in the rat livers of groups 1 and 2 with those in group 2 being much weaker than those in group 1. Necrosis of small intestine was observed in 2 cases in group 2. DiR signals were detected in the lungs in groups 3 and 4 because of systemic circulation; however, all the animals died within 20 minutes of infusions. CONCLUSIONS Intraportal infusion is potentially applicable for safe and efficient transplantation of hAECs into the liver, whereas hAECs administration via the spleen carries a risk of thrombosis in a narrow portal vein system. Our results also indicate that hAECs administration via the systemic circulation could cause pulmonary embolism in clinical settings.
Collapse
Affiliation(s)
- Miyako Tanaka
- Department of Surgery, Tohoku University, Sendai, Japan
| | | | - Masato Sato
- Department of Surgery, Tohoku University, Sendai, Japan
| | - Shuhei Yamada
- Department of Surgery, Tohoku University, Sendai, Japan
| | - Hitomi Okita
- Regenerative Medicine Unit of Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Takako Ito
- Regenerative Medicine Unit of Clinical Research, Innovation and Education Center, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Department of Maternal and Fetal Therapeutics, Tohoku University, Sendai, Japan
| | - Tetsuro Hoshiai
- Department of Obstetrics and Gynecology, Tohoku University, Sendai, Japan
| | | | - Toshio Miki
- Department of Physiology, Nihon University, Tokyo, Japan
| | - Michiaki Unno
- Department of Surgery, Tohoku University, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University, Sendai, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
23
|
Ji J, Yang L. Amniotic stem cells and their exosomes. REGENERATIVE NEPHROLOGY 2022:169-188. [DOI: 10.1016/b978-0-12-823318-4.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
24
|
Hu S, Wang Z, Jin C, Chen Q, Fang Y, Jin J, Chen J, Lu L, Tian H, Xu J, Gao F, Wang J, Zhang J, Cui HP, Xu GT, Ou Q. Human amniotic epithelial cell-derived extracellular vesicles provide an extracellular matrix-based microenvironment for corneal injury repair. J Tissue Eng 2022; 13:20417314221122123. [PMID: 36093432 PMCID: PMC9452818 DOI: 10.1177/20417314221122123] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
To study the biological functions and applications of human amniotic epithelial cell-derived extracellular vesicles (hAEC-EVs), the cargos of hAEC-EVs were analyzed using miRNA sequencing and proteomics analysis. The hAECs and hAEC-EVs in this study had specific characteristics. Multi-omics analyses showed that extracellular matrix (ECM) reorganization, inhibition of excessive myofibroblasts, and promotion of target cell adhesion to the ECM were their primary functions. We evaluated the application of hAEC-EVs for corneal alkali burn healing in rabbits and elucidated the fundamental mechanisms. Slit-lamp images revealed that corneal alkali burns induced central epithelial loss, stromal haze, iris, and pupil obscurity in rabbits. Slit-lamp examination and histological findings indicated that hAEC-EVs facilitated re-epithelialization of the cornea after alkali burns, reduced scar formation and promoted the restoration of corneal tissue transparency. Significantly fewer α-SMA-positive myofibroblasts were observed in the hAEC-EV-treated group than the PBS group. HAEC-EVs effectively promoted the proliferation and migration of hCECs and hCSCs in vitro and activated the focal adhesion signaling pathway. We demonstrated that hAEC-EVs were excellent cell-free candidates for the treatment of ECM lesion-based diseases, including corneal alkali burns. HAEC-EVs promoted ECM reorganization and cell adhesion of target tissues or cells via orderly activation of the focal adhesion signaling pathway.
Collapse
Affiliation(s)
- Shuqin Hu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Physiology, Second Military Medical University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qizhen Chen
- Department of Obstetrics and Gynecology, Wusong Branch, Zhongshan Hospital Fudan University, Shanghai, China
| | - Yuchen Fang
- Department of General Surgery, Affiliated Renhe Hospital, Shanghai University, Shanghai, China
| | - Jiahui Jin
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jie Chen
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jingying Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Hong-Ping Cui
- Department of Ophthalmology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Wang XY, Guan XH, Yu ZP, Wu J, Huang QM, Deng KY, Xin HB. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively. Stem Cell Res Ther 2021; 12:501. [PMID: 34507619 PMCID: PMC8431893 DOI: 10.1186/s13287-021-02570-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/22/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hyperpigmentation of skin is caused by an imbalance between the melanosome/melanin synthesis in melanocytes and the melanosome/melanin degradation in keratinocytes. Although studies showed that stem cells play a role in hypopigmentation, the underlying mechanisms are far not elucidated. Human amniotic stem cells (hASCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) were considered to be a promising cell source for stem cells-based therapy of many diseases clinically due to their pluripotent potential, no tumorigenesis and immunogenicity, no ethical issues, and potent paracrine effects. Here, we reported that both hASCs and their conditional medium (CM) had a potent anti-hyperpigmentation in skin in vivo and in vitro. METHODS hAESCs and hAMSCs were identified by RT-PCR, flow cytometric analysis and immunofluorescence. Effects of hASCs and hASC-CM on pigmentation were evaluated in B16F10 cells stimulated with α-melanocyte-stimulating hormone (α-MSH), and mouse ears or human skin substitutes treated with ultraviolet radiation B (UVB). Expressions of the key proteins related with melanogenesis and autophagic flux were detected by western blot in B16F10 cells for further exploring the effects and the underlying mechanisms of hAESC-CM and hAMSC-CM on melanogenesis and melanosome degradation. The hAMSCs exosomes-derived miRNAs were determined by sequencing. RT-PCR, western blot, melanin content analysis and luciferase activity assay were used to determine the hypopigmentation of miR-181a-5p and miR-199a. RESULTS In our study, we observed that both hASCs and their CM significantly alleviated the α-MSH in B16F10 cells or UVB-induced hyperpigmentation in mouse ears or human skin substitutes by suppressing melanin synthesis and promoting melanosome degradation in vivo and in vitro. Furthermore, we demonstrated that miR-181a-5p and miR-199a derived from hASCs exosomes remarkably inhibited melanogenesis by suppressing MITF (microphthalmia-associated transcription factor) which is a master regulator for governing melanogenesis and promoting melanosome degradation through activating autophagy, respectively. CONCLUSIONS Our studies provided strong evidence that the conditional medium and exosomes derived from hAMSCs inhibit skin hyperpigmentation by suppressing melanogenesis and promoting melanosome degradation, indicating that the hASCs exosomes or their released microRNAs might be as reagents for cell-free therapy in hyperpigmented disorders clinically.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China.
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, 330031, Jiangxi, China.
- College of Life Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi, China.
| |
Collapse
|
26
|
Di Mattia M, Mauro A, Citeroni MR, Dufrusine B, Peserico A, Russo V, Berardinelli P, Dainese E, Cimini A, Barboni B. Insight into Hypoxia Stemness Control. Cells 2021; 10:cells10082161. [PMID: 34440930 PMCID: PMC8394199 DOI: 10.3390/cells10082161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
- Correspondence: ; Tel.: +39-086-1426-6888; Fax: +39-08-6126-6860
| | - Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Beatrice Dufrusine
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
- Center of Advanced Studies and Technology (CAST), 66100 Chieti, Italy
| | - Alessia Peserico
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Enrico Dainese
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.D.M.); (M.R.C.); (A.P.); (V.R.); (P.B.); (E.D.); (B.B.)
| |
Collapse
|
27
|
Takano C, Grubbs BH, Ishige M, Ogawa E, Morioka I, Hayakawa S, Miki T. Clinical perspective on the use of human amniotic epithelial cells to treat congenital metabolic diseases with a focus on maple syrup urine disease. Stem Cells Transl Med 2021; 10:829-835. [PMID: 33547875 PMCID: PMC8133340 DOI: 10.1002/sctm.20-0225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022] Open
Abstract
Congenital metabolic diseases are a group of hereditary disorders caused by the deficiency of a single specific enzyme activity. Without appropriate therapy, affected patients suffer severe neurologic disability and eventual death. The current mainstays of management attempt to slow disease progression, but are not curative. Several of these diseases have demonstrated significant benefits from liver transplantation; however, this approach is limited by the morbidity associated with this invasive procedure and a shortage of donor organs. Therefore, there is a need to establish a new strategy for improving the quality of a life for these patients. One potential solution is regenerative therapy using hepatocytes generated from stem cells. Herein, we discuss pertinent issues necessary for clinical application of the human amniotic epithelial cell, a type of placental stem cell. Focusing on maple syrup urine disease as an example, where liver replacement is an effective therapy, we explore this approach from a clinician's perspective.
Collapse
Affiliation(s)
- Chika Takano
- Division of Microbiology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Brendan H. Grubbs
- Department of Obstetrics and GynecologyKeck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mika Ishige
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Erika Ogawa
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Ichiro Morioka
- Department of Pediatrics and Child HealthNihon University School of MedicineTokyoJapan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and MicrobiologyNihon University School of MedicineTokyoJapan
| | - Toshio Miki
- Department of PhysiologyNihon University School of MedicineTokyoJapan
| |
Collapse
|
28
|
Human Amniotic Epithelial Cells as a Tool to Investigate the Effects of Cyanidin 3- O-Glucoside on Cell Differentiation. Int J Mol Sci 2021; 22:ijms22073768. [PMID: 33916494 PMCID: PMC8038597 DOI: 10.3390/ijms22073768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
Cyanidin, a kind of anthocyanin, has been reported to have chemotherapeutic activities in humans. Human amniotic epithelial cells (hAECs) are considered a potential source of pluripotent stem cells. hAECs have been used as a novel tool in regenerative cellular therapy and cell differentiation studies. In this study, to explore the effects of cyanidin-3-O-glucoside (Cy3G) on hAECs and their mechanisms, we investigated the transcriptomic changes in the Cy3G-treated cells using microarray analysis. Among the differentially expressed genes (Fold change > 1.1; p-value < 0.05), 109 genes were upregulated and 232 were downregulated. Ratios of upregulated and downregulated genes were 0.22% and 0.47% of the total expressed genes, respectively. Next, we explored the enriched gene ontology, i.e., the biological process, molecular function, and cellular component of the 37 upregulated (>1.3-fold change) and 124 downregulated (<1.3-fold change) genes. Significantly enriched biological processes by the upregulated genes included “response to muscle activity,” and the genes involved in this gene ontology (GO) were Metrnl and SRD5A1, which function in the adipocyte. On the other hand, the cell cycle biological process was significantly enriched by the downregulated genes, including some from the SMC gene family. An adipogenesis-associated gene DDX6 was also included in the cell cycle biological process. Thus, our findings suggest the prospects of Cy3G in modulating adipocyte differentiation in hAECs.
Collapse
|
29
|
Bejaoui M, Ferdousi F, Zheng YW, Oda T, Isoda H. Regulating cell fate of human amnion epithelial cells using natural compounds: an example of enhanced neural and pigment differentiation by 3,4,5-tri-O-caffeoylquinic acid. Cell Commun Signal 2021; 19:26. [PMID: 33627134 PMCID: PMC7903623 DOI: 10.1186/s12964-020-00697-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Over the past years, Human Amnion Epithelial Cells (hAECs), a placental stem cell, are gaining higher attention from the scientific community as they showed several advantages over other types of stem cells, including availability, easy accessibility, reduced rejection rate, non-tumorigenicity, and minimal legal constraint. Recently, natural compounds are used to stimulate stem cell differentiation and proliferation and to enhance their disease-treating potential. A polyphenolic compound 3,4,5-Tri-O-Caffeoylquinic Acid (TCQA) has been previously reported to induce human neural stem cell differentiation and may affect melanocyte stem cell differentiation as well. In this study, TCQA was tested on 3D cultured hAECs after seven days of treatment, and then, microarray gene expression profiling was conducted of TCQA-treated and untreated control cells on day 0 and day 7. Analyses revealed that TCQA treatment significantly enriched pigment and neural cells sets; besides, genes linked with neurogenesis, oxidation-reduction process, epidermal development, and metabolism were positively regulated. Interestingly, TCQA stimulated cell cycle arrest-related pathways and differentiation signaling. On the other hand, TCQA decreased interleukins and cytokines expression and this due to its anti-inflammatory properties as a polyphenolic compound. Results were validated to highlight the main activities of TCQA on hAECs, including differentiation, cell cycle arrest, and anti-inflammatory. This study highlights the important role of hAECs in regenerative medicine and the use of natural compounds to regulate their fate. Video abstract.
Collapse
Affiliation(s)
- Meriem Bejaoui
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yun-Wen Zheng
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research On the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
30
|
Dubey SK, Alexander A, Sivaram M, Agrawal M, Singhvi G, Sharma S, Dayaramani R. Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials. Curr Stem Cell Res Ther 2020; 15:187-201. [PMID: 31957615 DOI: 10.2174/1574888x15666200103124821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
Abstract
Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.
Collapse
Affiliation(s)
- Sunil K Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup-781125, Guwahati (Assam), India
| | - Munnangi Sivaram
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Mukta Agrawal
- Rungta College of Pharmaceutical Sciences and Research, Kohka- Kurud Road, Bhilai, Chhattisgarh 490024, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan 333031, India
| | - Swapnil Sharma
- Department of Pharmacy, Banastahli Vidyapith, Tonk, Rajasthan 304022, India
| | | |
Collapse
|
31
|
Silini AR, Di Pietro R, Lang-Olip I, Alviano F, Banerjee A, Basile M, Borutinskaite V, Eissner G, Gellhaus A, Giebel B, Huang YC, Janev A, Kreft ME, Kupper N, Abadía-Molina AC, Olivares EG, Pandolfi A, Papait A, Pozzobon M, Ruiz-Ruiz C, Soritau O, Susman S, Szukiewicz D, Weidinger A, Wolbank S, Huppertz B, Parolini O. Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature. Front Bioeng Biotechnol 2020; 8:610544. [PMID: 33392174 PMCID: PMC7773933 DOI: 10.3389/fbioe.2020.610544] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.
Collapse
Affiliation(s)
- Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Bologna, Italy
| | - Asmita Banerjee
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Mariangela Basile
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Veronika Borutinskaite
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Aleksandar Janev
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kupper
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ana Clara Abadía-Molina
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Enrique G. Olivares
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Unidad de Gestión Clínica Laboratorios, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | - Assunta Pandolfi
- StemTeCh Group, G. d’Annunzio Foundation, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- Vascular and Stem Cell Biology, Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, CAST (Center for Advanced Studies and Technology, ex CeSI-MeT), Chieti, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Michela Pozzobon
- Stem Cells and Regenerative Medicine Lab, Department of Women’s and Children’s Health, University of Padova, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Dariusz Szukiewicz
- Department of General and Experimental Pathology with Centre for Preclinical Research and Technology (CEPT), Medical University of Warsaw, Warsaw, Poland
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
32
|
Udalamaththa VL, Kaluarachchi A, Wijeratne S, Udagama PV. Therapeutic uses of post-partum tissue-derived mesenchymal stromal cell secretome. Indian J Med Res 2020; 152:541-552. [PMID: 34145093 PMCID: PMC8224162 DOI: 10.4103/ijmr.ijmr_1450_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 12/24/2022] Open
Abstract
Human post-partum tissue mesenchymal stromal cells (hPPT-MSCs) are widely used in research to investigate their differentiation capabilities and therapeutic effects as potential agents in cell-based therapy. This is ascribed to the advantages offered by the use of MSCs isolated from hPPT over other MSC sources. A paradigm shift in related research is evident that focuses on the secretome of the human MSCs (hMSCs), as therapeutic effects of hMSCs are attributed more so to their secreted growth factors, cytokines and chemokines and to the extracellular vesicles (EVs), all of which are components of the hMSC secretome. Positive therapeutic effects of the hPPT-MSC secretome have been demonstrated in diseases related to skin, kidney, heart, nervous system, cartilage and bones, that have aided fast recovery by replacing damaged, non-functional tissues, via differentiating and regenerating cells. Although certain limitations such as short half -life of the secretome components and irregular secreting patterns exist in secretome therapy, these issues are successfully addressed with the use of cutting-edge technologies such as genome editing and recombinant cytokine treatment. If the current limitations can be successfully overcome, the hPPT-MSC secretome including its EVs may be developed into a cost-effective therapeutic agent amenable to be used against a wide range of diseases/disorders.
Collapse
Affiliation(s)
| | - Athula Kaluarachchi
- Department of Obstetrics & Gynaecology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | | | - Preethi Vidya Udagama
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
33
|
Xu Z, Liu C, Wang R, Gao X, Hao C, Liu C. A combination of lycopene and human amniotic epithelial cells can ameliorate cognitive deficits and suppress neuroinflammatory signaling by choroid plexus in Alzheimer's disease rat. J Nutr Biochem 2020; 88:108558. [PMID: 33249184 DOI: 10.1016/j.jnutbio.2020.108558] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 10/09/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
Neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to be correlated with cognitive deficits in Alzheimer's disease (AD). Previously, some studies have demonstrated that lycopene (LYCO) or human amniotic epithelial cells (HAECs) could attenuate inflammation in AD. Specifically, the choroid plexus (CP), an epithelial layer that forms the blood-cerebrospinal fluid barrier, is able to modulate the cognitive function, through changes in the neuroinflammatory response and in brain immune surveillance. However, it is unclear if LYCO can interact with HAECs to improve neuroinflammation at the CP. Thus, this study chose the region of interest, considered the feasibility of using a combination of LYCO and HAECs, as a therapeutic agent for immunomodulatory effects at the CP in an acutely induced AD rat model. Results showed that oral administration of LYCO, HAECs transplantation, and their combination significantly improved cognitive deficits in water maze test, decreased the level of proinflammatory mediators (TNF-α and IL-1β), increased the level of anti-inflammatory mediators (IL-10 and TGF-β1) in the cerebro-spinal fluid, and hippocampal tissue. Interestingly, LYCO administration, HAECs transplantation and their combination reversed the Aβ1-42 induced up-regulation of Toll like receptor 4 and nuclear factor-κB p65 mRNA and protein expressions at the CP. This study provided the novel experimental evidence for the influence of co-treatment with LYCO and HAECs on immunomodulatory capabilities of CP. It could also warrant therapeutic window for the pathophysiology of AD and the associated underlying mechanisms at the CP.
Collapse
Affiliation(s)
- Zhiguo Xu
- Xiehe Union East China Stem Cell & Gene Engineering Corp., Ltd; Zhejiang Umbilical Cord Blood Hematopoietic Stem Cell Bank; Huzhou, Zhejiang Province, P. R. China.
| | - Chao Liu
- Xiehe Union East China Stem Cell & Gene Engineering Corp., Ltd; Zhejiang Umbilical Cord Blood Hematopoietic Stem Cell Bank; Huzhou, Zhejiang Province, P. R. China.
| | - Rui Wang
- Department of Physiology, Huzhou University, Huzhou, Zhejiang Province, P. R. China.
| | - Xiren Gao
- Department of Physiology, Huzhou University, Huzhou, Zhejiang Province, P. R. China
| | - Chao Hao
- Xiehe Union East China Stem Cell & Gene Engineering Corp., Ltd; Zhejiang Umbilical Cord Blood Hematopoietic Stem Cell Bank; Huzhou, Zhejiang Province, P. R. China
| | - Chongbin Liu
- Department of Physiology, Huzhou University, Huzhou, Zhejiang Province, P. R. China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, Zhejiang Province, P. R. China.
| |
Collapse
|
34
|
Uchida Y, Ferdousi F, Zheng YW, Oda T, Isoda H. Global Gene Expression Profiling Reveals Isorhamnetin Induces Hepatic-Lineage Specific Differentiation in Human Amniotic Epithelial Cells. Front Cell Dev Biol 2020; 8:578036. [PMID: 33224947 PMCID: PMC7674172 DOI: 10.3389/fcell.2020.578036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022] Open
Abstract
Human amnion epithelial cells (hAECs), derived from discarded term placenta, is anticipated as a new stem cell resource because of their advantages over embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), such as no risk of tumorigenicity and minimal ethical issue. hAECs have been reported to differentiate into hepatic-like cells (HLCs) with variable functionalities suitable for cell-based therapy of end-stage liver diseases, drug screening, and drug toxicity tests. On the other hand, a new research stream has been evolving to use natural compounds as stimulants of stem cell differentiation because of their high availability and minimum side effects. Isorhamnetin is a naturally occurring flavonoid commonly found in fruits and vegetables and has been reported to improve hepatic fibrosis and steatosis. In this present study, we have screened the differentiation potential of isorhamnetin in hAECs. The cells were grown on 3D cell culture and were treated with 20 μM of synthesized isorhamnetin for 10 days without adding any additional growth factors. DNA microarray global gene expression analysis was conducted for differentially expressed genes between isorhamnetin-treated and untreated control cells, gene expression validation was carried out using RT-qPCR method, and finally, several hepatic functions were assessed. Microarray analysis showed that isorhamnetin could activate essential biological processes, molecular functions, and signaling pathways for hepatic differentiation. Hepatic progenitor markers, EPCAM and DLK1, were upregulated in the isorhamnetin-treated hAECs. AFP was downregulated, while ALB was upregulated on Day 10. Furthermore, isorhamnetin-treated cells could show increased CYP enzyme mRNA levels, ICG uptake and release, glycogen storage activity, and urea secretion. Additionally, isorhamnetin-treated cells did not show any trace of transdifferentiation evident by significant downregulation of several colon- and cholangiocyte-specific markers. However, longer treatment with isorhamnetin did not promote hepatic maturation. Altogether, our findings indicate that isorhamnetin has a promising effect on directing the hepatic-lineage specific differentiation in hAECs.
Collapse
Affiliation(s)
- Yoshiaki Uchida
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Japan.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan.,AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, University of Tsukuba, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
35
|
Qiu C, Ge Z, Cui W, Yu L, Li J. Human Amniotic Epithelial Stem Cells: A Promising Seed Cell for Clinical Applications. Int J Mol Sci 2020; 21:ijms21207730. [PMID: 33086620 PMCID: PMC7594030 DOI: 10.3390/ijms21207730] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Perinatal stem cells have been regarded as an attractive and available cell source for medical research and clinical trials in recent years. Multiple stem cell types have been identified in the human placenta. Recent advances in knowledge on placental stem cells have revealed that human amniotic epithelial stem cells (hAESCs) have obvious advantages and can be used as a novel potential cell source for cellular therapy and clinical application. hAESCs are known to possess stem-cell-like plasticity, immune-privilege, and paracrine properties. In addition, non-tumorigenicity and a lack of ethical concerns are two major advantages compared with embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). All of the characteristics mentioned above and other additional advantages, including easy accessibility and a non-invasive application procedure, make hAESCs a potential ideal cell type for use in both research and regenerative medicine in the near future. This review article summarizes current knowledge on the characteristics, therapeutic potential, clinical advances and future challenges of hAESCs in detail.
Collapse
Affiliation(s)
- Chen Qiu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Zhen Ge
- Institute of Materia Medica, Hangzhou Medical College, Hangzhou 310013, China;
| | - Wenyu Cui
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
| | - Luyang Yu
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| | - Jinying Li
- MOE Laboratory of Biosystems Homeostasis & Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (C.Q.); (W.C.)
- Correspondence: (L.Y.); (J.L.)
| |
Collapse
|
36
|
Biniazan F, Manzari-Tavakoli A, Safaeinejad F, Moghimi A, Rajaei F, Niknejad H. The differentiation effect of bone morphogenetic protein (BMP) on human amniotic epithelial stem cells to express ectodermal lineage markers. Cell Tissue Res 2020; 383:751-763. [PMID: 32960356 DOI: 10.1007/s00441-020-03280-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/12/2020] [Indexed: 11/28/2022]
Abstract
Stem cells are a promising tool for treatment of a variety of degenerative diseases. Human amniotic epithelial stem cells (hAECs) have desirable and unique characteristics that make them a proper candidate for cell therapy. In this study, we have investigated the effects of BMP-4 (bone morphogenetic protein-4) and its inhibition on differentiation of AECs into ectodermal lineages. Analysis of AEC-derived ectodermal lineages (neurons and keratinocytes) was performed by using flow cytometry technique for Map2 and β-tubulin (as neuron markers), Olig2 and MBP (as oligodendrocyte markers), and K14 and K10 (as keratinocyte markers). The results of this study illustrated that noggin (as BMP antagonist), BMP4, and both BMP4 and heparin (together or separately) increased neural and keratinocyte marker expression, respectively. The expression of markers MAP2, olig2, and K14 in hAECs has been significantly decreased 21 days after exposure to differentiation medium (without growth factors) compared with isolation day, which supports the hypothesis that AECs can be dedifferentiated into pluripotent cells. Moreover, activation and inhibition of BMP signaling have no effects on viability of hAECs. The results of this study showed that BMP signaling and its inhibition are the key factors for ectodermal lineage differentiation of amnion-derived stem cells.
Collapse
Affiliation(s)
- Felor Biniazan
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Asma Manzari-Tavakoli
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fahimeh Safaeinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Moghimi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Qazvin University of Medical Science, Qazvin, Iran.
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
38
|
El Khatib M, Mauro A, Di Mattia M, Wyrwa R, Schweder M, Ancora M, Lazzaro F, Berardinelli P, Valbonetti L, Di Giacinto O, Polci A, Cammà C, Schnabelrauch M, Barboni B, Russo V. Electrospun PLGA Fiber Diameter and Alignment of Tendon Biomimetic Fleece Potentiate Tenogenic Differentiation and Immunomodulatory Function of Amniotic Epithelial Stem Cells. Cells 2020; 9:cells9051207. [PMID: 32413998 PMCID: PMC7290802 DOI: 10.3390/cells9051207] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Injured tendons are challenging in their regeneration; thus, tissue engineering represents a promising solution. This research tests the hypothesis that the response of amniotic epithelial stem cells (AECs) can be modulated by fiber diameter size of tendon biomimetic fleeces. Particularly, the effect of electrospun poly(lactide-co-glycolide) (PLGA) fleeces with highly aligned microfibers possessing two different diameter sizes (1.27 and 2.5 µm: ha1- and ha2-PLGA, respectively) was tested on the ability of AECs to differentiate towards the tenogenic lineage by analyzing tendon related markers (Collagen type I: COL1 protein and mRNA Scleraxis: SCX, Tenomodulin: TNMD and COL1 gene expressions) and to modulate their immunomodulatory properties by investigating the pro- (IL-6 and IL-12) and anti- (IL-4 and IL-10) inflammatory cytokines. It was observed that fiber alignment and not fiber size influenced cell morphology determining the morphological change of AECs from cuboidal to fusiform tenocyte-like shape. Instead, fleece mechanical properties, cell proliferation, tenogenic differentiation, and immunomodulation were regulated by changing the ha-PLGA microfiber diameter size. Specifically, higher DNA quantity and better penetration within the fleece were found on ha2-PLGA, while ha1-PLGA fleeces with small fiber diameter size had better mechanical features and were more effective on AECs trans-differentiation towards the tenogenic lineage by significantly translating more efficiently SCX into the downstream effector TNMD. Moreover, the fiber diameter of 1.27 µm induced higher expression of pro-regenerative, anti-inflammatory interleukins mRNA expression (IL-4 and IL-10) with favorable IL-12/IL-10 ratio with respect to the fiber diameter of 2.5 µm. The obtained results demonstrate that fiber diameter is a key factor to be considered when designing tendon biomimetic fleece for tissue repair and provide new insights into the importance of controlling matrix parameters in enhancing cell differentiation and immunomodulation either for the cells functionalized within or for the transplanted host tissue.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
- Correspondence:
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Martina Schweder
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany;
| | - Massimo Ancora
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | - Francesco Lazzaro
- Research & Development Department, Assut Europe S.p.A., Magliano dei Marsi, 67062 L’Aquila, Italy;
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Andrea Polci
- Laboratory of Diagnosis and surveillance of foreign diseases, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy;
| | - Cesare Cammà
- Laboratory of Molecular Biology and Genomic, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “Giuseppe Caporale, 64100 Teramo, Italy; (M.A.); (C.C.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (P.B.); (L.V.); (O.D.G.); (B.B.); (V.R.)
| |
Collapse
|
39
|
Characterization of Endocannabinoid System and Interleukin Profiles in Ovine AEC: Cannabinoid Receptors Type-1 and Type-2 as Key Effectors of Pro-Inflammatory Response. Cells 2020; 9:cells9041008. [PMID: 32325674 PMCID: PMC7226065 DOI: 10.3390/cells9041008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 12/23/2022] Open
Abstract
Amniotic epithelial cells (AEC) have been proposed as promising clinical candidates for regenerative medicine therapies due to their immunomodulatory capacity. In this context, the endocannabinoid system (ECS) has been identified as mediating the immune-stem cell dialogue, even if no information on AEC is available to date. Therefore, this study was designed to assess whether ECS is involved in tuning the constitutive and lipopolysaccharide (LPS)-induced ovine AEC anti-inflammatory and pro-inflammatory interleukin (IL-10, IL-4, and IL-12) profiles. Firstly, interleukins and ECS expressions were studied at different stages of gestation. Then, the role of cannabinoid receptors 1 and 2 (CB1 and CB2) on interleukin expression and release was investigated in middle stage AEC using selective agonists and antagonists. AEC displayed a degradative more than a synthetic endocannabinoid metabolism during the early and middle stages of gestation. At the middle stage, cannabinoid receptors mediated the balance between pro-inflammatory (IL-12) and anti-inflammatory (IL-4 and IL-10) interleukins. The activation of both receptors mediated an overall pro-inflammatory shift-CB1 reduced the anti-inflammatory and CB2 increased the pro-inflammatory interleukin release, particularly after LPS stimulation. Altogether, these data pave the way for the comprehension of AEC mechanisms tuning immune-modulation, crucial for the development of new AEC-based therapy protocols.
Collapse
|
40
|
Ferdousi F, Kondo S, Sasaki K, Uchida Y, Ohkohchi N, Zheng YW, Isoda H. Microarray analysis of verbenalin-treated human amniotic epithelial cells reveals therapeutic potential for Alzheimer's Disease. Aging (Albany NY) 2020; 12:5516-5538. [PMID: 32224504 PMCID: PMC7138585 DOI: 10.18632/aging.102985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/24/2020] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) has become a major world health problem as the population ages. There is still no available treatment that can stop or reverse the progression of AD. Human amnion epithelial cells (hAECs), an alternative source for stem cells, have shown neuroprotective and neurorestorative potentials when transplanted in vivo. Besides, studies have suggested that stem cell priming with plant-derived bioactive compounds can enhance stem cell proliferation and differentiation and improve the disease-treating capability of stem cells. Verbenalin is an iridoid glucoside found in medicinal herbs of Verbenaceae family. In the present study, we have conducted microarray gene expression profiling of verbenalin-treated hAECs to explore its therapeutic potential for AD. Gene set enrichment analysis revealed verbenalin treatment significantly enriched AD-associated gene sets. Genes associated with lysosomal dysfunction, pathologic angiogenesis, pathologic protein aggregation, circadian rhythm, age-related neurometabolism, and neurogenesis were differentially expressed in the verbenalin-treated hAECs compared to control cells. Additionally, the neuroprotective effect of verbenalin was confirmed against amyloid beta-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. Our present study is the first to report the therapeutic potential of verbenalin for AD; however, further in-depth research in the in vitro and in vivo models are required to confirm our preliminary findings.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan
| | - Shinji Kondo
- R&D Center for Tailor-Made QOL, University of Tsukuba, Tsukuba 305-8550, Ibaraki, Japan
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan
| | - Yoshiaki Uchida
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba 305-8577, Ibaraki, Japan.,R&D Center for Tailor-Made QOL, University of Tsukuba, Tsukuba 305-8550, Ibaraki, Japan.,National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| |
Collapse
|
41
|
Ghamari SH, Abbasi-Kangevari M, Tayebi T, Bahrami S, Niknejad H. The Bottlenecks in Translating Placenta-Derived Amniotic Epithelial and Mesenchymal Stromal Cells Into the Clinic: Current Discrepancies in Marker Reports. Front Bioeng Biotechnol 2020; 8:180. [PMID: 32232037 PMCID: PMC7083014 DOI: 10.3389/fbioe.2020.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Placenta-derived amniotic cells have prominent features for application in regenerative medicine. However, there are still discrepancies in the characterization of human amniotic epithelial and mesenchymal stromal cells. It seems crucial that the characterization of human amniotic membrane cells be investigated to determine whether there are currently discrepancies in their characterization reports. In addition, possible causes for the witnessed discrepancies need to be addressed toward paving the way for further clinical application and safer practices. The objective of this review is to investigate the marker characterization as well as the potential causes of the discrepancies in the previous reports on placenta-derived amniotic epithelial and mesenchymal stromal cells. The current discrepancies could be potentially due to reasons including passage number and epithelial to mesenchymal transition (EMT), cell heterogeneity, isolation protocols and cross-contamination, the region of cell isolation on placental disk, measuring methods, and gestational age.
Collapse
Affiliation(s)
- Seyyed-Hadi Ghamari
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasi-Kangevari
- Student Research Committee, Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Insulin-producing organoids engineered from islet and amniotic epithelial cells to treat diabetes. Nat Commun 2019; 10:4491. [PMID: 31582751 PMCID: PMC6776618 DOI: 10.1038/s41467-019-12472-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Maintaining long-term euglycemia after intraportal islet transplantation is hampered by the considerable islet loss in the peri-transplant period attributed to inflammation, ischemia and poor angiogenesis. Here, we show that viable and functional islet organoids can be successfully generated from dissociated islet cells (ICs) and human amniotic epithelial cells (hAECs). Incorporation of hAECs into islet organoids markedly enhances engraftment, viability and graft function in a mouse type 1 diabetes model. Our results demonstrate that the integration of hAECs into islet cell organoids has great potential in the development of cell-based therapies for type 1 diabetes. Engineering of functional mini-organs using this strategy will allow the exploration of more favorable implantation sites, and can be expanded to unlimited (stem-cell-derived or xenogeneic) sources of insulin-producing cells. Islet transplantation is a feasible approach to treat type I diabetes, however inflammation and poor vascularisation impair long-term engraftment. Here the authors show that incorporating human amniotic epithelial cells into islet organoids improves engraftment and function of organoids, through enhanced revascularisation.
Collapse
|
43
|
Furuya K, Zheng YW, Sako D, Iwasaki K, Zheng DX, Ge JY, Liu LP, Furuta T, Akimoto K, Yagi H, Hamada H, Isoda H, Oda T, Ohkohchi N. Enhanced hepatic differentiation in the subpopulation of human amniotic stem cells under 3D multicellular microenvironment. World J Stem Cells 2019; 11:705-721. [PMID: 31616545 PMCID: PMC6789189 DOI: 10.4252/wjsc.v11.i9.705] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND To solve the problem of liver transplantation donor insufficiency, an alternative cell transplantation therapy was investigated. We focused on amniotic epithelial cells (AECs) as a cell source because, unlike induced pluripotent stem cells, they are cost-effective and non-tumorigenic. The utilization of AECs in regenerative medicine, however, is in its infancy. A general profile for AECs has not been comprehensively analyzed. Moreover, no hepatic differentiation protocol for AECs has yet been established. To this end, we independently compiled human AEC libraries, purified amniotic stem cells (ASCs), and co-cultured them with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cell (HUVECs) in a 3D system which induces functional hepatic organoids.
AIM To characterize AECs and generate functional hepatic organoids from ASCs and other somatic stem cells
METHODS AECs, MSCs, and HUVECs were isolated from the placentae and umbilical cords of cesarean section patients. Amnion and primary AEC stemness characteristics and heterogeneity were analyzed by immunocytochemistry, Alkaline phosphatase (AP) staining, and flow cytometry. An adherent AEC subpopulation was selected and evaluated for ASC purification quality by a colony formation assay. AEC transcriptomes were compared with those for other hepatocytes cell sources by bioinformatics. The 2D and 3D culture were compared by relative gene expression using several differentiation protocols. ASCs, MSCs, and HUVECs were combined in a 3D co-culture system to generate hepatic organoids whose structure was compared with a 3D AEC sphere and whose function was elucidated by immunofluorescence imaging, periodic acid Schiff, and an indocyanine green (ICG) test.
RESULTS AECs have certain stemness markers such as EPCAM, SSEA4, and E-cadherin. One AEC subpopulation was also either positive for AP staining or expressed the TRA-1-60 and TRA-1-81 stemness markers. Moreover, it could form colonies and its frequency was enhanced ten-fold in the adherent subpopulation after selective primary passage. Bioinformatics analysis of ribose nucleic acid sequencing revealed that the total AEC gene expression was distant from those of pluripotent stem cells and hepatocytes but some gene expression overlapped among these cells. TJP1, associated with epidermal growth factor receptor, and MET, associated with hepatocyte growth factor receptor, were upregulated and may be important for hepatic differentiation. In conventional flat culture, the cells turned unviable and did not readily differentiate into hepatocytes. In 3D culture, however, hepatic gene expression of the AEC sphere was elevated even under a two-step differentiation protocol. Furthermore, the organoids derived from the MSC and HUVEC co-culture showed 3D structure with polarity, hepatic-like glycogen storage, and ICG absorption/elimination.
CONCLUSION Human amniotic epithelial cells are heterogeneous and certain subpopulations have high stemness. Under a 3D co-culture system, functional hepatic organoids were generated in a multicellular microenvironment.
Collapse
Affiliation(s)
- Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Daisuke Sako
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Kenichi Iwasaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Dong-Xu Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Li-Ping Liu
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Institute of Regenerative Medicine and Affiliated Hospital, Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazunori Akimoto
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Hiroya Yagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
44
|
Hua D, Ju Z, Gan X, Wang Q, Luo C, Gu J, Yu Y. Human amniotic mesenchymal stromal cells alleviate acute liver injury by inhibiting the pro-inflammatory response of liver resident macrophage through autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:392. [PMID: 31555706 DOI: 10.21037/atm.2019.08.83] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The activation and polarization of macrophages are crucial during the pathogenesis of liver injury induced by the toxin. Human amniotic mesenchymal stromal cells (hAMSCs) are newly identified mesenchymal stem cells and have been shown to have an immunoregulatory ability for multiple autoimmune diseases. Methods Mice were intraperitoneally injected with Acetaminophen (APAP) to establish a liver injury model. hAMSCs were injected through the tail vein, and the liver function was observed through a liver function and pathology analysis. To test the regulative ability of hAMSCs in vitro, the supernatant of hAMSCs were collected and co-cultured with Kupffer cells (KCs). Liposome was used to abolish the function of KCs in vivo. Results Infusion of hAMSCs reduced the level of liver function injury and inflammation expression in APAP-induced liver injury. hAMSCs markedly promoted M2 polarization of KCs instead of M1 polarization in vitro. Furthermore, the mechanism study also proved that hAMSCs reduced autophagy, as revealed by down-regulated LC3B-II levels. The elimination of KCs in vivo abolished the protective ability of hAMSCs in liver injury, which resulted in a significant increase of liver pathogenesis along with an increase in alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) levels. Conclusions Our results proved that hAMSCs suppressed M1 polarization and promoted M2 polarization of KCs through regulating autophagy in the model of APAP-treated livers. Thus, the injury of the liver was attenuated. This study provides us a new therapeutic strategy for the disease of acute liver injury.
Collapse
Affiliation(s)
- Dongxu Hua
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| | - Zheng Ju
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China.,Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Xiaojie Gan
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China.,Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Qi Wang
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China.,Translational Medicine Research Center of Affiliated Jiangning Hospital, Liver Transplantation Center of First Affiliated Hospital, and Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing 210000, China
| | - Chenghuan Luo
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| | - Jian Gu
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| | - Yue Yu
- The First School of Clinical Medicine & Hepatobiliary Center of First Affiliated Hospital, Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing 210000, China.,Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, Nanjing 210000, China
| |
Collapse
|
45
|
Ferdousi F, Sasaki K, Uchida Y, Ohkohchi N, Zheng YW, Isoda H. Exploring the Potential Role of Rosmarinic Acid in Neuronal Differentiation of Human Amnion Epithelial Cells by Microarray Gene Expression Profiling. Front Neurosci 2019; 13:779. [PMID: 31396047 PMCID: PMC6667736 DOI: 10.3389/fnins.2019.00779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023] Open
Abstract
In the present study, we conducted microarray gene expression profiling to explore the direction of differentiation of human amnion epithelial cells (hAECs) treated with rosmarinic acid (RA). hAECs have several clinical advantages over other types of stem cells, including availability, low immunogenicity, low rejection rate, non-tumorigenicity, and less ethical constraint. On the other hand, RA is a phenolic compound having several health benefits, including neuroprotective and antidepressant-like activities. In this study, hAECs were isolated from discarded term placenta and were treated with 20 μM RA for 7 days. Microarray gene expression profiling was conducted for three biological replicates of RA-treated and untreated control cells on day 0 and day 7. Gene set enrichment analysis, and gene annotation and pathway analysis were conducted using online data mining tools GSEA and DAVID. Gene expression profiling showed that RA treatment biased hAECs toward ectodermal lineage progression, regulated transcription factors involved in neuronal differentiation, regulated neural specific epigenetic modifiers and several extracellular signaling pathways of neural induction, and significantly inhibited Notch signaling pathway. Gene expression profiling of RA-treated hAECs reveals for the first time a potential role of RA in neural induction and neuronal differentiation of hAECs. Having a naturally occurring compound as differentiation inducer as well as a readily available source of stem cells would have great advantages for the cell-based therapies. Findings from our genome-wide analysis could provide a foundation for further in-depth investigation.
Collapse
Affiliation(s)
- Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan
| | - Kazunori Sasaki
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshiaki Uchida
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa, University of Tsukuba, Tsukuba, Japan.,National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
46
|
In Vitro Effect of Estradiol and Progesterone on Ovine Amniotic Epithelial Cells. Stem Cells Int 2019; 2019:8034578. [PMID: 31049069 PMCID: PMC6458847 DOI: 10.1155/2019/8034578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 01/26/2023] Open
Abstract
Amniotic epithelial cells (AECs), an emerging source of extrafoetal stem cells, have recently attracted attention for their great regenerative potential. Since AEC amplifications are accompanied by the loss of their native epithelial phenotype and by the progressive reduction of relevant biological properties, the issue to be addressed is the development of effective culture protocols. In this context, recently, it has been demonstrated that progesterone (P4) supplementation during ovine AEC (oAEC) expansion could prevent the undesirable epithelial-mesenchymal transition (EMT). In contrast, there is no information to date on the role of the other pregnancy steroids in culture. With this aim, the present study has been designed to clarify the impact of estradiol (E2), alone or in combination with P4 (12.5 μM and 25 μM), during oAEC amplification. Steroid supplementations were assessed by testing oAEC proliferation, stemness, EMT, and osteogenic or chondrogenic plasticity. The results indicated that EMT can be prevented exclusively in the presence of high doses of P4, while it occurred rapidly in cells exposed to E2 as denoted by protein (cytokeratin-8 and alpha-SMA) and gene expression (vimentin and snail) profiles. Moreover, steroid exposure was able to influence highly oAEC plasticity. Particularly, P4-treated cells displayed a precommitment towards osteogenic lineage, confirmed by the upregulation of OCN, RUNX2, and the greater deposition of calcium nodules. Conversely, P4 exposure inhibited oAEC chondrogenic differentiation, which was induced in E2-treated cells as confirmed by the upregulation of chondrogenesis-related genes (SOX9, ACAN, and COL2A1) and by the accumulation of Alcian blue-positive extracellular matrix. Simultaneously, E2-treated cells remained unresponsive to osteogenic inductive stimuli. In conclusion, media supplementation with high doses of steroids may be adopted to modulate phenotype and plasticity during oAEC amplification. Relevantly, the osteo or chondro steroid-induced precommitment may open unprecedented cell-based therapies to face the unsolved orthopaedic issues related to osteochondral regeneration.
Collapse
|
47
|
Clinical hepatocyte transplantation. GASTROENTEROLOGIA Y HEPATOLOGIA 2019; 42:202-208. [DOI: 10.1016/j.gastrohep.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 12/18/2022]
|
48
|
Conese M, Beccia E, Carbone A, Castellani S, Di Gioia S, Corti F, Angiolillo A, Colombo C. The role of stem cells in cystic fibrosis disease modeling and drug discovery. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1549480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Massimo Conese
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Elisa Beccia
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Unit, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy
| | - Stefano Castellani
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Laboratory of Experimental and Regenerative Medicine, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Fabiola Corti
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Carla Colombo
- Department of Pathophysiology and Transplantation, Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
49
|
Prakoeswa CRS, Pratiwi FD, Herwanto N, Citrashanty I, Indramaya DM, Murtiastutik D, Sukanto H, Rantam FA. The effects of amniotic membrane stem cell-conditioned medium on photoaging. J DERMATOL TREAT 2018; 30:478-482. [PMID: 30265171 DOI: 10.1080/09546634.2018.1530438] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background: Photoaging is a complex biologic process that affects various layers of the skin with the major damage seen in the connective tissue of the dermis. Although rarely fatal, photoaging can significantly contribute to a loss of quality of life; therefore, it deserves attention. Researchers are continually searching for new compounds to develop rejuvenation therapies. Nowadays, the stem cell population has been discovered, and it shows capability to rejuvenate the skin. Material and methods: This was an analytic experimental research conducted on a total of 48 women who were randomized into two groups: 24 women received amniotic membrane stem cell-conditioned medium (AMSC-CM) and the other 24 women received normal saline (NS). We applied the drug for three times with an interval of 2 weeks. Microneedling was used to enhance epidermal penetration. We evaluated the progression of photoaging on Weeks 0, 4, and 8, as well as the side effects. Results: The improvement in photoaging after treatment showed significant better effects with the AMSC-CM than with NS (p < .05). There were minimal transient side effects in either of the study groups. Conclusion: AMSC-CM has the capability to improve clinical photoaging and is a promising option for rejuvenation therapy.
Collapse
Affiliation(s)
- Cita Rosita Sigit Prakoeswa
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | | | - Nanny Herwanto
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Irmadita Citrashanty
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Diah Mira Indramaya
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Dwi Murtiastutik
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Hari Sukanto
- a Faculty of Medicine, Department of Dermatology and Venereology , Universitas Airlangga - Dr. Soetomo Teaching Hospital , Surabaya , Indonesia
| | - Fedik A Rantam
- c Stem Cell Laboratory , Institute of Tropical Disease, Universitas Airlangga , Surabaya , Indonesia.,d Virology and Immunology Laboratory, Faculty of Veterinary Medicine, Department of Microbiology , Universitas Airlangga , Surabaya , Indonesia
| |
Collapse
|
50
|
Menon R, Richardson LS, Lappas M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta 2018; 79:40-45. [PMID: 30454905 DOI: 10.1016/j.placenta.2018.11.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022]
Abstract
Preterm birth is the single major cause of infant mortality. Short and long term outcomes for infants are often worse in cases of preterm premature rupture of the fetal membranes (pPROM). Thus, increased knowledge of the structure characteristics of fetal membranes as well as the mechanisms of membrane rupture are essential if we are to develop effective treatment strategies to prevent pPROM. In this review, we focus on the role of inflammation and senescence in fetal membrane biology.
Collapse
Affiliation(s)
- Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.
| | - Lauren S Richardson
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia.
| |
Collapse
|