1
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Tang D, Qiu R, Qiu X, Sun M, Su M, Tao Z, Zhang L, Tao S. Dietary restriction rescues 5-fluorouracil-induced lethal intestinal toxicity in old mice by blocking translocation of opportunistic pathogens. Gut Microbes 2024; 16:2355693. [PMID: 38780487 PMCID: PMC11123560 DOI: 10.1080/19490976.2024.2355693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.
Collapse
Affiliation(s)
- Duozhuang Tang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Liudkovska V, Krawczyk PS, Brouze A, Gumińska N, Wegierski T, Cysewski D, Mackiewicz Z, Ewbank JJ, Drabikowski K, Mroczek S, Dziembowski A. TENT5 cytoplasmic noncanonical poly(A) polymerases regulate the innate immune response in animals. SCIENCE ADVANCES 2022; 8:eadd9468. [PMID: 36383655 PMCID: PMC9668313 DOI: 10.1126/sciadv.add9468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Innate immunity is the first line of host defense against pathogens. Here, through global transcriptome and proteome analyses, we uncover that newly described cytoplasmic poly(A) polymerase TENT-5 (terminal nucleotidyltransferase 5) enhances the expression of secreted innate immunity effector proteins in Caenorhabditis elegans. Direct RNA sequencing revealed that multiple mRNAs with signal peptide-encoding sequences have shorter poly(A) tails in tent-5-deficient worms. Those mRNAs are translated at the endoplasmic reticulum where a fraction of TENT-5 is present, implying that they represent its direct substrates. Loss of tent-5 makes worms more susceptible to bacterial infection. Notably, the role of TENT-5 in innate immunity is evolutionarily conserved. Its orthologs, TENT5A and TENT5C, are expressed in macrophages and induced during their activation. Analysis of macrophages devoid of TENT5A/C revealed their role in the regulation of secreted proteins involved in defense response. In summary, our study reveals cytoplasmic polyadenylation to be a previously unknown component of the posttranscriptional regulation of innate immunity in animals.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Paweł S Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aleksandra Brouze
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Natalia Gumińska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Tomasz Wegierski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Zuzanna Mackiewicz
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jonathan J Ewbank
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, Marseille, France
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
5
|
Torrens G, Escobar-Salom M, Oliver A, Juan C. Activity of mammalian peptidoglycan-targeting immunity against Pseudomonas aeruginosa. J Med Microbiol 2020; 69:492-504. [PMID: 32427563 DOI: 10.1099/jmm.0.001167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen's biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa. All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
6
|
Dickerhof N, Isles V, Pattemore P, Hampton MB, Kettle AJ. Exposure of Pseudomonas aeruginosa to bactericidal hypochlorous acid during neutrophil phagocytosis is compromised in cystic fibrosis. J Biol Chem 2019; 294:13502-13514. [PMID: 31341024 DOI: 10.1074/jbc.ra119.009934] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloperoxidase is a major neutrophil antimicrobial protein, but its role in immunity is often overlooked because individuals deficient in this enzyme are usually in good health. Within neutrophil phagosomes, myeloperoxidase uses superoxide generated by the NADPH oxidase to oxidize chloride to the potent bactericidal oxidant hypochlorous acid (HOCl). In this study, using phagocytosis assays and LC-MS analyses, we monitored GSH oxidation in Pseudomonas aeruginosa to gauge their exposure to HOCl inside phagosomes. Doses of reagent HOCl that killed most of the bacteria oxidized half the cells' GSH, producing mainly glutathione disulfide (GSSG) and other low-molecular-weight disulfides. Glutathione sulfonamide (GSA), a HOCl-specific product, was also formed. When neutrophils phagocytosed P. aeruginosa, half of the bacterial GSH was lost. Bacterial GSA production indicated that HOCl had reacted with the bacterial cells, oxidized their GSH, and was sufficient to be solely responsible for bacterial killing. Inhibition of NADPH oxidase and myeloperoxidase lowered GSA formation in the bacterial cells, but the bacteria were still killed, presumably by compensatory nonoxidative mechanisms. Of note, bacterial GSA formation in neutrophils from patients with cystic fibrosis (CF) was normal during early phagocytosis, but it was diminished at later time points, which was mirrored by a small decrease in bacterial killing. In conclusion, myeloperoxidase generates sufficient HOCl within neutrophil phagosomes to kill ingested bacteria. The unusual kinetics of phagosomal HOCl production in CF neutrophils confirm a role for the cystic fibrosis transmembrane conductance regulator in maintaining HOCl production in neutrophil phagosomes.
Collapse
Affiliation(s)
- Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand.
| | - Vivienne Isles
- Children's Outreach Nursing Service, Christchurch Hospital, Christchurch 8011, New Zealand
| | - Philip Pattemore
- Department of Paediatrics, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
7
|
Yengkhom O, Shalini KS, Subramani PA, Michael RD. Stimulation of non-specific immunity, gene expression, and disease resistance in Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), by the methanolic extract of the marine macroalga, Caulerpa scalpelliformis. Vet World 2019; 12:271-276. [PMID: 31040570 PMCID: PMC6460875 DOI: 10.14202/vetworld.2019.271-276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/11/2019] [Indexed: 01/08/2023] Open
Abstract
AIM The objective of the present study was to test the immunostimulating potential of marine macroalga, Caulerpa scalpelliformis, in terms of non-specific immune responses, gene expression, and disease resistance of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758). MATERIALS AND METHODS O. niloticus was injected intraperitoneally with three different doses of methanol extract of C. scalpelliformis (CSME) (2 mg/kg, 20 mg/kg, or 200 mg/kg body weight), or MacroGard™ (commercial immunostimulant, positive control, and 20 mg/kg body weight), or distilled water (untreated control). In one set of fish, 5 days post-injection, serum lysozyme, myeloperoxidase, and antiprotease activities were assayed. 24 h after injection, gene expression was analyzed in a separate set of fish. To another set of fish, 1 week post-administration of the products, fish were challenged with lethal dose 50 (LD50) dose of a live virulent pathogen, Aeromonas hydrophila and subsequent resistance to it was noted in terms of cumulative percent mortality. RESULTS CSME increased serum lysozyme, myeloperoxidase, and antiprotease activities. There was an increase in the expression of lysozyme gene in the spleen of treated fish. Mid dose of CSME caused the minimum mortality of 10% (consequent relative percentage survival = 73) which is comparable to that of the positive control. CONCLUSION CSME is considered to have the potential to be developed into an immunostimulant for finfish aquaculture.
Collapse
Affiliation(s)
- Omita Yengkhom
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - Konda Subramanian Shalini
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - P. A. Subramani
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| | - R. Dinakaran Michael
- Centre for Fish Immunology, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, India
| |
Collapse
|
8
|
Goodale BC, Rayack EJ, Stanton BA. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells. Toxicol Appl Pharmacol 2017. [PMID: 28625800 DOI: 10.1016/j.taap.2017.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection.
Collapse
Affiliation(s)
- Britton C Goodale
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States.
| | - Erica J Rayack
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, United States
| |
Collapse
|
9
|
Interactions between Neutrophils and Pseudomonas aeruginosa in Cystic Fibrosis. Pathogens 2017; 6:pathogens6010010. [PMID: 28282951 PMCID: PMC5371898 DOI: 10.3390/pathogens6010010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/03/2017] [Indexed: 12/23/2022] Open
Abstract
Cystic fibrosis (CF) affects 70,000 patients worldwide. Morbidity and mortality in CF is largely caused by lung complications due to the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Cystic fibrosis airway inflammation is mediated by robust infiltration of polymorphonuclear neutrophil granulocytes (PMNs, neutrophils). Neutrophils are not capable of clearing lung infections and contribute to tissue damage by releasing their dangerous cargo. Pseudomonas aeruginosa is an opportunistic pathogen causing infections in immunocompromised individuals. P. aeruginosa is a main respiratory pathogen in CF infecting most patients. Although PMNs are key to attack and clear P. aeruginosa in immunocompetent individuals, PMNs fail to do so in CF. Understanding why neutrophils cannot clear P. aeruginosa in CF is essential to design novel therapies. This review provides an overview of the antimicrobial mechanisms by which PMNs attack and eliminate P. aeruginosa. It also summarizes current advances in our understanding of why PMNs are incapable of clearing P. aeruginosa and how this bacterium adapts to and resists PMN-mediated killing in the airways of CF patients chronically infected with P. aeruginosa.
Collapse
|
10
|
Gela A, Bhongir RKV, Mori M, Keenan P, Mörgelin M, Erjefält JS, Herwald H, Egesten A, Kasetty G. Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics. PLoS One 2016; 11:e0146192. [PMID: 26731746 PMCID: PMC4712133 DOI: 10.1371/journal.pone.0146192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucociliary clearance and structural remodeling of the airways. In addition, antimicrobial proteins that are constitutively expressed or induced during inflammatory conditions are an important part of the airway innate host defense. In the present study, we show that osteopontin (OPN), a multifunctional glycoprotein that is highly upregulated in the airways of COPD patients co-localizes with several antimicrobial proteins expressed in the airways. In vitro, OPN bound lactoferrin, secretory leukocyte peptidase inhibitor (SLPI), midkine, human beta defensin-3 (hBD-3), and thymic stromal lymphopoietin (TSLP) but showed low or no affinity for lysozyme and LL-37. Binding of OPN impaired the antibacterial activity against the important bacterial pathogens Streptococcus pneumoniae and Pseudomonas aeruginosa. Interestingly, OPN reduced lysozyme-induced killing of S. pneumoniae, a finding that could be explained by binding of OPN to the bacterial surface, thereby shielding the bacteria. A fragment of OPN generated by elastase of P. aeruginosa retained some inhibitory effect. Some antimicrobial proteins have additional functions. However, the muramidase-activity of lysozyme and the protease inhibitory function of SLPI were not affected by OPN. Taken together, OPN can contribute to the impairment of innate host defense by interfering with the function of antimicrobial proteins, thus increasing the vulnerability to acquire infections during COPD.
Collapse
Affiliation(s)
- Anele Gela
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Ravi K. V. Bhongir
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Michiko Mori
- Airway Inflammation Unit, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - Paul Keenan
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Matthias Mörgelin
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Jonas S. Erjefält
- Airway Inflammation Unit, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - Heiko Herwald
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Gopinath Kasetty
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
- * E-mail:
| |
Collapse
|
11
|
A Moraxella catarrhalis two-component signal transduction system necessary for growth in liquid media affects production of two lysozyme inhibitors. Infect Immun 2014; 83:146-60. [PMID: 25312959 DOI: 10.1128/iai.02486-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There are a paucity of data concerning gene products that could contribute to the ability of Moraxella catarrhalis to colonize the human nasopharynx. Inactivation of a gene (mesR) encoding a predicted response regulator of a two-component signal transduction system in M. catarrhalis yielded a mutant unable to grow in liquid media. This mesR mutant also exhibited increased sensitivity to certain stressors, including polymyxin B, SDS, and hydrogen peroxide. Inactivation of the gene (mesS) encoding the predicted cognate sensor (histidine) kinase yielded a mutant with the same inability to grow in liquid media as the mesR mutant. DNA microarray and real-time reverse transcriptase PCR analyses indicated that several genes previously shown to be involved in the ability of M. catarrhalis to persist in the chinchilla nasopharynx were upregulated in the mesR mutant. Two other open reading frames upregulated in the mesR mutant were shown to encode small proteins (LipA and LipB) that had amino acid sequence homology to bacterial adhesins and structural homology to bacterial lysozyme inhibitors. Inactivation of both lipA and lipB did not affect the ability of M. catarrhalis O35E to attach to a human bronchial epithelial cell line in vitro. Purified recombinant LipA and LipB fusion proteins were each shown to inhibit human lysozyme activity in vitro and in saliva. A lipA lipB deletion mutant was more sensitive than the wild-type parent strain to killing by human lysozyme in the presence of human apolactoferrin. This is the first report of the production of lysozyme inhibitors by M. catarrhalis.
Collapse
|
12
|
Liu Y, Di ME, Chu HW, Liu X, Wang L, Wenzel S, Di YP. Increased susceptibility to pulmonary Pseudomonas infection in Splunc1 knockout mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:4259-68. [PMID: 24048904 DOI: 10.4049/jimmunol.1202340] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The airway epithelium is the first line of host defense against pathogens. The short palate, lung, and nasal epithelium clone (SPLUNC)1 protein is secreted in respiratory tracts and is a member of the bacterial/permeability increasing (BPI) fold-containing protein family, which shares structural similarities with BPI-like proteins. On the basis of its homology with BPIs and restricted expression of SPLUNC1 in serous cells of submucosal glands and surface epithelial cells of the upper respiratory tract, SPLUNC1 is thought to possess antimicrobial activity in host defense. SPLUNC1 is also reported to have surfactant properties, which may contribute to anti-biofilm defenses. The objective of this study was to determine the in vivo functions of SPLUNC1 following Pseudomonas aeruginosa infection and to elucidate the underlying mechanism by using a knockout (KO) mouse model with a genetic ablation of Splunc1. Splunc1 KO mice showed accelerated mortality and increased susceptibility to P. aeruginosa infection with significantly decreased survival rates, increased bacterial burdens, exaggerated tissue injuries, and elevated proinflammatory cytokine levels as compared with those of their wild-type littermates. Increased neutrophil infiltration in Splunc1 KO mice was accompanied by elevated chemokine levels, including Cxcl1, Cxcl2, and Ccl20. Furthermore, the expression of several epithelial secretory proteins and antimicrobial molecules was considerably suppressed in the lungs of Splunc1 KO mice. The deficiency of Splunc1 in mouse airway epithelium also results in increased biofilm formation of P. aeruginosa. Taken together, our results support that the ablation of Splunc1 in mouse airways affects the mucociliary clearance, resulting in decreased innate immune response during Pseudomonas-induced respiratory infection.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15260
| | | | | | | | | | | | | |
Collapse
|
13
|
Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV. J Bacteriol 2013; 195:3125-34. [PMID: 23645601 DOI: 10.1128/jb.00291-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is a commensal bacterium found in the gastrointestinal tract of most mammals, including humans, and is one of the leading causes of nosocomial infections. One of the hallmarks of E. faecalis pathogenesis is its unusual ability to tolerate high concentrations of lysozyme, which is an important innate immune component of the host. Previous studies have shown that the presence of lysozyme leads to the activation of SigV, an extracytoplasmic function (ECF) sigma factor in E. faecalis, and that the deletion of sigV increases the susceptibility of the bacterium toward lysozyme. Here, we describe the contribution of Eep, a membrane-bound zinc metalloprotease, to the activation of SigV under lysozyme stress by its effects on the stability of the anti-sigma factor RsiV. We demonstrate that the Δeep mutant phenocopies the ΔsigV mutant in lysozyme, heat, ethanol, and acid stress susceptibility. We also show, using an immunoblot analysis, that in an eep deletion mutant, the anti-sigma factor RsiV is only partially degraded after lysozyme exposure, suggesting that RsiV is processed by unknown protease(s) prior to the action of Eep. An additional observation is that the deletion of rsiV, which results in constitutive SigV expression, leads to chaining of cells, suggesting that SigV might be involved in regulating cell wall-modifying enzymes important in cell wall turnover. We also demonstrate that, in the absence of eep or sigV, enterococci bind significantly more lysozyme, providing a plausible explanation for the increased sensitivity of these mutants toward lysozyme.
Collapse
|
14
|
Bhavsar T, Liu M, Liu X, Cantor J. Aerosolized recombinant human lysozyme enhances the bactericidal effect of tobramycin in a hamster model of Pseudomonas aeruginosa-induced pneumonia. Exp Lung Res 2011; 37:536-41. [PMID: 21967196 DOI: 10.3109/01902148.2011.609578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies from this laboratory have shown that aerosolized recombinant human lysozyme (rhLZ) mitigates Pseudomonas aeruginosa (PA)-induced pneumonia. In the current investigation, our laboratory tested the hypothesis that aerosolized rhLZ can potentiate the effects of tobramycin (TBMN), thereby reducing the effective dose of this agent in the treatment of PA-induced pneumonia. Syrian hamsters were instilled intratracheally with PA, then exposed to an aerosol containing either 1% rhLZ, 3 μg TBMN, or a combination of both agents. In contrast to the initial studies with rhLZ, which involved 3 separate aerosol exposures, only a single treatment was used in the current investigation. Twenty-four hours after completion of the aerosol regimen, the following parameters were measured: (1) whole-lung colony-forming units (CFU), (2) total bronchoalveolar lavage fluid (BALF) CFU, (3) lung histopathology, and (4) total BALF neutrophils. The combination of rhLZ and TBMN significantly reduced whole-lung and BALF CFU, as well as the inflammatory index, compared to TBMN alone. Similar results were seen in vitro with regard to bactericidal activity. These findings provide a rationale for clinical testing of rhLZ as an adjunct to commercial antibiotic treatment.
Collapse
Affiliation(s)
- Tapan Bhavsar
- Department of Pharmacy and Allied Health Sciences, St John's University, New York, New York, USA
| | | | | | | |
Collapse
|
15
|
Mutations of the Listeria monocytogenes peptidoglycan N-deacetylase and O-acetylase result in enhanced lysozyme sensitivity, bacteriolysis, and hyperinduction of innate immune pathways. Infect Immun 2011; 79:3596-606. [PMID: 21768286 DOI: 10.1128/iai.00077-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that is naturally resistant to lysozyme. Recently, it was shown that peptidoglycan modification by N-deacetylation or O-acetylation confers resistance to lysozyme in various Gram-positive bacteria, including L. monocytogenes. L. monocytogenes peptidoglycan is deacetylated by the action of N-acetylglucosamine deacetylase (Pgd) and acetylated by O-acetylmuramic acid transferase (Oat). We characterized Pgd(-), Oat(-), and double mutants to determine the specific role of L. monocytogenes peptidoglycan acetylation in conferring lysozyme sensitivity during infection of macrophages and mice. Pgd(-) and Pgd(-) Oat(-) double mutants were attenuated approximately 2 and 3.5 logs, respectively, in vivo. In bone-marrow derived macrophages, the mutants demonstrated intracellular growth defects and increased induction of cytokine transcriptional responses that emanated from a phagosome and the cytosol. Lysozyme-sensitive mutants underwent bacteriolysis in the macrophage cytosol, resulting in AIM2-dependent pyroptosis. Each of the in vitro phenotypes was rescued upon infection of LysM(-) macrophages. The addition of extracellular lysozyme to LysM(-) macrophages restored cytokine induction, host cell death, and L. monocytogenes growth inhibition. This surprising observation suggests that extracellular lysozyme can access the macrophage cytosol and act on intracellular lysozyme-sensitive bacteria.
Collapse
|
16
|
Voet A, Callewaert L, Ulens T, Vanderkelen L, Vanherreweghe JM, Michiels CW, De Maeyer M. Structure based discovery of small molecule suppressors targeting bacterial lysozyme inhibitors. Biochem Biophys Res Commun 2011; 405:527-32. [PMID: 21256115 DOI: 10.1016/j.bbrc.2011.01.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 01/15/2011] [Indexed: 11/28/2022]
Abstract
The production of lysozyme inhibitors, competitively binding to the lysozyme active site, is a bacterial strategy to prevent the lytic activity of host lysozymes. Therefore, suppression of the lysozyme-inhibitor interaction is an interesting new approach for drug development since restoration of the bacterial lysozyme sensitivity will support bacterial clearance from the infected sites. Using molecular modelling techniques the interaction of the Salmonella PliC inhibitor with c-type lysozyme was studied and a protein-protein interaction based pharmacophore model was created. This model was used as a query to identify molecules, with potential affinity for the target, and subsequently, these molecules were filtered using molecular docking. The retained molecules were validated as suppressors of lysozyme inhibitory proteins using in vitro experiments revealing four active molecules.
Collapse
Affiliation(s)
- Arnout Voet
- Laboratory for Biomolecular Modelling and BioMacS, Katholieke Universiteit Leuven, Celestijnenlaan 200G bus 2403, 3001 Heverlee, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
17
|
Scanlon TC, Teneback CC, Gill A, Bement JL, Weiner JA, Lamppa JW, Leclair LW, Griswold KE. Enhanced antimicrobial activity of engineered human lysozyme. ACS Chem Biol 2010; 5:809-18. [PMID: 20604527 DOI: 10.1021/cb1001119] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysozymes contain a disproportionately large fraction of cationic residues, and are thereby attracted toward the negatively charged surface of bacterial targets. Importantly, this conserved biophysical property may inhibit lysozyme antibacterial function during acute and chronic infections. A mouse model of acute pulmonary Pseudomonas aeruginosa infection demonstrated that anionic biopolymers accumulate to high concentrations in the infected lung, and the presence of these species correlates with decreased endogenous lysozyme activity. To develop antibacterial enzymes designed specifically to be used as antimicrobial agents in the infected airway, the electrostatic potential of human lysozyme (hLYS) was remodeled by protein engineering. A novel, high-throughput screen was implemented to functionally interrogate combinatorial libraries of charge-engineered hLYS proteins, and variants with improved bactericidal activity were isolated and characterized in detail. These studies illustrate a general mechanism by which polyanions inhibit lysozyme function, and they are the first direct demonstration that decreasing hLYS's net cationic character improves its antibacterial activity in the presence of disease-associated biopolymers. In addition to avoiding electrostatic sequestration, at least one charge-engineered variant also kills bacteria more rapidly in the absence of inhibitory biopolymers; this observation supports a novel hypothesis that tuning the cellular affinity of peptidoglycan hydrolases may be a general strategy for improving kinetics of bacterial killing.
Collapse
Affiliation(s)
| | - Charlotte C. Teneback
- The Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405
| | | | - Jenna L. Bement
- The Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405
| | | | | | - Laurie W. Leclair
- The Vermont Lung Center, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont 05405
| | - Karl E. Griswold
- Thayer School of Engineering
- Program in Molecular and Cellular Biology
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
18
|
Abstract
Lung infections caused by the opportunistic pathogen Pseudomonas aeruginosa can present as a spectrum of clinical entities from a rapidly fatal pneumonia in a neutropenic patient to a multi-decade bronchitis in patients with cystic fibrosis. P. aeruginosa is ubiquitous in our environment, and one of the most versatile pathogens studied, capable of infecting a number of diverse life forms and surviving harsh environmental factors. It is also able to quickly adapt to new environments, including the lung, where it orchestrates virulence factors to acquire necessary nutrients, and if necessary, turn them off to prevent immune recognition. Despite these capabilities, P. aeruginosa rarely infects healthy human lungs. This is secondary to a highly evolved host defence mechanism that efficiently removes inhaled or aspirated pseudomonads. Many arms of the respiratory host defence have been elucidated using P. aeruginosa as a model pathogen. Human infections with P. aeruginosa have demonstrated the importance of the mechanical barrier functions including mucus clearance, and the innate immune system, including the critical role of the neutrophilic response. As more models of persistent or biofilm P. aeruginosa infections are developed, the role of the adaptive immune response will likely become more evident. Understanding the pathogenesis of P. aeruginosa, and the respiratory host defence response to it has, and will continue to, lead to novel therapeutic strategies to help patients.
Collapse
Affiliation(s)
- Bryan J Williams
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | |
Collapse
|
19
|
Bhavsar T, Liu M, Hardej D, Liu X, Cantor J. Aerosolized recombinant human lysozyme ameliorates Pseudomonas aeruginosa-induced pneumonia in hamsters. Exp Lung Res 2010; 36:94-100. [PMID: 20205599 DOI: 10.3109/01902140903154608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
As an alternative to conventional antibiotics, aerosolized recombinant human lysozyme (rhLZ) was used to treat experimentally induced pneumonia. Syrian hamsters were inoculated intratracheally with a nonmucoid strain of Pseudomonas aeruginosa (PA), then exposed to a 1.0% solution of rhLZ in water for 2 hours per day for 3 consecutive days (controls were treated with aerosolized water alone). Compared to controls, the rhLZ-treated group showed statistically significant reductions in the following parameters: (1) lung histopathological changes, (2) bacterial colony-forming units in whole lung and bronchoalveolar lavage fluid (BALF), (3) total BALF leukocytes, (4) percent BALF neutrophils, and (5) alveolar septal apoptosis. Exposure to aerosolized rhLZ also resulted in a large increase in BALF lysozyme activity. These findings indicate that aerosolized rhLZ may be potentially useful in reducing the level of bacterial colonization and inflammation in the lungs of patients with PA pneumonia.
Collapse
Affiliation(s)
- Tapan Bhavsar
- Department of Pharmacy and Allied Health Sciences, St John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun 2009; 77:5300-10. [PMID: 19805527 DOI: 10.1128/iai.00501-09] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of pneumonia, and many components of the innate immune system have been proposed to exert important effects in preventing lung infection. However, a vigorous experimental system to identify an overriding, key effector mediating innate immunity to lung infection has not been utilized. As many of the important components of innate immunity are involved in recruitment and activation of polymorphonuclear neutrophils (PMNs) to infected tissues, we hypothesized that the cells and factors needed for their proper recruitment to the lung comprised the major mediators of innate immunity. In neutropenic mice, intranasal (i.n.) doses of P. aeruginosa as low as 10 to 100 CFU/mouse produced a fatal lung infection, compared with 10(7) to >10(8) CFU for nonneutropenic mice. There was only a very modest increased mortality in mice lacking mature lymphocytes and no increased mortality in mice depleted of alveolar macrophages when administered i.n. P. aeruginosa. Recombinant mouse granulocyte colony-stimulating factor increased survival of neutropenic mice after i.n. P. aeruginosa inoculation. MyD88(-/-) mice, which cannot recruit PMNs to the lungs, were highly susceptible to fatal P. aeruginosa lung infection, with bacterial doses of <120 CFU being lethal. Activation of a MyD88-independent pathway for PMN recruitment to the lungs in MyD88(-/-) mice resulted in enhanced protection against P. aeruginosa lung infection. Overall, in the absence of PMNs, mice cannot resist P. aeruginosa lung infection from extremely small bacterial doses. There is an inescapable requirement for local PMN recruitment and activation to mediate innate immunity to P. aeruginosa lung infection.
Collapse
|
22
|
Safdar A, Shelburne SA, Evans SE, Dickey BF. Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin Drug Saf 2009; 8:435-49. [PMID: 19538104 DOI: 10.1517/14740330903036083] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The lungs are the most common site of serious infection owing to their large surface area exposed to the external environment and minimum barrier defense. However, this architecture makes the lungs readily available for topical therapy. Therapeutic aerosols include those directed towards improving mucociliary clearance of pathogens, stimulation of innate resistance to microbial infection, cytokine stimulation of immune function and delivery of antibiotics. In our opinion inhaled antimicrobials are underused, especially in patients with difficult-to-treat lung infections. The use of inhaled antimicrobial therapy has become an important part of the treatment of airway infection with Pseudomonas aeruginosa in cystic fibrosis and the prevention of invasive fungal infection in patients undergoing heart and lung transplantation. Cytokine inhaled therapy has also been explored in the treatment of neoplastic and infectious disease. The choice of pulmonary drug delivery systems remains critical as air-jet and ultrasonic nebulizer may deliver sub-optimum drug concentration if not used properly. In future development of this field, we recommend an emphasis on the study of the use of aerosolized hypertonic saline solution to reduce pathogen burden in the airways of subjects infected with microbes of low virulence, stimulation of innate resistance to prevent pneumonia in immunocompromised subjects using cytokines or synthetic pathogen-associated molecular pattern analogues and more opportunities for the use of inhaled antimicrobials. These therapeutics are still in their infancy but show great promise.
Collapse
Affiliation(s)
- Amar Safdar
- The University of Texas, Department of Infectious Diseases, M. D. Anderson Cancer Center, Infection Control and Employee Health, 402, 1515 Holcombe Boulevard, Texas 77030, Houston, USA.
| | | | | | | |
Collapse
|
23
|
Davis KM, Akinbi HT, Standish AJ, Weiser JN. Resistance to mucosal lysozyme compensates for the fitness deficit of peptidoglycan modifications by Streptococcus pneumoniae. PLoS Pathog 2008; 4:e1000241. [PMID: 19079576 PMCID: PMC2587705 DOI: 10.1371/journal.ppat.1000241] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 11/17/2008] [Indexed: 11/18/2022] Open
Abstract
The abundance of lysozyme on mucosal surfaces suggests that successful colonizers must be able to evade its antimicrobial effects. Lysozyme has a muramidase activity that hydrolyzes bacterial peptidoglycan and a non-muramidase activity attributable to its function as a cationic antimicrobial peptide. Two enzymes (PgdA, a N-acetylglucosamine deacetylase, and Adr, an O-acetyl transferase) that modify different sites on the peptidoglycan of Streptococcus pneumoniae have been implicated in its resistance to lysozyme in vitro. Here we show that the antimicrobial effect of human lysozyme is due to its muramidase activity and that both peptidoglycan modifications are required for full resistance by pneumococci. To examine the contribution of lysozyme and peptidoglycan modifications during colonization of the upper respiratory tract, competition experiments were performed with wild-type and pgdAadr mutant pneumococci in lysozyme M-sufficient (LysM+/+) and -deficient (LysM−/−) mice. The wild-type strain out-competed the double mutant in LysM+/+, but not LysM−/− mice, indicating the importance of resistance to the muramidase activity of lysozyme during mucosal colonization. In contrast, strains containing single mutations in either pgdA or adr prevailed over the wild-type strain in both LysM+/+ and LysM−/− mice. Our findings demonstrate that individual peptidoglycan modifications diminish fitness during colonization. The competitive advantage of wild-type pneumococci in LysM+/+ but not LysM−/− mice suggests that the combination of peptidoglycan modifications reduces overall fitness, but that this is outweighed by the benefits of resistance to the peptidoglycan degrading activity of lysozyme. For many successful pathogens, their surfaces must be able to adapt to different host environments, or to avoid host immune components, to establish infection. Bacterial pathogens, for example, are known to modify their cell walls, which are comprised largely of peptidoglycan. Our study focuses on peptidoglycan modifications by Streptococcus pneumoniae, which initiates interaction with its host by colonizing the mucosal surface of the upper respiratory tract. Two proteins (PgdA and Adr) that modify the cell wall of S. pneumoniae have each been associated with resistance to lysozyme, which cleaves peptidoglycan and is one of the most abundant antimicrobial factors in the human respiratory tract. Using defined bacterial mutants together with mice that express or lack lysozyme, we show that the full resistance to lysozyme requires modifications by both proteins. These cell wall modifications each come at a significant fitness cost to the bacterium. This fitness cost, however, is outweighed by the benefits of lysozyme resistance in vivo. Our study, therefore, demonstrates the relationship between a bacterial pathogen and a host defense mechanism that imparts a substantial selective pressure on organisms that colonize the mucosal surface.
Collapse
Affiliation(s)
- Kimberly M Davis
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
24
|
Shimada J, Moon SK, Lee HY, Takeshita T, Pan H, Woo JI, Gellibolian R, Yamanaka N, Lim DJ. Lysozyme M deficiency leads to an increased susceptibility to Streptococcus pneumoniae-induced otitis media. BMC Infect Dis 2008; 8:134. [PMID: 18842154 PMCID: PMC2575207 DOI: 10.1186/1471-2334-8-134] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 10/08/2008] [Indexed: 11/24/2022] Open
Abstract
Background Lysozyme is an antimicrobial innate immune molecule degrading peptidoglycan of the bacterial cell wall. Lysozyme shows the ubiquitous expression in wide varieties of species and tissues including the tubotympanum of mammals. We aim to investigate the effects of lysozyme depletion on pneumococcal clearance from the middle ear cavity. Methods Immunohistochemistry was performed to localize lysozyme in the Eustachian tube. Lysozyme expression was compared between the wild type and the lysozyme M-/- mice using real time quantitative RT-PCR and western blotting. Muramidase activity and bactericidal activity of lysozyme was measured using a lysoplate radial diffusion assay and a liquid broth assay, respectively. To determine if depletion of lysozyme M increases a susceptibility to pneumococal otitis media, 50 CFU of S. pneumoniae 6B were transtympanically inoculated to the middle ear and viable bacteria were counted at day 3 and 7 with clinical grading of middle ear inflammation. Results Immunolabeling revealed that localization of lysozyme M and lysozyme P is specific to some/particular cell types of the Eustachian tube. Lysozyme P of lysozyme M-/- mice was mainly expressed in the submucosal gland but not in the tubal epithelium. Although lysozyme M-/- mice showed compensatory up-regulation of lysozyme P, lysozyme M depletion resulted in a decrease in both muramidase and antimicrobial activities. Deficiency in lysozyme M led to an increased susceptibility to middle ear infection with S. pneumoniae 6B and resulted in severe middle ear inflammation, compared to wild type mice. Conclusion The results suggest that lysozyme M plays an important role in protecting the middle ear from invading pathogens, particularly in the early phase. We suggest a possibility of the exogenous lysozyme as an adjuvant therapeutic agent for otitis media, but further studies are necessary.
Collapse
Affiliation(s)
- Jun Shimada
- Gonda Department of Cell and Molecular Biology, House Ear Institute, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Clement CG, Evans SE, Evans CM, Hawke D, Kobayashi R, Reynolds PR, Moghaddam SJ, Scott BL, Melicoff E, Adachi R, Dickey BF, Tuvim MJ. Stimulation of lung innate immunity protects against lethal pneumococcal pneumonia in mice. Am J Respir Crit Care Med 2008; 177:1322-30. [PMID: 18388354 DOI: 10.1164/rccm.200607-1038oc] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The lungs are a common site of serious infection in both healthy and immunocompromised subjects, and the most likely route of delivery of a bioterror agent. Since the airway epithelium shows great structural plasticity in response to inflammatory stimuli, we hypothesized it might also show functional plasticity. OBJECTIVES To test the inducibility of lung defenses against bacterial challenge. METHODS Mice were treated with an aerosolized lysate of ultraviolet-killed nontypeable (unencapsulated) Haemophilus influenzae (NTHi), then challenged with a lethal dose of live Streptococcus pneumoniae (Spn) delivered by aerosol. MEASUREMENTS AND MAIN RESULTS Treatment with the NTHi lysate induced complete protection against challenge with a lethal dose of Spn if treatment preceded challenge by 4 to 24 hours. Lesser levels of protection occurred at shorter (83% at 2 h) and longer (83% at 48-72 h) intervals between treatment and challenge. There was also some protection when treatment was given 2 hours after challenge (survival increased from 14 to 57%), but not 24 hours after challenge. Protection did not depend on recruited neutrophils or resident mast cells and alveolar macrophages. Protection was specific to the airway route of infection, correlated in magnitude and time with rapid bacterial killing within the lungs, and was associated with increases of multiple antimicrobial polypeptides in lung lining fluid. CONCLUSIONS We infer that protection derives from stimulation of local innate immune mechanisms, and that activated lung epithelium is the most likely cellular effector of this response. Augmentation of innate antimicrobial defenses of the lungs might have therapeutic value.
Collapse
Affiliation(s)
- Cecilia G Clement
- Department of Pulmonary Medicine, M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030-4009. USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Mammalian innate immunity stimulates antigen-specific immune responses and acts to control infection prior to the onset of adaptive immunity. Some bacterial pathogens replicate within the host cell and are therefore sheltered from some protective aspects of innate immunity such as complement. Here we focus on mechanisms of innate intracellular resistance encountered by bacterial pathogens and how some bacteria can evade destruction by the innate immune system. Major strategies of intracellular antibacterial defence include pathogen compartmentalization and iron limitation. Compartmentalization of pathogens within the host endocytic pathway is critical for generating high local concentrations of antimicrobial molecules, such as reactive oxygen species, and regulating concentrations of divalent cations that are essential for microbial growth. Cytosolic sensing, autophagy, sequestration of essential nutrients and membrane attack by antimicrobial peptides are also discussed.
Collapse
Affiliation(s)
- Andrea L Radtke
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | |
Collapse
|
27
|
Nash JA, Ballard TNS, Weaver TE, Akinbi HT. The peptidoglycan-degrading property of lysozyme is not required for bactericidal activity in vivo. THE JOURNAL OF IMMUNOLOGY 2006; 177:519-26. [PMID: 16785549 DOI: 10.4049/jimmunol.177.1.519] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lysozyme is an abundant, cationic antimicrobial protein that plays an important role in pulmonary host defense. Increased concentration of lysozyme in the airspaces of transgenic mice enhanced bacterial killing whereas lysozyme deficiency resulted in increased bacterial burden and morbidity. Lysozyme degrades peptidoglycan in the bacterial cell wall leading to rapid killing of Gram-positive organisms; however, this mechanism cannot account for the protective effect of lysozyme against Gram-negative bacteria. The current study was therefore designed to test the hypothesis that the catalytic activity (muramidase activity) of lysozyme is not required for bacterial killing in vivo. Substitution of serine for aspartic acid at position 53 (D53S) in mouse lysozyme M completely ablated muramidase activity. Muramidase-deficient recombinant lysozyme (LysM(D53S)) killed both Gram-positive and Gram-negative bacteria in vitro. Targeted expression of LysM(D53S) in the respiratory epithelium of wild-type (LysM(+/+)/LysM(D53S)) or lysozyme M(null) mice (LysM(-/-)/LysM(D53S)) resulted in significantly elevated lysozyme protein in the airspaces without any increase in muramidase activity. Intratracheal challenge of transgenic mice with Gram-positive or Gram-negative bacteria resulted in a significant increase in bacterial burden in LysM(-/-) mice that was completely reversed by targeted expression of LysM(D53S). These results indicate that the muramidase activity of lysozyme is not required for bacterial killing in vitro or in vivo.
Collapse
Affiliation(s)
- James A Nash
- Division of Pulmonary Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|