1
|
Carruthers J, Finnie T. Using mixture density networks to emulate a stochastic within-host model of Francisella tularensis infection. PLoS Comput Biol 2023; 19:e1011266. [PMID: 38117811 PMCID: PMC10766174 DOI: 10.1371/journal.pcbi.1011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/04/2024] [Accepted: 12/01/2023] [Indexed: 12/22/2023] Open
Abstract
For stochastic models with large numbers of states, analytical techniques are often impractical, and simulations time-consuming and computationally demanding. This limitation can hinder the practical implementation of such models. In this study, we demonstrate how neural networks can be used to develop emulators for two outputs of a stochastic within-host model of Francisella tularensis infection: the dose-dependent probability of illness and the incubation period. Once the emulators are constructed, we employ Markov Chain Monte Carlo sampling methods to parameterize the within-host model using records of human infection. This inference is only possible through the use of a mixture density network to emulate the incubation period, providing accurate approximations of the corresponding probability distribution. Notably, these estimates improve upon previous approaches that relied on bacterial counts from the lungs of macaques. Our findings reveal a 50% infectious dose of approximately 10 colony-forming units and we estimate that the incubation period can last for up to 11 days following low dose exposure.
Collapse
Affiliation(s)
- Jonathan Carruthers
- Data, Analytics and Surveillance; UK Health Security Agency, Porton Down, United Kingdom
| | - Thomas Finnie
- Data, Analytics and Surveillance; UK Health Security Agency, Porton Down, United Kingdom
| |
Collapse
|
2
|
Casulli J, Fife ME, Houston SA, Rossi S, Dow J, Williamson ED, Clark GC, Hussell T, D'Elia RV, Travis MA. CD200R deletion promotes a neutrophil niche for Francisella tularensis and increases infectious burden and mortality. Nat Commun 2019; 10:2121. [PMID: 31073183 PMCID: PMC6509168 DOI: 10.1038/s41467-019-10156-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 04/13/2019] [Indexed: 01/08/2023] Open
Abstract
Pulmonary immune control is crucial for protection against pathogens. Here we identify a pathway that promotes host responses during pulmonary bacterial infection; the expression of CD200 receptor (CD200R), which is known to dampen pulmonary immune responses, promotes effective clearance of the lethal intracellular bacterium Francisella tularensis. We show that depletion of CD200R in mice increases in vitro and in vivo infectious burden. In vivo, CD200R deficiency leads to enhanced bacterial burden in neutrophils, suggesting CD200R normally limits the neutrophil niche for infection. Indeed, depletion of this neutrophil niche in CD200R−/− mice restores F. tularensis infection to levels seen in wild-type mice. Mechanistically, CD200R-deficient neutrophils display significantly reduced reactive oxygen species production (ROS), suggesting that CD200R-mediated ROS production in neutrophils is necessary for limiting F. tularensis colonisation and proliferation. Overall, our data show that CD200R promotes the antimicrobial properties of neutrophils and may represent a novel antibacterial therapeutic target. The authors show that the CD200 receptor (CD200R) promotes effective clearance of pulmonary Francisella tularensis infection in knock out mice. This result is unexpected as CD200R is known to dampen pulmonary immune responses, and these data suggest that the beneficial effect against F. tularensis is due to depletion of a neutrophil niche for the bacterium.
Collapse
Affiliation(s)
- J Casulli
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - M E Fife
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - S A Houston
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - S Rossi
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - J Dow
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - E D Williamson
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK
| | - G C Clark
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK
| | - T Hussell
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK.,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - R V D'Elia
- Defence Science and Technology Laboratory (Dstl), Porton Down, Salisbury, UK
| | - M A Travis
- Lydia Becker Institute for Immunology and Inflammation, Manchester, UK. .,Wellcome Trust Centre for Cell-Matrix Research, Manchester, UK. .,Manchester Collaborative Centre for Inflammation Research (MCCIR), Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Trimble A, Moffat V, Collins AM. Pulmonary infections in the returned traveller. Pneumonia (Nathan) 2017; 9:1. [PMID: 28702303 PMCID: PMC5471882 DOI: 10.1186/s41479-017-0026-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 10/16/2016] [Indexed: 01/14/2023] Open
Abstract
Pulmonary infections in the returned traveller are a common presentation. A wide variety of infections may present with pulmonary symptoms. It is important for clinicians to differentiate the cause of these symptoms. The risk of contracting certain travel-related pulmonary diseases depends on travel destination, length of stay, activities undertaken and co-morbidities. Some pathogens are found worldwide, whilst others are related to specific locations. This review article will discuss the approach to diagnosing and treating pulmonary infections in the returned traveller.
Collapse
Affiliation(s)
- Ashleigh Trimble
- Crosshouse Hospital, Kilmarnock Road, Crosshouse, KA2 0BE UK
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| | - V. Moffat
- Aintree Hospital, Longmoor Lane, Liverpool, L9 7AL UK
| | - A. M. Collins
- Respiratory Infection Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
- Respiratory Research Group, Royal Liverpool and Broadgreen University Hospital Trust, Prescot Street, Liverpool, L7 8XP UK
| |
Collapse
|
4
|
Saint RJ, D'Elia RV, Bryant C, Clark GC, Atkins HS. Mitogen-activated protein kinases (MAPKs) are modulated during Francisella tularensis infection, but inhibition of extracellular-signal-regulated kinases (ERKs) is of limited therapeutic benefit. Eur J Clin Microbiol Infect Dis 2016; 35:2015-2024. [PMID: 27714591 PMCID: PMC5138274 DOI: 10.1007/s10096-016-2754-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/09/2016] [Indexed: 01/05/2023]
Abstract
Francisella tularensis is a Gram-negative intracellular bacterium that causes the disease tularemia. The disease can be fatal if left untreated and there is currently no licenced vaccine available; the identification of new therapeutic targets is therefore required. Toll-like receptors represent an interesting target for therapeutic modulation due to their essential role in generating immune responses. In this study, we analysed the in vitro expression of the key mitogen-activated protein kinases (MAPKs) p38, JNK and ERK in murine alveolar macrophages during infection with F. tularensis. The phosphorylation profile of ERK highlighted its potential as a target for therapeutic modulation and subsequently the effect of ERK manipulation was measured in a lethal intranasal F. tularensis in vivo model of infection. The selective ERK1/2 inhibitor PD0325901 was administered orally to mice either pre- or post-challenge with F. tularensis strain LVS. Both treatment regimens selectively reduced ERK expression, but only the pre-exposure treatment produced decreased bacterial burden in the spleen and liver, which correlated with a significant reduction in the pro-inflammatory cytokines IFN-γ, MCP-1, IL-6, and TNF-α. However, no overall improvements in survival were observed for treated animals in this study. ERK may represent a useful therapeutic target where selective dampening of the immune response (to control the damaging pathology seen during infection) is combined with antibiotic treatment required to eradicate bacterial infection. This combination treatment strategy has been shown to be effective in other models of tularemia.
Collapse
Affiliation(s)
- R J Saint
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - R V D'Elia
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| | - C Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - G C Clark
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - H S Atkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.,University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Periasamy S, Avram D, McCabe A, MacNamara KC, Sellati TJ, Harton JA. An Immature Myeloid/Myeloid-Suppressor Cell Response Associated with Necrotizing Inflammation Mediates Lethal Pulmonary Tularemia. PLoS Pathog 2016; 12:e1005517. [PMID: 27015566 PMCID: PMC4807818 DOI: 10.1371/journal.ppat.1005517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Inhalation of Francisella tularensis (Ft) causes acute and fatal pneumonia. The lung cytokine milieu favors exponential Ft replication, but the mechanisms underlying acute pathogenesis and death remain unknown. Evaluation of the sequential and systemic host immune response in pulmonary tularemia reveals that in contrast to overwhelming bacterial burden or cytokine production, an overt innate cellular response to Ft drives tissue pathology and host mortality. Lethal infection with Ft elicits medullary and extra-medullary myelopoiesis supporting recruitment of large numbers of immature myeloid cells and MDSC to the lungs. These cells fail to mature and die, leading to subsequent necrotic lung damage, loss of pulmonary function, and host death that is partially dependent upon immature Ly6G+ cells. Acceleration of this process may account for the rapid lethality seen with Ft SchuS4. In contrast, during sub-lethal infection with Ft LVS the pulmonary cellular response is characterized by a predominance of mature neutrophils and monocytes required for protection, suggesting a required threshold for lethal bacterial infection. Further, eliciting a mature phagocyte response provides transient, but dramatic, innate protection against Ft SchuS4. This study reveals that the nature of the myeloid cell response may be the primary determinant of host mortality versus survival following Francisella infection.
Collapse
Affiliation(s)
- Sivakumar Periasamy
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dorina Avram
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Amanda McCabe
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Katherine C. MacNamara
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Timothy J. Sellati
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jonathan A. Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Rowe HM, Huntley JF. From the Outside-In: The Francisella tularensis Envelope and Virulence. Front Cell Infect Microbiol 2015; 5:94. [PMID: 26779445 PMCID: PMC4688374 DOI: 10.3389/fcimb.2015.00094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/07/2015] [Indexed: 12/20/2022] Open
Abstract
Francisella tularensis is a highly-infectious bacterium that causes the rapid, and often lethal disease, tularemia. Many studies have been performed to identify and characterize the virulence factors that F. tularensis uses to infect a wide variety of hosts and host cell types, evade immune defenses, and induce severe disease and death. This review focuses on the virulence factors that are present in the F. tularensis envelope, including capsule, LPS, outer membrane, periplasm, inner membrane, secretion systems, and various molecules in each of aforementioned sub-compartments. Whereas, no single bacterial molecule or molecular complex single-handedly controls F. tularensis virulence, we review here how diverse bacterial systems work in conjunction to subvert the immune system, attach to and invade host cells, alter phagosome/lysosome maturation pathways, replicate in host cells without being detected, inhibit apoptosis, and induce host cell death for bacterial release and infection of adjacent cells. Given that the F. tularensis envelope is the outermost layer of the bacterium, we highlight herein how many of these molecules directly interact with the host to promote infection and disease. These and future envelope studies are important to advance our collective understanding of F. tularensis virulence mechanisms and offer targets for future vaccine development efforts.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences Toledo, OH, USA
| |
Collapse
|
7
|
Hill TM, Gilchuk P, Cicek BB, Osina MA, Boyd KL, Durrant DM, Metzger DW, Khanna KM, Joyce S. Border Patrol Gone Awry: Lung NKT Cell Activation by Francisella tularensis Exacerbates Tularemia-Like Disease. PLoS Pathog 2015; 11:e1004975. [PMID: 26068662 PMCID: PMC4465904 DOI: 10.1371/journal.ppat.1004975] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/26/2015] [Indexed: 12/19/2022] Open
Abstract
The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia—because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice. NKT cells are innate-like lymphocytes with a demonstrated role in a wide range of diseases. Often cited for their ability to rapidly produce a variety of cytokines upon activation, they have long been appreciated for their ability to “jump-start” the immune system and to shape the quality of both the innate and adaptive response. This understanding of their function has been deduced from in vitro experiments or through the in vivo administration of highly potent, chemically synthesized lipid ligands, which may not necessarily reflect a physiologically relevant response as observed in a natural infection. Using a mouse model of pulmonary tularemia, we report that intranasal infection with the live vaccine strain of F. tularensis rapidly activates NKT cells and promotes systemic inflammation, increased tissue damage, and a dysregulated immune response resulting in increased morbidity and mortality in infected mice. Our data highlight the detrimental effects of NKT cell activation and identify a potential new target for therapies against pulmonary tularemia.
Collapse
Affiliation(s)
- Timothy M. Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Basak B. Cicek
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Maria A. Osina
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kelli L. Boyd
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Douglas M. Durrant
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Dennis W. Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Kamal M. Khanna
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Sebastian Joyce
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Administration Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
Findlay JS, Ulaeto D, D'Elia RV. Cytokines and viral hemorrhagic fever: potential for therapeutic intervention. Future Virol 2015. [DOI: 10.2217/fvl.15.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT The recent Ebola outbreak in West Africa highlights the need to improve our understanding of why viral hemorrhagic fevers (VHFs) are so devastating. There is a requirement to generate effective prophylactics, such as vaccines, and therapies, especially those that are effective postsymptomatically. For a range of pathogens, it appears that overstimulation of pro-inflammatory cytokines, the ‘cytokine storm’, causes serious immunopathology in patients. In this review, we will focus on the cytokine response following infection by representatives of the viruses which can cause VHF: Ebola virus and Marburg virus, Crimean–Congo hemorrhagic fever virus, Dengue virus, Junin and Lassa virus. Specifically, the role of the cytokine storm in causing VHF and the use of therapeutic immunomodulatory compounds to help treat these fatal and debilitating diseases will be explored.
Collapse
Affiliation(s)
- James S Findlay
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| | - David Ulaeto
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| | - Riccardo V D'Elia
- Biomedical Sciences, Defence Science & Technology Laboratory (Dstl) Porton Down, Salisbury, SP4 0JQ, UK
| |
Collapse
|
9
|
Ulu-Kilic A, Doganay M. An overview: tularemia and travel medicine. Travel Med Infect Dis 2014; 12:609-16. [PMID: 25457302 DOI: 10.1016/j.tmaid.2014.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 12/15/2022]
Abstract
Tularemia is a bacterial zoonotic infection. The disease is endemic in most parts of the world, has been reported through the northern hemisphere between 30 and 71° N latitude. Francisella tularensis causes infection in a wide range of vertebrates (rodents, lagomorphs) and invertebrates (ticks, mosquitoes and other arthropods). Humans can acquire this infection through several routes including; a bite from an infected tick, deerfly or mosquito, contact with an infected animal or its dead body. It can also be spread to human by drinking contaminated water or breathing contaminated dirt or aerosol. Clinical manifestation of this disease varies depending on the biotype, inoculum and port of entry. Infection is potentially life threatening, but can effectively be treated with antibiotics. Travelers visiting rural and agricultural areas in endemic countries may be at greater risk. Appropriate clothing and use of insect repellants is essential to prevent tick borne illness. Travelers also should be aware of food and waterborne disease; avoid consuming potentially contaminated water and uncooked meat. Physicians should be aware of any clinical presentation of tularemia in the patients returning from endemic areas.
Collapse
Affiliation(s)
- Aysegul Ulu-Kilic
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Mehmet Doganay
- Department of Infectious Diseases, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Zoonoses Working Group of International Society of Chemotherapy (ZWG-ISC), United Kingdom.
| |
Collapse
|
10
|
Steiner DJ, Furuya Y, Metzger DW. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect Drug Resist 2014; 7:239-51. [PMID: 25258544 PMCID: PMC4173753 DOI: 10.2147/idr.s53700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Francisella tularensis is an intracellular Gram-negative bacterium that causes life-threatening tularemia. Although the prevalence of natural infection is low, F. tularensis remains a tier I priority pathogen due to its extreme virulence and ease of aerosol dissemination. F. tularensis can infect a host through multiple routes, including the intradermal and respiratory routes. Respiratory infection can result from a very small inoculum (ten organisms or fewer) and is the most lethal form of infection. Following infection, F. tularensis employs strategies for immune evasion that delay the immune response, permitting systemic distribution and induction of sepsis. In this review we summarize the current knowledge of F. tularensis in an immunological context, with emphasis on the host response and bacterial evasion of that response.
Collapse
Affiliation(s)
- Don J Steiner
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Yoichi Furuya
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | - Dennis W Metzger
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| |
Collapse
|
11
|
Protection against experimental melioidosis following immunisation with a lipopolysaccharide-protein conjugate. J Immunol Res 2014; 2014:392170. [PMID: 24892035 PMCID: PMC4033506 DOI: 10.1155/2014/392170] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/14/2014] [Accepted: 04/02/2014] [Indexed: 11/17/2022] Open
Abstract
Melioidosis is a severe infectious disease caused by Burkholderia pseudomallei. It is refractory to antibiotic treatment and there is currently no licensed vaccine. In this report we detail the construction and protective efficacy of a polysaccharide-protein conjugate composed of B. pseudomallei lipopolysaccharide and the Hc fragment of tetanus toxin. Immunisation of mice with the lipopolysaccharide-conjugate led to significantly reduced bacterial burdens in the spleen 48 hours after challenge and afforded significant protection against a lethal challenge with B. pseudomallei. The conjugate generated significantly higher levels of antigen-specific IgG1 and IgG2a than in lipopolysaccharide-immunised mice. Immunisation with the conjugate also demonstrated a bias towards Th1 type responses, evidenced by high levels of IgG2a. In contrast, immunisation with unconjugated lipopolysaccharide evoked almost no IgG2a demonstrating a bias towards Th2 type responses. This study demonstrates the effectiveness of this approach in the development of an efficacious and protective vaccine against melioidosis.
Collapse
|
12
|
Russo BC, Brown MJ, Nau GJ. MyD88-dependent signaling prolongs survival and reduces bacterial burden during pulmonary infection with virulent Francisella tularensis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1223-1232. [PMID: 23920326 DOI: 10.1016/j.ajpath.2013.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/06/2013] [Accepted: 06/11/2013] [Indexed: 01/24/2023]
Abstract
Francisella tularensis is the causative agent of the debilitating febrile illness tularemia. The severe morbidity associated with F. tularensis infections is attributed to its ability to evade the host immune response. Innate immune activation is undetectable until more than 48 hours after infection. The ensuing inflammatory response is considered pathological, eliciting a septic-like state characterized by hypercytokinemia and cell death. To investigate potential pathological consequences of the innate immune response, mice deficient in a key innate immune signaling molecule, MyD88, were studied. MyD88 knockout (KO) mice were infected with the prototypical virulent F. tularensis strain, Schu S4. MyD88 KO mice succumbed to infection more rapidly than wild-type mice. The enhanced pathogenicity of Schu S4 in MyD88 KO mice was associated with greater bacterial burdens in lungs and distal organs, and the absence of IFN-γ in the lungs, spleens, and sera. Cellular infiltrates were not observed on histological evaluation of the lungs, livers, or spleens of MyD88 KO mice, the first KO mouse described with this phenotype to our knowledge. Despite the absence of cellular infiltration, there was more cell death in the lungs of MyD88 KO mice. Thus, the host proinflammatory response is beneficial, and MyD88 signaling is required to limit bacterial burden and prolong survival during pulmonary infection by virulent F. tularensis.
Collapse
Affiliation(s)
- Brian C Russo
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Matthew J Brown
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard J Nau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
13
|
Targeting the "Rising DAMP" during a Francisella tularensis Infection. Antimicrob Agents Chemother 2013; 57:4222-4228. [PMID: 23796927 DOI: 10.1128/aac.01885-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022] Open
Abstract
Antibiotic efficacy is greatly enhanced the earlier it is administered following infection with a bacterial pathogen. However, in a clinical setting antibiotic treatment usually commences following the onset of symptoms, which in some cases (e.g., biothreat agents) may be too late. In a BALB/c murine intranasal model of infection for Francisella tularensis SCHU S4 infection, we demonstrate during a time course experiment that proinflammatory cytokines and the damage-associated molecular pattern HMGB1 were not significantly elevated above naive levels in tissue or sera until 72 h postinfection. HMGB1 was identified as a potential therapeutic target that could extend the window of opportunity for the treatment of tularemia with antibiotics. Antibodies to HMGB1 were administered in conjunction with a delayed/suboptimal levofloxacin treatment of F. tularensis We found in the intranasal model of infection that treatment with anti-HMGB1 antibody, compared to an isotype IgY control antibody, conferred a significant survival benefit and decreased bacterial loads in the spleen and liver but not the lung (primary loci of infection) 4 days into infection. We also observed an increase in the production of gamma interferon in all tested organs. These data demonstrate that treatment with anti-HMGB1 antibody is beneficial in enhancing the effectiveness of current antibiotics in treating tularemia. Strategies of this type, involving antibiotics in combination with immunomodulatory drugs, are likely to be essential for the development of a postexposure therapeutic for intracellular pathogens.
Collapse
|
14
|
Differential role for interleukin-6 during Francisella tularensis infection with virulent and vaccine strains. Infect Immun 2013; 81:3055-6. [PMID: 23716611 DOI: 10.1128/iai.00234-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Kdo hydrolase is required for Francisella tularensis virulence and evasion of TLR2-mediated innate immunity. mBio 2013; 4:e00638-12. [PMID: 23404403 PMCID: PMC3573668 DOI: 10.1128/mbio.00638-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The highly virulent Francisella tularensis subsp. tularensis has been classified as a category A bioterrorism agent. A live vaccine strain (LVS) has been developed but remains unlicensed in the United States because of an incomplete understanding of its attenuation. Lipopolysaccharide (LPS) modification is a common strategy employed by bacterial pathogens to avoid innate immunity. A novel modification enzyme has recently been identified in F. tularensis and Helicobacter pylori. This enzyme, a two-component Kdo (3-deoxy-d-manno-octulosonic acid) hydrolase, catalyzes the removal of a side chain Kdo sugar from LPS precursors. The biological significance of this modification has not yet been studied. To address the role of the two-component Kdo hydrolase KdhAB in F. tularensis pathogenesis, a ΔkdhAB deletion mutant was constructed from the LVS strain. In intranasal infection of mice, the ΔkdhAB mutant strain had a 50% lethal dose (LD(50)) 2 log(10) units higher than that of the parental LVS strain. The levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β) in bronchoalveolar lavage fluid were significantly higher (2-fold) in mice infected with the ΔkdhAB mutant than in mice infected with LVS. In vitro stimulation of bone marrow-derived macrophages with the ΔkdhAB mutant induced higher levels of TNF-α and IL-1β in a TLR2-dependent manner. In addition, TLR2(-/-) mice were more susceptible than wild-type mice to ΔkdhAB bacterial infection. Finally, immunization of mice with ΔkdhAB bacteria elicited a high level of protection against the highly virulent F. tularensis subsp. tularensis strain Schu S4. These findings suggest an important role for the Francisella Kdo hydrolase system in virulence and offer a novel mutant as a candidate vaccine. IMPORTANCE The first line of defense against a bacterial pathogen is innate immunity, which slows the progress of infection and allows time for adaptive immunity to develop. Some bacterial pathogens, such as Francisella tularensis, suppress the early innate immune response, killing the host before adaptive immunity can mature. To avoid an innate immune response, F. tularensis enzymatically modifies its lipopolysaccharide (LPS). A novel LPS modification-Kdo (3-deoxy-d-manno-octulosonic acid) saccharide removal--has recently been reported in F. tularensis. We found that the kdhAB mutant was significantly attenuated in mice. Additionally, the mutant strain induced an early innate immune response in mice both in vitro and in vivo. Immunization of mice with this mutant provided protection against the highly virulent F. tularensis strain Schu S4. Thus, our study has identified a novel LPS modification important for microbial virulence. A mutant lacking this modification may be used as a live attenuated vaccine against tularemia.
Collapse
|
16
|
Bublitz DC, Noah CE, Benach JL, Furie MB. Francisella tularensis suppresses the proinflammatory response of endothelial cells via the endothelial protein C receptor. THE JOURNAL OF IMMUNOLOGY 2010; 185:1124-31. [PMID: 20543103 DOI: 10.4049/jimmunol.0902429] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Various bacterial pathogens activate the endothelium to secrete proinflammatory cytokines and recruit circulating leukocytes. In contrast, there is a distinct lack of activation of these cells by Francisella tularensis, the causative agent of tularemia. Given the importance of endothelial cells in facilitating innate immunity, we investigated the ability of the attenuated live vaccine strain and virulent Schu S4 strain of F. tularensis to inhibit the proinflammatory response of HUVECs. Living F. tularensis live vaccine strain and Schu S4 did not stimulate secretion of the chemokine CCL2 by HUVECs, whereas material released from heat-killed bacteria did. Furthermore, the living bacteria suppressed secretion in response to heat-killed F. tularensis. This phenomenon was dose and contact dependent, and it occurred rapidly upon infection. The living bacteria did not inhibit the activation of HUVECs by Escherichia coli LPS, highlighting the specificity of this suppression. The endothelial protein C receptor (EPCR) confers anti-inflammatory properties when bound by activated protein C. When the EPCR was blocked, F. tularensis lost the ability to suppress activation of HUVECs. To our knowledge, this is the first report that a bacterial pathogen inhibits the host immune response via the EPCR. Endothelial cells are a critical component of the innate immune response to infection, and suppression of their activation by F. tularensis is likely a mechanism that aids in bacterial dissemination and evasion of host defenses.
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|