1
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
2
|
Zoncu R, Perera RM. Built to last: lysosome remodeling and repair in health and disease. Trends Cell Biol 2022; 32:597-610. [DOI: 10.1016/j.tcb.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/21/2022]
|
3
|
Raudenska M, Balvan J, Masarik M. Crosstalk between autophagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Mol Cancer 2021; 20:140. [PMID: 34706732 PMCID: PMC8549397 DOI: 10.1186/s12943-021-01423-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/11/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is best known for its role in organelle and protein turnover, cell quality control, and metabolism. The autophagic machinery has, however, also adapted to enable protein trafficking and unconventional secretory pathways so that organelles (such as autophagosomes and multivesicular bodies) delivering cargo to lysosomes for degradation can change their mission from fusion with lysosomes to fusion with the plasma membrane, followed by secretion of the cargo from the cell. Some factors with key signalling functions do not enter the conventional secretory pathway but can be secreted in an autophagy-mediated manner.Positive clinical results of some autophagy inhibitors are encouraging. Nevertheless, it is becoming clear that autophagy inhibition, even within the same cancer type, can affect cancer progression differently. Even next-generation inhibitors of autophagy can have significant non-specific effects, such as impacts on endosome-related secretory pathways and secretion of extracellular vesicles (EVs). Many studies suggest that cancer cells release higher amounts of EVs compared to non-malignant cells, which makes the effect of autophagy inhibitors on EVs secretion highly important and attractive for anticancer therapy. In this review article, we discuss how different inhibitors of autophagy may influence the secretion of EVs and summarize the non-specific effects of autophagy inhibitors with a focus on endosome-related secretory pathways. Modulation of autophagy significantly impacts not only the quantity of EVs but also their content, which can have a deep impact on the resulting pro-tumourigenic or anticancer effect of autophagy inhibitors used in the antineoplastic treatment of solid cancers.
Collapse
Affiliation(s)
- Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology in Prague, Technická 5, CZ-166 28, Prague, Czech Republic.
| |
Collapse
|
4
|
Wong AO, Marthi M, Haag A, Owusu IA, Wobus CE, Swanson JA. Macrophage inflammatory state influences susceptibility to lysosomal damage. J Leukoc Biol 2021; 111:629-639. [PMID: 34259355 PMCID: PMC8758784 DOI: 10.1002/jlb.3a0520-325rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macrophages possess mechanisms for reinforcing the integrity of their endolysosomes against damage. This property, termed inducible renitence, was previously observed in murine macrophages stimulated with LPS, peptidoglycan, IFNγ, or TNFα, which suggested roles for renitence in macrophage resistance to infection by membrane‐damaging pathogens. This study analyzed additional inducers of macrophage differentiation for their ability to increase resistance to lysosomal damage by membrane‐damaging particles. Renitence was evident in macrophages activated with LPS plus IFNγ, PGE2, or adenosine, and in macrophages stimulated with IFN‐β, but not in macrophages activated with IL‐4 or IL‐10. These responses indicated roles for macrophage subtypes specialized in host defense and suppression of immune responses, but not those involved in wound healing. Consistent with this pattern, renitence could be induced by stimulation with agonists for TLR, which required the signaling adaptors MyD88 and/or TRIF, and by infection with murine norovirus‐1. Renitence induced by LPS was dependent on cytokine secretion by macrophages. However, no single secreted factor could explain all the induced responses. Renitence induced by the TLR3 agonist Poly(I:C) was mediated in part by the type I IFN response, but renitence induced by Pam3CSK4 (TLR2/1), LPS (TLR4), IFNγ, or TNFα was independent of type 1 IFN signaling. Thus, multiple pathways for inducing macrophage resistance to membrane damage exist and depend on the particular microbial stimulus sensed.
Collapse
Affiliation(s)
- Amanda O Wong
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matangi Marthi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amanda Haag
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Irene A Owusu
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,West African Center for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,University of Michigan Medical School, Ann Arbor, MI, USA
| | - Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Nie W, Lan T, Yuan X, Luo M, Shen G, Yu J, Wei X. Crystalline silica induces macrophage necrosis and causes subsequent acute pulmonary neutrophilic inflammation. Cell Biol Toxicol 2021; 38:591-609. [PMID: 34170461 DOI: 10.1007/s10565-021-09620-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.
Collapse
Affiliation(s)
- Wen Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayun Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
6
|
Brusilovsky M, Rochman M, Azouz NP, Mack LE, Rothenberg ME. Uncovering the secretes of allergic inflammation. J Clin Invest 2021; 130:3419-3421. [PMID: 32510472 DOI: 10.1172/jci138343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Allergic asthma is a chronic inflammatory lung disease associated with increased cytokine secretion. Aspects of airway inflammation are also linked to a common genetic variant that corresponds to the small GTPase, Rab27, a protein involved in vesicular trafficking in immune cells. However, the mechanisms by which Rab27 contributes to airway inflammation and cytokine release remain ambiguous. In this issue of the JCI, Okunishi et al. explored the role that the Rab27 effector, exophilin-5, has in allergic inflammation. Exophilin-5-deficient mice and asthma mouse models revealed that exophilin-5 regulates IL-33 production and the Th2 response. Notably, exophilin-5 deletion enhanced IL-33 release and pathogenic Th2 responsiveness through the mTOR pathway and altered intracellular IL-33 trafficking. This work provides insights into the molecular mechanisms that underlie inflammatory lung disease.
Collapse
Affiliation(s)
- Michael Brusilovsky
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Nurit P Azouz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Lydia E Mack
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
7
|
Wang X, Caffrey-Carr AK, Liu KW, Espinosa V, Croteau W, Dhingra S, Rivera A, Cramer RA, Obar JJ. MDA5 Is an Essential Sensor of a Pathogen-Associated Molecular Pattern Associated with Vitality That Is Necessary for Host Resistance against Aspergillus fumigatus. THE JOURNAL OF IMMUNOLOGY 2020; 205:3058-3070. [PMID: 33087405 DOI: 10.4049/jimmunol.2000802] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
RIG-I-like receptors (RLR) are cytosolic RNA sensors that signal through the MAVS adaptor to activate IFN responses against viruses. Whether the RLR family has broader effects on host immunity against other pathogen families remains to be fully explored. In this study, we demonstrate that MDA5/MAVS signaling was essential for host resistance against pulmonary Aspergillus fumigatus challenge through the regulation of antifungal leukocyte responses in mice. Activation of MDA5/MAVS signaling was driven by dsRNA from live A. fumigatus serving as a key vitality-sensing pattern recognition receptor. Interestingly, induction of type I IFNs after A. fumigatus challenge was only partially dependent on MDA5/MAVS signaling, whereas type III IFN expression was entirely dependent on MDA5/MAVS signaling. Ultimately, type I and III IFN signaling drove the expression of CXCL10. Furthermore, the MDA5/MAVS-dependent IFN response was critical for the induction of optimal antifungal neutrophil killing of A. fumigatus spores. In conclusion, our data broaden the role of the RLR family to include a role in regulating antifungal immunity against A. fumigatus.
Collapse
Affiliation(s)
- Xi Wang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Alayna K Caffrey-Carr
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59718; and
| | - Ko-Wei Liu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Walburga Croteau
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Sourabh Dhingra
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers - New Jersey Medical School, Newark, NJ 07103
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
8
|
Schneider DJ, Smith KA, Latuszek CE, Wilke CA, Lyons DM, Penke LR, Speth JM, Marthi M, Swanson JA, Moore BB, Lauring AS, Peters‐Golden M. Alveolar macrophage-derived extracellular vesicles inhibit endosomal fusion of influenza virus. EMBO J 2020; 39:e105057. [PMID: 32643835 PMCID: PMC7429743 DOI: 10.15252/embj.2020105057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/09/2023] Open
Abstract
Alveolar macrophages (AMs) and epithelial cells (ECs) are the lone resident lung cells positioned to respond to pathogens at early stages of infection. Extracellular vesicles (EVs) are important vectors of paracrine signaling implicated in a range of (patho)physiologic contexts. Here we demonstrate that AMs, but not ECs, constitutively secrete paracrine activity localized to EVs which inhibits influenza infection of ECs in vitro and in vivo. AMs exposed to cigarette smoke extract lost the inhibitory activity of their secreted EVs. Influenza strains varied in their susceptibility to inhibition by AM-EVs. Only those exhibiting early endosomal escape and high pH of fusion were inhibited via a reduction in endosomal pH. By contrast, strains exhibiting later endosomal escape and lower fusion pH proved resistant to inhibition. These results extend our understanding of how resident AMs participate in host defense and have broader implications in the defense and treatment of pathogens internalized within endosomes.
Collapse
Affiliation(s)
- Daniel J Schneider
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Katherine A Smith
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Catrina E Latuszek
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Carol A Wilke
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Danny M Lyons
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Division of Infectious DiseaseDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Loka R Penke
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Jennifer M Speth
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Matangi Marthi
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Joel A Swanson
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Bethany B Moore
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Adam S Lauring
- Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Division of Infectious DiseaseDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| | - Marc Peters‐Golden
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMIUSA
- Graduate Program in ImmunologyUniversity of Michigan Medical SchoolAnn ArborMIUSA
| |
Collapse
|
9
|
Levin-Konigsberg R, Mantegazza AR. A guide to measuring phagosomal dynamics. FEBS J 2020; 288:1412-1433. [PMID: 32757358 PMCID: PMC7984381 DOI: 10.1111/febs.15506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Phagocytosis is an essential mechanism for immunity and homeostasis, performed by a subset of cells known as phagocytes. Upon target engulfment, de novo formation of specialized compartments termed phagosomes takes place. Phagosomes then undergo a series of fusion and fission events as they interact with the endolysosomal system and other organelles, in a dynamic process known as phagosome maturation. Because phagocytes play a key role in tissue patrolling and immune surveillance, phagosome maturation is associated with signaling pathways that link phagocytosis to antigen presentation and the development of adaptive immune responses. In addition, and depending on the nature of the cargo, phagosome integrity may be compromised, triggering additional cellular mechanisms including inflammation and autophagy. Upon completion of maturation, phagosomes enter a recently described phase: phagosome resolution, where catabolites from degraded cargo are metabolized, phagosomes are resorbed, and vesicles of phagosomal origin are recycled. Finally, phagocytes return to homeostasis and become ready for a new round of phagocytosis. Altogether, phagosome maturation and resolution encompass a series of dynamic events and organelle crosstalk that can be measured by biochemical, imaging, photoluminescence, cytometric, and immune‐based assays that will be described in this guide.
Collapse
Affiliation(s)
| | - Adriana R Mantegazza
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Abuaita BH, Schultz TL, O'Riordan MX. Mitochondria-Derived Vesicles Deliver Antimicrobial Reactive Oxygen Species to Control Phagosome-Localized Staphylococcus aureus. Cell Host Microbe 2018; 24:625-636.e5. [PMID: 30449314 DOI: 10.1016/j.chom.2018.10.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/10/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
Pathogenic bacteria taken up into the macrophage phagosome are the target of many anti-microbial mechanisms. Although mitochondria-derived antimicrobial effectors like reactive oxygen species (mROS) aid in bacterial killing, it is unclear how these effectors reach bacteria within the phagosomal lumen. We show here that endoplasmic reticulum stress triggered upon methicillin-resistant Staphylococcus aureus (MRSA) infection induces mROS that are delivered to bacteria-containing phagosomes via mitochondria-derived vesicles (MDVs). The endoplasmic reticulum stress sensor IRE1α induces mROS, specifically hydrogen peroxide (mH2O2), upon MRSA infection. MRSA infection also stimulates the generation of MDVs, which require the mitochondrial stress response factor Parkin, and contributes to mH2O2 accumulation in bacteria-containing phagosomes. Accumulation of phagosomal H2O2 requires Toll-like receptor signaling and the mitochondrial enzyme superoxide dismutase-2 (Sod2), which is delivered to phagosomes by MDVs. Sod2 depletion compromises mH2O2 production and bacterial killing. Thus, mitochondrial redox capacity enhances macrophage antimicrobial function by delivering mitochondria-derived effector molecules into bacteria-containing phagosomes.
Collapse
Affiliation(s)
- Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Wong AO, Marthi M, Mendel ZI, Gregorka B, Swanson MS, Swanson JA. Renitence vacuoles facilitate protection against phagolysosomal damage in activated macrophages. Mol Biol Cell 2018; 29:657-668. [PMID: 29282279 PMCID: PMC6004576 DOI: 10.1091/mbc.e17-07-0486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022] Open
Abstract
As professional phagocytes, macrophages are susceptible to endolysosomal membrane damage inflicted by the pathogens and noxious particles they ingest. Whether macrophages have mechanisms for limiting such damage is not well understood. Previously, we reported a phenomenon, termed "inducible renitence," in which lipopolysaccharide (LPS) activation of macrophages protected their endolysosomes against damage initiated by the phagocytosis of silica beads. To gain mechanistic insight into the process, we analyzed the kinetics of renitence and morphological features of LPS-activated versus resting macrophages following silica bead-mediated injury. We discovered novel vacuolar structures that form in LPS-activated but not resting macrophages following silica bead phagocytosis. Because of their correlation with renitence and damage-resistant nature, we termed these structures "renitence vacuoles" (RVs). RVs formed coincident with silica bead uptake in a process associated with membrane ruffling and macropinocytosis. However, unlike normal macropinosomes (MPs), which shrink within 20 min of formation, RVs persisted around bead-containing phagosomes. RVs fused with lysosomes, whereas associated phagosomes typically did not. These findings are consistent with a model in which RVs, as persistent MPs, prevent fusion between damaged phagosomes and intact lysosomes and thereby preserve endolysosomal integrity.
Collapse
Affiliation(s)
- Amanda O Wong
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Matangi Marthi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zachary I Mendel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Brian Gregorka
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Joel A Swanson
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Macrophage Polarization Alters Postphagocytosis Survivability of the Commensal Streptococcus gordonii. Infect Immun 2018; 86:IAI.00858-17. [PMID: 29229734 DOI: 10.1128/iai.00858-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Oral streptococci are generally considered commensal organisms; however, they are becoming recognized as important associate pathogens during the development of periodontal disease as well as being associated with several systemic diseases, including as a causative agent of infective endocarditis. An important virulence determinant of these bacteria is an ability to evade destruction by phagocytic cells, yet how this subversion occurs is mostly unknown. Using Streptococcus gordonii as a model commensal oral streptococcus that is also associated with disease, we find that resistance to reactive oxygen species (ROS) with an active ability to damage phagosomes allows the bacterium to avoid destruction within macrophages. This ability to survive relies not only on the ROS resistance capabilities of the bacterium but also on ROS production by macrophages, with both being required for maximal survival of internalized bacteria. Importantly, we also show that this dependence on ROS production by macrophages for resistance has functional significance: S. gordonii intracellular survival increases when macrophages are polarized toward an activated (M1) profile, which is known to result in prolonged phagosomal ROS production compared to that of alternatively (M2) polarized macrophages. We additionally find evidence of the bacterium being capable of both delaying the maturation of and damaging phagosomes. Taken together, these results provide essential insights regarding the mechanisms through which normally commensal oral bacteria can contribute to both local and systemic inflammatory disease.
Collapse
|
13
|
Woldemichael T, Keswani RK, Rzeczycki PM, Murashov MD, LaLone V, Gregorka B, Swanson JA, Stringer KA, Rosania GR. Reverse Engineering the Intracellular Self-Assembly of a Functional Mechanopharmaceutical Device. Sci Rep 2018; 8:2934. [PMID: 29440773 PMCID: PMC5811454 DOI: 10.1038/s41598-018-21271-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/31/2018] [Indexed: 12/19/2022] Open
Abstract
Weakly basic, poorly soluble chemical agents could be exploited as building blocks for constructing sophisticated molecular devices inside the cells of living organisms. Here, using experimental and computational approaches, we probed the relationship between the biological mechanisms mediating lysosomal ion homeostasis and the self-assembly of a weakly basic small molecule building block (clofazimine) into a functional, mechanopharmaceutical device (intracellular Crystal-Like Drug Inclusions – “CLDIs”) in macrophage lysosomes. Physicochemical considerations indicate that the intralysosomal stabilization of the self-assembled mechanopharmaceutical device depends on the pHmax of the weakly basic building block and its affinity for chloride, both of which are consistent with the pH and chloride content of a physiological lysosomal microenvironment. Most importantly, in vitro and in silico studies revealed that high expression levels of the vacuolar ATPase (V-ATPase), irrespective of the expression levels of chloride channels, are necessary and sufficient to explain the cell-type dependent formation, stabilization, and biocompatibility of the self-assembled mechanopharmaceutical device within macrophages.
Collapse
Affiliation(s)
- Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Rahul K Keswani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Phillip M Rzeczycki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Mikhail D Murashov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Vernon LaLone
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Brian Gregorka
- CLCI: Center for Live-Cell Imaging, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Joel A Swanson
- Program in Immunology and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Chen S, Yuan J, Yao S, Jin Y, Chen G, Tian W, Xi J, Xu Z, Weng D, Chen J. Lipopolysaccharides may aggravate apoptosis through accumulation of autophagosomes in alveolar macrophages of human silicosis. Autophagy 2016; 11:2346-57. [PMID: 26553601 DOI: 10.1080/15548627.2015.1109765] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Silica dust mainly attacks alveolar macrophages (AMs) and increases the apoptosis of AMs in silicosis patients. However, it is still unclear whether autophagy is affected. Autophagy mainly has defensive functions in response to stress, contributing to cell survival in adverse conditions, and conversely it has also been implicated in cell death. Lipopolysaccharide (LPS) induces autophagy and apoptosis in macrophages. The role of LPS in autophagy and apoptosis in AMs of silicosis patients is unknown. In this study, we collected AMs from 53 male workers exposed to silica and divided them into an observer (control) group, and stage I, II and III patient groups. We found increased levels of LC3B, SQSTM1/p62 and BECN1,whereas the phosphorylation of MTOR,and levels of LAMP2, TLR4, MYD88, TICAM1, as well as the number of lysosomes decreased with the development of silicosis. LPS stimulation triggered autophagy and increased levels of SQSTM1 in AMs. The autophagy inhibitor, 3-methyladenine (3MA), inhibited LPS-induced apoptosis in the AMs of silicosis patients. Moreover, 3MA reversed the LPS-induced decrease in BCL2 and the increase in BAX and CASP3 levels in AMs. These results suggest that autophagosomes accumulate in AMs during silicosis progression. LPS can induce the formation of autophagosomes through a TLR4-dependent pathway, and LPS may exacerbate the apoptosis in AMs. Blockade of the formation of autophagosomes may inhibit LPS-induced apoptosis via the intrinsic apoptotic pathway in AMs. These findings describe novel mechanisms that may lead to new preventive and therapeutic strategies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Shi Chen
- a School of Public Health; China Medical University ; Shenyang , China.,b School of Public Health; North China University of Science and Technology ; Tangshan , China
| | - Juxiang Yuan
- b School of Public Health; North China University of Science and Technology ; Tangshan , China
| | - Sanqiao Yao
- c School of Public Health; Xinxiang Medical University ; Xinxiang , China
| | - Yulan Jin
- b School of Public Health; North China University of Science and Technology ; Tangshan , China
| | - Gang Chen
- d Department of Pneumoconiosis ; Beidaihe Sanitarium for China Coal Miners ; Beidaihe , China
| | - Wei Tian
- e Heart Institute; North China University of Science and Technology ; Tangshan , China
| | - Jinkun Xi
- e Heart Institute; North China University of Science and Technology ; Tangshan , China
| | - Zhelong Xu
- e Heart Institute; North China University of Science and Technology ; Tangshan , China
| | - Dong Weng
- a School of Public Health; China Medical University ; Shenyang , China
| | - Jie Chen
- a School of Public Health; China Medical University ; Shenyang , China
| |
Collapse
|
15
|
The complex cascade of cellular events governing inflammasome activation and IL-1β processing in response to inhaled particles. Part Fibre Toxicol 2016; 13:40. [PMID: 27519871 PMCID: PMC4983011 DOI: 10.1186/s12989-016-0150-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/12/2016] [Indexed: 01/05/2023] Open
Abstract
The innate immune system is the first line of defense against inhaled particles. Macrophages serve important roles in particle clearance and inflammatory reactions. Following recognition and internalization by phagocytes, particles are taken up in vesicular phagolysosomes. Intracellular phagosomal leakage, redox unbalance and ionic movements induced by toxic particles result in pro-IL-1β expression, inflammasome complex engagement, caspase-1 activation, pro-IL-1β cleavage, biologically-active IL-1β release and finally inflammatory cell death termed pyroptosis. In this review, we summarize the emerging signals and pathways involved in the expression, maturation and secretion of IL-1β during these responses to particles. We also highlight physicochemical characteristics of particles (size, surface and shape) which determine their capacity to induce inflammasome activation and IL-1β processing.
Collapse
|
16
|
Katsnelson MA, Lozada-Soto KM, Russo HM, Miller BA, Dubyak GR. NLRP3 inflammasome signaling is activated by low-level lysosome disruption but inhibited by extensive lysosome disruption: roles for K+ efflux and Ca2+ influx. Am J Physiol Cell Physiol 2016; 311:C83-C100. [PMID: 27170638 DOI: 10.1152/ajpcell.00298.2015] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/05/2016] [Indexed: 12/28/2022]
Abstract
Nucleotide-binding domain, leucine-rich-repeat-containing family, pyrin domain-containing 3 (NLRP3) is a cytosolic protein that nucleates assembly of inflammasome signaling platforms, which facilitate caspase-1-mediated IL-1β release and other inflammatory responses in myeloid leukocytes. NLRP3 inflammasomes are assembled in response to multiple pathogen- or environmental stress-induced changes in basic cell physiology, including the destabilization of lysosome integrity and activation of K(+)-permeable channels/transporters in the plasma membrane (PM). However, the quantitative relationships between lysosome membrane permeabilization (LMP), induction of increased PM K(+) permeability, and activation of NLRP3 signaling are incompletely characterized. We used Leu-Leu-O-methyl ester (LLME), a soluble lysosomotropic agent, to quantitatively track the kinetics and extent of LMP in relation to NLRP3 inflammasome signaling responses (ASC oligomerization, caspase-1 activation, IL-1β release) and PM cation fluxes in murine bone marrow-derived dendritic cells (BMDCs). Treatment of BMDCs with submillimolar (≤1 mM) LLME induced slower and partial increases in LMP that correlated with robust NLRP3 inflammasome activation and K(+) efflux. In contrast, supramillimolar (≥2 mM) LLME elicited extremely rapid and complete collapse of lysosome integrity that was correlated with suppression of inflammasome signaling. Supramillimolar LLME also induced dominant negative effects on inflammasome activation by the canonical NLRP3 agonist nigericin; this inhibition correlated with an increase in NLRP3 ubiquitination. LMP elicited rapid BMDC death by both inflammasome-dependent pyroptosis and inflammasome-independent necrosis. LMP also triggered Ca(2+) influx, which attenuated LLME-stimulated NLRP3 inflammasome signaling but potentiated LLME-induced necrosis. Taken together, these studies reveal a previously unappreciated signaling network that defines the coupling between LMP, changes in PM cation fluxes, cell death, and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Michael A Katsnelson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kristen M Lozada-Soto
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Hana M Russo
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Barbara A Miller
- Department of Pediatrics, Penn State Hershey Children's Hospital, Hershey, Pennsylvania
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio;
| |
Collapse
|
17
|
Tosh KW, Mittereder L, Bonne-Annee S, Hieny S, Nutman TB, Singer SM, Sher A, Jankovic D. The IL-12 Response of Primary Human Dendritic Cells and Monocytes to Toxoplasma gondii Is Stimulated by Phagocytosis of Live Parasites Rather Than Host Cell Invasion. THE JOURNAL OF IMMUNOLOGY 2015; 196:345-56. [PMID: 26597011 DOI: 10.4049/jimmunol.1501558] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/21/2015] [Indexed: 12/11/2022]
Abstract
As a major natural host for Toxoplasma gondii, the mouse is widely used for the study of the immune response to this medically important protozoan parasite. However, murine innate recognition of toxoplasma depends on the interaction of parasite profilin with TLR11 and TLR12, two receptors that are functionally absent in humans. This raises the question of how human cells detect and respond to T. gondii. In this study, we show that primary monocytes and dendritic cells from peripheral blood of healthy donors produce IL-12 and other proinflammatory cytokines when exposed to toxoplasma tachyzoites. Cell fractionation studies determined that IL-12 and TNF-α secretion is limited to CD16(+) monocytes and the CD1c(+) subset of dendritic cells. In direct contrast to their murine counterparts, human myeloid cells fail to respond to soluble tachyzoite extracts and instead require contact with live parasites. Importantly, we found that tachyzoite phagocytosis, but not host cell invasion, is required for cytokine induction. Together these findings identify CD16(+) monocytes and CD1c(+) dendritic cells as the major myeloid subsets in human blood-producing innate cytokines in response to T. gondii and demonstrate an unappreciated requirement for phagocytosis of live parasites in that process. This form of pathogen sensing is distinct from that used by mice, possibly reflecting a direct involvement of rodents and not humans in the parasite life cycle.
Collapse
Affiliation(s)
- Kevin W Tosh
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; Department of Biology, Georgetown University, Washington, DC 20057; and
| | - Lara Mittereder
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sandra Bonne-Annee
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Sara Hieny
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas B Nutman
- Helminth Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC 20057; and
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Dragana Jankovic
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
18
|
Joshi GN, Goetjen AM, Knecht DA. Silica particles cause NADPH oxidase-independent ROS generation and transient phagolysosomal leakage. Mol Biol Cell 2015. [PMID: 26202463 PMCID: PMC4569308 DOI: 10.1091/mbc.e15-03-0126] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phagosomes containing silica particles leak their contents into the cytoplasm, leading to apoptosis, and leakage has been linked to ROS. Unlike latex particles, silica generates phagosomal and cytoplasmic ROS independent of NADPH oxidase. Leakage is transient, and, after sealing, phagosomes continue to fuse with endosomes. Chronic inhalation of silica particles causes lung fibrosis and silicosis. Silica taken up by alveolar macrophages causes phagolysosomal membrane damage and leakage of lysosomal material into the cytoplasm to initiate apoptosis. We investigated the role of reactive oxygen species (ROS) in this membrane damage by studying the spatiotemporal generation of ROS. In macrophages, ROS generated by NADPH oxidase 2 (NOX2) was detected in phagolysosomes containing either silica particles or nontoxic latex particles. ROS was only detected in the cytoplasm of cells treated with silica and appeared in parallel with an increase in phagosomal ROS, as well as several hours later associated with mitochondrial production of ROS late in apoptosis. Pharmacological inhibition of NOX activity did not prevent silica-induced phagolysosomal leakage but delayed it. In Cos7 cells, which do not express NOX2, ROS was detected in silica-containing phagolysosomes that leaked. ROS was not detected in phagolysosomes containing latex particles. Leakage of silica-containing phagolysosomes in both cell types was transient, and after resealing of the membrane, endolysosomal fusion continued. These results demonstrate that silica particles can generate phagosomal ROS independent of NOX activity, and we propose that this silica-generated ROS can cause phagolysosomal leakage to initiate apoptosis.
Collapse
Affiliation(s)
- Gaurav N Joshi
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Alexandra M Goetjen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
19
|
Irvine DJ, Hanson MC, Rakhra K, Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem Rev 2015; 115:11109-46. [PMID: 26154342 DOI: 10.1021/acs.chemrev.5b00109] [Citation(s) in RCA: 518] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Darrell J Irvine
- The Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University , 400 Technology Square, Cambridge, Massachusetts 02139, United States.,Howard Hughes Medical Institute , Chevy Chase, Maryland 20815, United States
| | | | | | | |
Collapse
|
20
|
Davis MJ, Eastman AJ, Qiu Y, Gregorka B, Kozel TR, Osterholzer JJ, Curtis JL, Swanson JA, Olszewski MA. Cryptococcus neoformans-induced macrophage lysosome damage crucially contributes to fungal virulence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2219-31. [PMID: 25637026 PMCID: PMC4379045 DOI: 10.4049/jimmunol.1402376] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Upon ingestion by macrophages, Cryptococcus neoformans can survive and replicate intracellularly unless the macrophages become classically activated. The mechanism enabling intracellular replication is not fully understood; neither are the mechanisms that allow classical activation to counteract replication. C. neoformans-induced lysosome damage was observed in infected murine bone marrow-derived macrophages, increased with time, and required yeast viability. To demonstrate lysosome damage in the infected host, we developed a novel flow cytometric method for measuring lysosome damage. Increased lysosome damage was found in C. neoformans-containing lung cells compared with C. neoformans-free cells. Among C. neoformans-containing myeloid cells, recently recruited cells displayed lower damage than resident cells, consistent with the protective role of recruited macrophages. The magnitude of lysosome damage correlated with increased C. neoformans replication. Experimental induction of lysosome damage increased C. neoformans replication. Activation of macrophages with IFN-γ abolished macrophage lysosome damage and enabled increased killing of C. neoformans. We conclude that induction of lysosome damage is an important C. neoformans survival strategy and that classical activation of host macrophages counters replication by preventing damage. Thus, therapeutic strategies that decrease lysosomal damage, or increase resistance to such damage, could be valuable in treating cryptococcal infections.
Collapse
Affiliation(s)
- Michael J Davis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Alison J Eastman
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Yafeng Qiu
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Brian Gregorka
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Thomas R Kozel
- Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV 89557
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105
| | - Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, MI 48109; Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109; VA Ann Arbor Healthcare System, Ann Arbor, MI 48105;
| |
Collapse
|
21
|
Silica phagocytosis causes apoptosis and necrosis by different temporal and molecular pathways in alveolar macrophages. Apoptosis 2013; 18:271-85. [PMID: 23329178 DOI: 10.1007/s10495-012-0798-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic inhalation of crystalline silica is an occupational hazard that results in silicosis due to the toxicity of silica particles to lung cells. Alveolar macrophages play an important role in clearance of these particles, and exposure of macrophages to silica particles causes cell death and induction of markers of apoptosis. Using time-lapse imaging of MH-S alveolar macrophages, a temporal sequence was established for key molecular events mediating cell death. The results demonstrate that 80 % of macrophages die by apoptosis and 20 % by necrosis by clearly distinguishable pathways. The earliest detectable cellular event is phago-lysosomal leakage, which occurs between 30 and 120 min after particle uptake in both modes of death. Between 3 and 6 h later, cells undergoing apoptosis showed a dramatic increase in mitochondrial transmembrane potential, closely correlated with activation of both caspase-3 and 9 and cell blebbing. Externalization of phosphatidyl serine and nuclear condensation occurred 30 min-2 h after the initiation of cell blebbing. Cells undergoing necrosis demonstrated mitochondrial membrane depolarization but not hyperpolarization and no caspase activation. Cell swelling followed the decrease in mitochondrial membrane potential, distinguishing necrosis from apoptosis. All cells undergoing apoptosis followed the same temporal sequence, but the time lag between phago-lysosomal leakage and the other events was highly variable from cell to cell. These results demonstrate that crystalline silica exposure can result in either apoptosis or necrosis and each occurs in a well-defined but temporally variable order. The long time gap between phago-lysosomal leakage and hyperpolarization is not consistent with a simple scenario of phago-lysosomal leakage leading directly to cell death. The results highlight the importance of using a cell by cell time-lapse analysis to investigate a complex pathway such as silica induced cell death.
Collapse
|
22
|
Mossman BT, Glenn RE. Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit Rev Toxicol 2013; 43:632-60. [PMID: 23863112 DOI: 10.3109/10408444.2013.818617] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silica or silicon dioxides (SiO₂) are naturally occurring substances that comprise the vast majority of the earth's crust. Because of their prevalence and commercial applications, they have been widely studied for their potential to induce pulmonary fibrosis and other disorders. Historically, the focus in the workplace has been on the development of inflammation and fibrotic lung disease, the basis for promulgating workplace standards to protect workers. Crystalline silica (CS) polymorphs, predominantly quartz and cristobalite, are used in industry but are different in their mineralogy, chemistry, surface features, size dimensions and association with other elements naturally and during industrial applications. Epidemiologic, clinical and experimental studies in the literature historically have predominantly focused on quartz polymorphs. Thus, in this review, we summarize past scientific evaluations and recent peer-reviewed literature with an emphasis on cristobalite, in an attempt to determine whether quartz and cristobalite polymorphs differ in their health effects, toxicity and other properties that may dictate the need for various standards of protection in the workplace. In addition to current epidemiological and clinical reports, we review in vivo studies in rodents as well as cell culture studies that shed light on mechanisms intrinsic to the toxicity, altered cell responses and protective or defense mechanisms in response to these minerals. The medical and scientific literature indicates that the mechanisms of injury and potential causation of inflammation and fibrotic lung disease are similar for quartz and cristobalite. Our analysis of these data suggests similar occupational exposure limits (OELs) for these minerals in the workplace.
Collapse
Affiliation(s)
- Brooke T Mossman
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405-0068, USA.
| | | |
Collapse
|
23
|
Hamilton RF, Buford M, Xiang C, Wu N, Holian A. NLRP3 inflammasome activation in murine alveolar macrophages and related lung pathology is associated with MWCNT nickel contamination. Inhal Toxicol 2013; 24:995-1008. [PMID: 23216160 DOI: 10.3109/08958378.2012.745633] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Multi-walled carbon nanotubes (MWCNT) have been reported to cause lung pathologies in multiple studies. However, the mechanism responsible for the bioactivity has not been determined. This study used nine different well-characterized MWCNT and examined the outcomes in vitro and in vivo. MWCNT, from a variety of sources that differed primarily in overall purity and metal contaminants, were examined for their effects in vitro (toxicity and NLRP3 inflammasome activation using primary alveolar macrophages isolated from C57Bl/6 mice). In addition, in vivo exposures were conducted to determine the inflammatory and pathogenic potency. The particles produced a differential magnitude of responses, both in vivo and in vitro, that was associated most strongly with nickel contamination on the particle. Furthermore, the mechanism of action for the Ni-contaminated particles was in their ability to disrupt macrophage phagolysosomes, which resulted in NLRP3 activation and subsequent cytokine release associated with prolonged inflammation and lung pathology.
Collapse
Affiliation(s)
- Raymond F Hamilton
- Center for Environmental Health Sciences, University of Montana, Missoula, USA
| | | | | | | | | |
Collapse
|
24
|
Cassidy SKB, O'Riordan MXD. More than a pore: the cellular response to cholesterol-dependent cytolysins. Toxins (Basel) 2013; 5:618-36. [PMID: 23584137 PMCID: PMC3705283 DOI: 10.3390/toxins5040618] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/07/2013] [Accepted: 04/07/2013] [Indexed: 12/15/2022] Open
Abstract
Targeted disruption of the plasma membrane is a ubiquitous form of attack used in all three domains of life. Many bacteria secrete pore-forming proteins during infection with broad implications for pathogenesis. The cholesterol-dependent cytolysins (CDC) are a family of pore-forming toxins expressed predominately by Gram-positive bacterial pathogens. The structure and assembly of some of these oligomeric toxins on the host membrane have been described, but how the targeted cell responds to intoxication by the CDCs is not as clearly understood. Many CDCs induce lysis of their target cell and can activate apoptotic cascades to promote cell death. However, the extent to which intoxication causes cell death is both CDC- and host cell-dependent, and at lower concentrations of toxin, survival of intoxicated host cells is well documented. Additionally, the effect of CDCs can be seen beyond the plasma membrane, and it is becoming increasingly clear that these toxins are potent regulators of signaling and immunity, beyond their role in intoxication. In this review, we discuss the cellular response to CDC intoxication with emphasis on the effects of pore formation on the host cell plasma membrane and subcellular organelles and whether subsequent cellular responses contribute to the survival of the affected cell.
Collapse
Affiliation(s)
- Sara K B Cassidy
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
25
|
Davis MJ, Gregorka B, Gestwicki JE, Swanson JA. Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4488-95. [PMID: 23002437 PMCID: PMC3478491 DOI: 10.4049/jimmunol.1103158] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membranes of endolysosomal compartments in macrophages are often damaged by physical or chemical effects of particles ingested through phagocytosis or by toxins secreted by intracellular pathogens. This study identified a novel inducible activity in macrophages that increases resistance of phagosomes, late endosomes, and lysosomes to membrane damage. Pretreatment of murine macrophages with LPS, peptidoglycan, TNF-α, or IFN-γ conferred protection against subsequent damage to intracellular membranes caused by photooxidative chemistries or by phagocytosis of ground silica or silica microspheres. Phagolysosome damage was partially dependent on reactive oxygen species but was independent of the phagocyte oxidase. IFN-γ-stimulated macrophages from mice lacking the phagocyte oxidase inhibited escape from vacuoles by the intracellular pathogen Listeria monocytogenes, which suggested a role for this inducible renitence (resistance to pressure) in macrophage resistance to infection by pathogens that damage intracellular membranes. Renitence and inhibition of L. monocytogenes escape were partially attributable to heat shock protein-70. Thus, renitence is a novel, inducible activity of macrophages that maintains or restores the integrity of endolysosomal membranes.
Collapse
Affiliation(s)
- Michael J. Davis
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
| | - Brian Gregorka
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
| | - Jason E. Gestwicki
- Life Sciences Institute. University of Michigan, Ann Arbor, MI 48109, U.S.A
| | - Joel A. Swanson
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
| |
Collapse
|
26
|
Underhill DM, Goodridge HS. Information processing during phagocytosis. Nat Rev Immunol 2012; 12:492-502. [PMID: 22699831 DOI: 10.1038/nri3244] [Citation(s) in RCA: 408] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phagocytosis - the process by which macrophages, dendritic cells and other myeloid phagocytes internalize diverse particulate targets - is a key mechanism of innate immunity. The molecular and cellular events that underlie the binding of targets to a phagocyte and their engulfment into phagosomes have been extensively studied. More recent data suggest that the process of phagocytosis itself provides information to myeloid phagocytes about the nature of the targets they are engulfing and that this helps to tailor inflammatory responses. In this Review, we discuss how such information is acquired during phagocytosis and how it is processed to coordinate an immune response.
Collapse
Affiliation(s)
- David M Underhill
- Inflammatory Bowel & Immunobiology Research Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8,700 Beverly Boulevard, Los Angeles, California 90048, USA.
| | | |
Collapse
|
27
|
Biswas R, Bunderson-Schelvan M, Holian A. Potential role of the inflammasome-derived inflammatory cytokines in pulmonary fibrosis. Pulm Med 2011; 2011:105707. [PMID: 21660282 PMCID: PMC3109309 DOI: 10.1155/2011/105707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/21/2011] [Accepted: 04/13/2011] [Indexed: 11/17/2022] Open
Abstract
Pulmonary fibrosis is a progressive, disabling disease with mortality rates that appear to be increasing in the western population, including the USA. There are over 140 known causes of pulmonary fibrosis as well as many unknown causes. Treatment options for this disease are limited due to poor understanding of the molecular mechanisms of the disease progression. However, recent progress in inflammasome research has greatly contributed to our understanding of its role in inflammation and fibrosis development. The inflammasome is a multiprotein complex that is an important component of both the innate and adaptive immune systems. Activation of proinflammatory cytokines following inflammasome assembly, such as IL-1β and IL-18, has been associated with development of PF. In addition, components of the inflammasome complex itself, such as the adaptor protein ASC have been associated with PF development. Recent evidence suggesting that the fibrotic process can be reversed via blockade of pathways associated with inflammasome activity may provide hope for future drug strategies. In this paper we will give an introduction to pulmonary fibrosis and its known causes. In addition, we will discuss the importance of the inflammasome in the development of pulmonary fibrosis as well as discuss potential future treatment options.
Collapse
Affiliation(s)
- Rupa Biswas
- Center for Environmental Health Sciences, The University of Montana, Skaggs Building 274, Missoula, MT 59812, USA
| | - Melisa Bunderson-Schelvan
- Center for Environmental Health Sciences, The University of Montana, Skaggs Building 274, Missoula, MT 59812, USA
| | - Andrij Holian
- Center for Environmental Health Sciences, The University of Montana, Skaggs Building 274, Missoula, MT 59812, USA
| |
Collapse
|
28
|
Sander LE, Davis MJ, Boekschoten MV, Amsen D, Dascher CC, Ryffel B, Swanson JA, Müller M, Blander JM. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 2011; 474:385-9. [PMID: 21602824 PMCID: PMC3289942 DOI: 10.1038/nature10072] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 03/24/2011] [Indexed: 12/25/2022]
Abstract
Live vaccines have long been known to trigger far more vigorous immune responses than their killed counterparts. This has been attributed to the ability of live microorganisms to replicate and express specialized virulence factors that facilitate invasion and infection of their hosts. However, protective immunization can often be achieved with a single injection of live, but not dead, attenuated microorganisms stripped of their virulence factors. Pathogen-associated molecular patterns (PAMPs), which are detected by the immune system, are present in both live and killed vaccines, indicating that certain poorly characterized aspects of live microorganisms, not incorporated in dead vaccines, are particularly effective at inducing protective immunity. Here we show that the mammalian innate immune system can directly sense microbial viability through detection of a special class of viability-associated PAMPs (vita-PAMPs). We identify prokaryotic messenger RNA as a vita-PAMP present only in viable bacteria, the recognition of which elicits a unique innate response and a robust adaptive antibody response. Notably, the innate response evoked by viability and prokaryotic mRNA was thus far considered to be reserved for pathogenic bacteria, but we show that even non-pathogenic bacteria in sterile tissues can trigger similar responses, provided that they are alive. Thus, the immune system actively gauges the infectious risk by searching PAMPs for signatures of microbial life and thus infectivity. Detection of vita-PAMPs triggers a state of alert not warranted for dead bacteria. Vaccine formulations that incorporate vita-PAMPs could thus combine the superior protection of live vaccines with the safety of dead vaccines.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/deficiency
- Adaptor Proteins, Vesicular Transport/immunology
- Animals
- Antibodies, Bacterial/immunology
- Bacteria/genetics
- Bacteria/immunology
- Bacteria/pathogenicity
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Carrier Proteins/metabolism
- Cells, Cultured
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Dendritic Cells/microbiology
- Immunity, Innate/immunology
- Inflammasomes/immunology
- Inflammasomes/metabolism
- Interferon-beta/genetics
- Interferon-beta/immunology
- Macrophages/cytology
- Macrophages/immunology
- Macrophages/microbiology
- Mice
- Mice, Inbred C57BL
- Microbial Viability/genetics
- Microbial Viability/immunology
- NLR Family, Pyrin Domain-Containing 3 Protein
- Phagocytosis
- Phagosomes/immunology
- Phagosomes/microbiology
- RNA, Bacterial/genetics
- RNA, Bacterial/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, Inactivated/immunology
- Virulence Factors
Collapse
Affiliation(s)
- Leif E Sander
- Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH, Monick MM. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem 2011; 286:21844-52. [PMID: 21525001 DOI: 10.1074/jbc.m111.238519] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inhalation of nanoparticles has been implicated in respiratory morbidity and mortality. In particular, carbon black nanoparticles are found in many different environmental exposures. Macrophages take up inhaled nanoparticles and respond via release of inflammatory mediators and in some cases cell death. Based on new data, we propose that exposure of macrophages (both a macrophage cell line and primary human alveolar macrophages) to carbon black nanoparticles induces pyroptosis, an inflammasome-dependent form of cell death. Exposure of macrophages to carbon black nanoparticles resulted in inflammasome activation as defined by cleavage of caspase 1 to its active form and downstream IL-1β release. The cell death that occurred with carbon black nanoparticle exposure was identified as pyroptosis by the protective effect of a caspase 1 inhibitor and a pyroptosis inhibitor. These data demonstrate that carbon black nanoparticle exposure activates caspase 1, increases IL-1β release after LPS priming, and induces the proinflammatory cell death, pyroptosis. The identification of pyroptosis as a cellular response to carbon nanoparticle exposure is novel and relates to environmental and health impacts of carbon-based particulates.
Collapse
Affiliation(s)
- Anna C Reisetter
- Department of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|