1
|
Chen W, Bao F, Roberts CJ, Zhang J, Wang C, Li X, Wang J, Abu Said AZM, Mayopa KN, Chen Y, Zheng X, Eliasy A, Elsheikh A, Chen S. Effect of corneal cross-linking on biomechanical changes following transepithelial photorefractive keratectomy and femtosecond laser-assisted LASIK. Front Bioeng Biotechnol 2024; 12:1323612. [PMID: 38558790 PMCID: PMC10978754 DOI: 10.3389/fbioe.2024.1323612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose: To evaluate the change in corneal biomechanics in patients with postoperative ectasia risk when combining two common laser vision correction procedures (tPRK and FS-LASIK) with cross-linking (in tPRK Xtra and FS-LASIK Xtra). Methods: The study included 143 eyes of 143 myopic, astigmatic patients that were divided into non-cross-linked refractive surgery groups (non-Xtra groups, tPRK and FS-LASIK) and cross-linked groups (Xtra groups, tPRK Xtra and FS-LASIK Xtra) according to an ectasia risk scoring system. The eyes were subjected to measurements including the stress-strain index (SSI), the stiffness parameter at first applanation (SP-A1), the integrated inverse radius (IIR), the deformation amplitude at apex (DA), and the ratio of deformation amplitude between apex and 2 mm from apex (DARatio2mm). The measurements were taken preoperatively and at 1, 3, and 6 months postoperatively (pos1m, pos3m, and pos6m). Posterior demarcation line depth from the endothelium (PDLD) and from the ablation surface (DLA) were recorded at pos1m. Results: SP-A1 significantly decreased, while IIR, deformation amplitude, and DARatio2mm increased significantly postoperatively in all four groups (p < 0.01)-all denoting stiffness decreases. In the FS-LASIK group, the changes in IIR, DA, and DARatio2mm were 32.7 ± 15.1%, 12.9 ± 7.1%, and 27.2 ± 12.0% respectively, which were significantly higher (p < 0.05) compared to 20.1 ± 12.8%, 6.4 ± 8.2%, and 19.7 ± 10.4% in the FS-LASIK Xtra group. In the tPRK group, the change in IIR was 27.3 ± 15.5%, significantly larger than 16.9 ± 13.4% in the tPRK Xtra group. The changes of SSI were minimal in the tPRK (-1.5 ± 21.7%, p = 1.000), tPRK Xtra (8.4 ± 17.9%, p = 0.053), and FS-LASIK Xtra (5.6 ± 12.7%, p = 0.634) groups, but was significant in the FS-LASIK group (-12.1 ± 7.9%, p < 0.01). After correcting for baseline biomechanical metrics, preoperative bIOP and the change in central corneal thickness (△CCT) from pre to pos6m, the changes in the IIR in both FS-LASIK and tPRK groups, as well as DA, DARatio2mm and SSI in the FS-LASIK group remained statistically greater than their corresponding Xtra groups (all p < 0.05). Most importantly, after correcting for these covariates, the changes in DARatio2mm in the FS-LASIK Xtra became statistically smaller than in the tPRK Xtra (p = 0.017). Conclusion: The statistical analysis results indicate that tPRK Xtra and FS-LASIK Xtra effectively reduced the biomechanical losses caused by refractive surgery (tPRK and FS-LASIK). The decrease in corneal overall stiffness was greater in FS-LASIK than in tPRK, and the biomechanical enhancement of CXL was also higher following LASIK than after tPRK.
Collapse
Affiliation(s)
- Wen Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - FangJun Bao
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Sicence, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- The Institute of Ocular Biomechanics, WenZhou Medical University, Wenzhou, China
| | - Cynthia J. Roberts
- Ophthalmology and Visual Sciences and Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Jia Zhang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Sicence, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chong Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - XueFei Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - JunJie Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Sicence, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- The Institute of Ocular Biomechanics, WenZhou Medical University, Wenzhou, China
| | - Anas Ziad Masoud Abu Said
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Kevin Nguelemo Mayopa
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - YaNi Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - XiaoBo Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Sicence, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- The Institute of Ocular Biomechanics, WenZhou Medical University, Wenzhou, China
| | - Ashkan Eliasy
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
| | - Ahmed Elsheikh
- School of Engineering, University of Liverpool, Liverpool, United Kingdom
- National Institute for Health Research (NIHR) Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - ShiHao Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory of Ophthalmology, Optometry and Vision Sicence, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- The Institute of Ocular Biomechanics, WenZhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Jaggi U, Matundan HH, Yu J, Hirose S, Mueller M, Wormley FL, Ghiasi H. Essential role of M1 macrophages in blocking cytokine storm and pathology associated with murine HSV-1 infection. PLoS Pathog 2021; 17:e1009999. [PMID: 34653236 PMCID: PMC8550391 DOI: 10.1371/journal.ppat.1009999] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
Ocular HSV-1 infection is a major cause of eye disease and innate and adaptive immunity both play a role in protection and pathology associated with ocular infection. Previously we have shown that M1-type macrophages are the major and earliest infiltrates into the cornea of infected mice. We also showed that HSV-1 infectivity in the presence and absence of M2-macrophages was similar to wild-type (WT) control mice. However, it is not clear whether the absence of M1 macrophages plays a role in protection and disease in HSV-1 infected mice. To explore the role of M1 macrophages in HSV-1 infection, we used mice lacking M1 activation (M1-/- mice). Our results showed that macrophages from M1-/- mice were more susceptible to HSV-1 infection in vitro than were macrophages from WT mice. M1-/- mice were highly susceptible to ocular infection with virulent HSV-1 strain McKrae, while WT mice were refractory to infection. In addition, M1-/- mice had higher virus titers in the eyes than did WT mice. Adoptive transfer of M1 macrophages from WT mice to M1-/- mice reduced death and rescued virus replication in the eyes of infected mice. Infection of M1-/- mice with avirulent HSV-1 strain KOS also increased ocular virus replication and eye disease but did not affect latency-reactivation seen in WT control mice. Severity of virus replication and eye disease correlated with significantly higher inflammatory responses leading to a cytokine storm in the eyes of M1-/- infected mice that was not seen in WT mice. Thus, for the first time, our study illustrates the importance of M1 macrophages specifically in primary HSV-1 infection, eye disease, and survival but not in latency-reactivation. Macrophages circulating in the blood or present in different tissues constitute an important barrier against infection. We previously showed that the absence of M2 macrophages does not impact HSV-1 infectivity in vivo. However, in this study we demonstrated an essential role of M1 macrophages in protection from primary HSV-1 replication, death, and eye disease but not in latency-reactivation.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Harry H. Matundan
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Jack Yu
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Satoshi Hirose
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
| | - Mathias Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Floyd L. Wormley
- Department of Biology, Texas Christian University, Fort Worth, Texas, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns & Allen Research Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
3
|
Wang L, Wang R, Xu C, Zhou H. Pathogenesis of Herpes Stromal Keratitis: Immune Inflammatory Response Mediated by Inflammatory Regulators. Front Immunol 2020; 11:766. [PMID: 32477330 PMCID: PMC7237736 DOI: 10.3389/fimmu.2020.00766] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes stromal keratitis (HSK) is one of the primary diseases that cause vision loss or even blindness after herpes simplex virus (HSV)-1 infection. HSK-associated vision impairment is predominantly due to corneal scarring and neovascularization caused by inflammation. In the infected cornea, HSV can activate innate and adaptive immune responses of host cells, which triggers a cascade of reactions that leads to the release of inflammatory cytokines, chemokines, microRNA, and other regulatory factors that have stimulating or inhibitory effects on tissue. Physiologically, host cells show homeostasis. In this review, we summarize the factors involved in HSK pathogenesis from the perspective of immunity, molecules, and pathological angiogenesis. We also describe in detail the pathogenesis of chronic inflammatory lesions of the corneal stroma in response to HSV-1 infection.
Collapse
Affiliation(s)
- Li Wang
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China.,Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Runbiao Wang
- Department of Ophthalmology, Jilin City Central Hospital, Jilin, China
| | - Chuyang Xu
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyan Zhou
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model. Int Immunopharmacol 2017; 48:126-134. [PMID: 28501766 DOI: 10.1016/j.intimp.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/17/2017] [Accepted: 05/04/2017] [Indexed: 01/19/2023]
Abstract
Cornea is an avascular transparent tissue. Ocular trauma caused by a corneal alkali burn induces corneal neovascularization (CNV), inflammation, and fibrosis, leading to vision loss. The purpose of this study was to examine the effects of Zerumbone (ZER) on corneal wound healing caused by alkali burns in mice. CNV was induced by alkali-burn injury in BALB/C female mice. Topical ZER (three times per day, 3μl each time, at concentrations of 5, 15, and 30μM) was applied to treat alkali-burned mouse corneas for 14 consecutive days. Histopathologically, ZER treatment suppressed alkali burn-induced CNV and decreased corneal epithelial defects induced by alkali burns. Corneal tissue treated with ZER showed reduced mRNA levels of pro-angiogenic genes, including vascular endothelial growth factor, matrix metalloproteinase-2 and 9, and pro-fibrotic factors such as alpha smooth muscle actin and transforming growth factor-1 and 2. Immunohistochemical analysis demonstrated that the infiltration of F4/80 and/or CCR2 positive cells was significantly decreased in ZER-treated corneas. ZER markedly inhibited the mRNA and protein levels of monocyte chemoattractant protein-1 (MCP-1) in human corneal fibroblasts and murine peritoneal macrophages. Immunoblot analysis revealed that ZER decreased the activation of signal transducer and activator of transcription 3 (STAT3), with consequent reduction of MCP-1 production by these cells. In conclusion, topical administration of ZER accelerated corneal wound healing by inhibition of STAT3 and MCP-1 production.
Collapse
|
5
|
Understanding the Role of Chemokines and Cytokines in Experimental Models of Herpes Simplex Keratitis. J Immunol Res 2017; 2017:7261980. [PMID: 28491875 PMCID: PMC5401741 DOI: 10.1155/2017/7261980] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 03/26/2017] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex keratitis is a disease of the cornea caused by HSV-1. It is a leading cause of corneal blindness in the world. Underlying molecular mechanism is still unknown, but experimental models have helped give a better understanding of the underlying molecular pathology. Cytokines and chemokines are small proteins released by cells that play an important proinflammatory or anti-inflammatory role in modulating the disease process. Cytokines such as IL-17, IL-6, IL-1α, and IFN-γ and chemokines such as MIP-2, MCP-1, MIP-1α, and MIP-1β have proinflammatory role in the destruction caused by HSV including neutrophil infiltration and corneal inflammation, and other chemokines and cytokines such as IL-10 and CCL3 can have a protective role. Most of the damage results from neutrophil infiltration and neovascularization. While many more studies are needed to better understand the role of these molecules in both experimental models and human corneas, current studies indicate that these molecules hold potential to be targets of future therapy.
Collapse
|
6
|
Kim JH, Patil AM, Choi JY, Kim SB, Uyangaa E, Hossain FMA, Park SY, Lee JH, Kim K, Eo SK. CCL2, but not its receptor, is essential to restrict immune privileged central nervous system-invasion of Japanese encephalitis virus via regulating accumulation of CD11b(+) Ly-6C(hi) monocytes. Immunology 2016; 149:186-203. [PMID: 27260136 PMCID: PMC5011677 DOI: 10.1111/imm.12626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 12/15/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a re‐emerging zoonotic flavivirus that poses an increasing threat to global health and welfare due to rapid changes in climate and demography. Although the CCR2–CCL2 axis plays an important role in trafficking CD11b+ Ly‐6Chi monocytes to regulate immunopathological diseases, little is known about their role in monocyte trafficking during viral encephalitis caused by JEV infection. Here, we explored the role of CCR2 and its ligand CCL2 in JE caused by JEV infection using CCR2‐ and CCL2‐ablated murine models. Somewhat surprisingly, the ablation of CCR2 and CCL2 resulted in starkly contrasting susceptibility to JE. CCR2 ablation induced enhanced resistance to JE, whereas CCL2 ablation highly increased susceptibility to JE. This contrasting regulation of JE progression by CCR2 and CCL2 was coupled to central nervous system (CNS) infiltration of Ly‐6Chi monocytes and Ly‐6Ghi granulocytes. There was also enhanced expression of CC and CXC chemokines in the CNS of CCL2‐ablated mice, which appeared to induce CNS infiltration of these cell populations. However, our data revealed that contrasting regulation of JE in CCR2‐ and CCL2‐ablated mice was unlikely to be mediated by innate natural killer and adaptive T‐cell responses. Furthermore, CCL2 produced by haematopoietic stem cell‐derived leucocytes played a dominant role in CNS accumulation of Ly‐6Chi monocytes in infected bone marrow chimeric models, thereby exacerbating JE progression. Collectively, our data indicate that CCL2 plays an essential role in conferring protection against JE caused by JEV infection. In addition, blockage of CCR2, but not CCL2, will aid in the development of strategies for prophylactics and therapeutics of JE.
Collapse
Affiliation(s)
- Jin Hyoung Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea
| | - Seong Bum Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea
| | - Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea
| | - Sang-Youel Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, Korea
| | - John Hwa Lee
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Korea.,Department of Bioactive Material Sciences, Graduate School, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
7
|
Gaddipati S, Estrada K, Rao P, Jerome AD, Suvas S. IL-2/anti-IL-2 antibody complex treatment inhibits the development but not the progression of herpetic stromal keratitis. THE JOURNAL OF IMMUNOLOGY 2014; 194:273-82. [PMID: 25411200 DOI: 10.4049/jimmunol.1401285] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The IL-2/anti-IL-2 Ab immunocomplex has recently been shown to expand the naturally occurring pool of CD4(+)Foxp3(+) regulatory T cells (Tregs). In this study, we show that administration of the IL-2/anti-IL-2 Ab immunocomplex to C57BL/6 mice, prior to corneal HSV-1 infection, significantly increased the pool of Foxp3(+) Tregs when measured at early time points postinfection. Increased numbers of Foxp3(+) Tregs on days 2 and 4 postinfection resulted in a marked reduction in the development of severe herpetic stromal keratitis (HSK). When compared with corneas from the control group, corneas from the immunocomplex-treated group showed a significant reduction in the amount of infectious virus on day 2 but not on day 4 postinfection. Reduced viral load was associated with a 2-fold increase in NK cell numbers in corneas from the immunocomplex-treated group of mice. Moreover, a dramatic reduction in the influx of CD4 T cells in inflamed corneas was determined on days 7 and 16 postinfection in the immunocomplex-treated group of infected mice. Immunocomplex treatment given on days 5, 6, and 7 postinfection significantly increased Foxp3(+) Tregs in draining lymph nodes and in the spleen but failed to reduce the severity of HSK. In terms of the influx of CD4 T cells and granulocytes into inflamed corneas, no significant differences were noted between both groups of mice on day 16 postinfection. Our findings demonstrate that increasing Foxp3(+) Tregs early but not late postinfection in secondary lymphoid tissues is more efficacious in controlling the severity of HSK.
Collapse
Affiliation(s)
- Subhash Gaddipati
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Kathleen Estrada
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Michigan State University College of Human Medicine, East Lansing, MI 48824
| | - Pushpa Rao
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Andrew David Jerome
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| | - Susmit Suvas
- Department of Biological Sciences, Oakland University, Rochester, MI 48309; Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201; and
| |
Collapse
|
8
|
Thorne AH, Meisen WH, Russell L, Yoo JY, Bolyard CM, Lathia JD, Rich J, Puduvalli VK, Mao H, Yu J, Caligiuri MA, Tridandapani S, Kaur B. Role of cysteine-rich 61 protein (CCN1) in macrophage-mediated oncolytic herpes simplex virus clearance. Mol Ther 2014; 22:1678-87. [PMID: 24895995 DOI: 10.1038/mt.2014.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 05/23/2014] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma is a devastating disease, and there is an urgent need to develop novel therapies, such as oncolytic HSV1 (OV) to effectively target tumor cells. OV therapy depends on tumor-specific replication leading to destruction of neoplastic tissues. Host responses that curtail virus replication limit its efficacy in vivo. We have previously shown that cysteine-rich 61 protein (CCN1) activates a type 1 IFN antiviral defense response in glioblastoma cells. Incorporating TCGA data, we found CCN1 expression to be a negative prognostic factor for glioblastoma patients. Based on this, we used neutralizing antibodies against CCN1 to investigate its effect on OV therapy. Use of an anti-CCN1 antibody in mice bearing glioblastomas treated with OV led to enhanced virus expression along with reduced immune cell infiltration. OV-induced CCN1 increases macrophage migration toward infected glioblastoma cells by directly binding macrophages and also by enhancing the proinflammatory activation of macrophages inducing MCP-1 expression in glioblastoma cells. Activation of macrophages by CCN1 also increases viral clearance. Neutralization of integrin αMβ2 reversed CCN1-induced macrophage activation and migration, and reduced MCP-1 expression by glioblastoma cells. Our findings reveal that CCN1 plays a novel role in pathogen clearance; increasing macrophage infiltration and activation resulting in increased virus clearance in tumors.
Collapse
Affiliation(s)
- Amy Haseley Thorne
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Walter H Meisen
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Luke Russell
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Ji Young Yoo
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Chelsea M Bolyard
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeremy Rich
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vinay K Puduvalli
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hsiaoyin Mao
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Susheela Tridandapani
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Balveen Kaur
- Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
9
|
Rajasagi NK, Reddy PBJ, Mulik S, Gjorstrup P, Rouse BT. Neuroprotectin D1 reduces the severity of herpes simplex virus-induced corneal immunopathology. Invest Ophthalmol Vis Sci 2013; 54:6269-79. [PMID: 23942967 DOI: 10.1167/iovs.13-12152] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Neuroprotectin D1 (NPD1) is an anti-inflammatory and proresolving lipid mediator biosynthesized from the omega-3-polyunsaturated fatty acid docosahexaenoic acid (DHA). The purpose of this study is to test the therapeutic potential of NPD1 for the treatment of herpes simplex virus (HSV)-induced stromal keratitis (SK) using a mouse model. METHODS C57BL/6 mice were infected ocularly with HSV-1 strain RE. Infected animals were treated topically with methyl ester prodrug NPD1 (300 ng/eye, 5-μL drop). Development of SK lesions, infiltration of inflammatory cells into the cornea, and production of proinflammatory cytokines, chemokines, and angiogenic factors were compared to untreated animals using slit-lamp biomicroscopy, flow cytometry, ELISA, and quantitative PCR (qPCR). RESULTS Topical administration of NPD1 resulted in a significant reduction in the severity and incidence of SK, as well as the extent of corneal neovascularization in the NPD1-treated animals compared to their untreated counterparts. Infiltration of fewer neutrophils and pathogenic CD4⁺ T cells into the cornea, along with a lower number of cells that could be induced ex vivo to produce IFN-γ and IL-17, occurred with NPD1 treatment. Additionally, treatment with NPD1 diminished the production of proinflammatory cytokines, chemokines, and angiogenic factors, such as IL-6, CXCL1, CXCL-10, CCL-20, VEGF-A, MMP-2, and MMP-9 in the corneas of infected animals. Importantly, treatment with NPD1 increased the production of the anti-inflammatory cytokine, IL-10. CONCLUSIONS Our novel findings demonstrate that NPD1 treatment could represent a valuable therapeutic approach to control SK lesions.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Biomedical & Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, Tennessee
| | | | | | | | | |
Collapse
|
10
|
Currier MA, Eshun FK, Sholl A, Chernoguz A, Crawford K, Divanovic S, Boon L, Goins WF, Frischer JS, Collins MH, Leddon JL, Baird WH, Haseley A, Streby KA, Wang PY, Hendrickson BW, Brekken RA, Kaur B, Hildeman D, Cripe TP. VEGF blockade enables oncolytic cancer virotherapy in part by modulating intratumoral myeloid cells. Mol Ther 2013; 21:1014-23. [PMID: 23481323 DOI: 10.1038/mt.2013.39] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Understanding the host response to oncolytic viruses is important to maximize their antitumor efficacy. Despite robust cytotoxicity and high virus production of an oncolytic herpes simplex virus (oHSV) in cultured human sarcoma cells, intratumoral (ITu) virus injection resulted in only mild antitumor effects in some xenograft models, prompting us to characterize the host inflammatory response. Virotherapy induced an acute neutrophilic infiltrate, a relative decrease of ITu macrophages, and a myeloid cell-dependent upregulation of host-derived vascular endothelial growth factor (VEGF). Anti-VEGF antibodies, bevacizumab and r84, the latter of which binds VEGF and selectively inhibits binding to VEGF receptor-2 (VEGFR2) but not VEGFR1, enhanced the antitumor effects of virotherapy, in part due to decreased angiogenesis but not increased virus production. Neither antibody affected neutrophilic infiltration but both partially mitigated virus-induced depletion of macrophages. Enhancement of virotherapy-mediated antitumor effects by anti-VEGF antibodies could largely be recapitulated by systemic depletion of CD11b(+) cells. These data suggest the combined effect of oHSV virotherapy and anti-VEGF antibodies is in part due to modulation of a host inflammatory reaction to virus. Our data provide strong preclinical support for combined oHSV and anti-VEGF antibody therapy and suggest that understanding and counteracting the innate host response may help enable the full antitumor potential of oncolytic virotherapy.
Collapse
Affiliation(s)
- Mark A Currier
- Divison of Oncology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Recurrent herpetic stromal keratitis in mice: a model for studying human HSK. Clin Dev Immunol 2012; 2012:728480. [PMID: 22593769 PMCID: PMC3347728 DOI: 10.1155/2012/728480] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus 1 (HSV-1) infection of the cornea leads to a potentially blinding disease, termed herpetic stromal keratitis (HSK) that is characterized by lesions of an immunoinflammatory nature. In spite of the fact that HSK typically presents as a recurrent disease due to reactivation of virus which latently infects the trigeminal ganglia, most murine studies of HSK have employed a primary and not recurrent model of the disease. This report documents the several recurrent models of HSK that have been developed and how data generated from these models differs in some important aspects from data generated following primary infection of the cornea. Chief among these differences is the fact that recurrent HSK takes place in the context of an animal that has a preexisting anti-HSV immune response, while primary HSK occurs in an animal that is developing such a response. We will document both differences and similarities that derive from this fundamental difference in these models with an eye towards possible vaccines and therapies that demonstrate promise in treating HSK.
Collapse
|
12
|
Rajasagi NK, Suryawanshi A, Sehrawat S, Reddy PBJ, Mulik S, Hirashima M, Rouse BT. Galectin-1 reduces the severity of herpes simplex virus-induced ocular immunopathological lesions. THE JOURNAL OF IMMUNOLOGY 2012; 188:4631-43. [PMID: 22467659 DOI: 10.4049/jimmunol.1103063] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stromal keratitis is a chronic immunopathological lesion of the eye caused by HSV-1 infection that can result in blindness. Because the inflammatory lesions are primarily orchestrated by Th1 cells, and to a lesser extent by Th17 cells, inhibiting their activity represents a useful form of therapy. In this study we evaluated the therapeutic potential of galectin-1 (gal-1), an endogenous lectin that in some autoimmune diseases was shown to suppress the functions of Th1 and Th17 cells. Treatment was begun at different times after ocular infection with HSV and the outcome was assessed clinically as well as for effects on various immune parameters. Treatment with recombinant gal-1 significantly diminished stromal keratitis lesion severity and the extent of corneal neovascularization. Treated mice had reduced numbers of IFN-γ- and IL-17-producing CD4(+) T cells, as well as neutrophil infiltration in the cornea. Furthermore, disease severity was greater in gal-1 knockout mice compared with their wild-type counterparts. The many effects of gal-1 treatment include reduction in the production of proinflammatory cytokines and chemokines, increased production of IL-10, and inhibitory effects on molecules involved in neovascularization. To our knowledge, our findings are the first to show that gal-1 treatment represents a useful approach to control lesion severity in a virally induced immunopathological disease.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Comparative and Experimental Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Wimer CL, Damiani A, Osterrieder N, Wagner B. Equine herpesvirus type-1 modulates CCL2, CCL3, CCL5, CXCL9, and CXCL10 chemokine expression. Vet Immunol Immunopathol 2011; 140:266-74. [DOI: 10.1016/j.vetimm.2011.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|
14
|
Rajasagi NK, Reddy PBJ, Suryawanshi A, Mulik S, Gjorstrup P, Rouse BT. Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. THE JOURNAL OF IMMUNOLOGY 2010; 186:1735-46. [PMID: 21187448 DOI: 10.4049/jimmunol.1003456] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stromal keratitis (SK) is a chronic immunopathological lesion of the eye caused by HSV-1 infection and a common cause of blindness in humans. The inflammatory lesions are primarily perpetuated by neutrophils with the active participation of CD4(+) T cells. Therefore, targeting these immune cell types represents a potentially valuable form of therapy to reduce the severity of disease. Resolvin E1 (RvE1), an endogenous lipid mediator, was shown to promote resolution in several inflammatory disease models. In the current report, we determined whether RvE1 administration begun at different times after ocular infection of mice with HSV could influence the severity of SK lesions. Treatment with RvE1 significantly reduced the extent of angiogenesis and SK lesions that occurred. RvE1-treated mice had fewer numbers of inflammatory cells that included Th1 and Th17 cells as well as neutrophils in the cornea. The mechanisms by which RvE1 acts appear to be multiple. These included reducing the influx of neutrophils and pathogenic CD4(+) T cells, increasing production of the anti-inflammatory cytokine IL-10, and inhibitory effects on the production of proinflammatory mediators and molecules, such as IL-6, IFN-γ, IL-17, KC, VEGF-A, MMP-2, and MMP-9, that are involved in corneal neovascularization and SK pathogenesis. These findings are, to our knowledge, the first to show that RvE1 treatment could represent a novel approach to control lesion severity in a virally induced immunopathological disease.
Collapse
Affiliation(s)
- Naveen K Rajasagi
- Comparative and Experimental Medicine, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
15
|
Gr-1+ cells, but not neutrophils, limit virus replication and lesion development following flank infection of mice with herpes simplex virus type-1. Virology 2010; 407:143-51. [DOI: 10.1016/j.virol.2010.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/08/2010] [Accepted: 08/02/2010] [Indexed: 12/19/2022]
|
16
|
Frank GM, Divito SJ, Maker DM, Xu M, Hendricks RL. A novel p40-independent function of IL-12p35 is required for progression and maintenance of herpes stromal keratitis. Invest Ophthalmol Vis Sci 2010; 51:3591-8. [PMID: 20207959 DOI: 10.1167/iovs.09-4368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE. Interleukin (IL)-12p40 can couple with IL-12p35 or p19 chains to form the molecules IL-12p70 and IL-23, respectively, which promote T(H)1 cytokine responses. IL-12p35 can bind to EBI3 to form the anti-inflammatory molecule IL-35, but a proinflammatory function of IL-12p35 independent of IL-12p40 has not been described. Here such a function in a mouse model of herpes stromal keratitis (HSK), a CD4(+) T(H)1 cell-dependent corneal inflammation, is demonstrated. METHODS. Corneas of wild-type (WT), IL-12p40(-/-), IL-12p35(-/-), and IL-12p35(-/-)p40(-/-) (double knockout) mice were infected with the RE strain of HSV-1, and HSK was monitored based on corneal opacity, neovascularization, leukocytic infiltrate, and cytokine/chemokine levels. RESULTS. All mouse strains developed moderate HSK by 11 days after infection (dpi). However, from 11 to 21 dpi, HSK progressed in WT and IL-12p40(-/-) mice but regressed in IL-12p35(-/-) and IL-12p35(-/-)p40(-/-) mice. HSK regression was characterized by reductions in neutrophils and CD4(+) T cells and attenuation of blood vessels, which was associated with reduced levels of the chemokines KC (CXCL3), Mip-2 (CXCL2), and MCP-1 (CCL2) and the angiogenic factor vascular endothelial growth factor. CONCLUSIONS. HSK development does not require IL-12p40 and is thus independent of IL-12p70 and IL-23. However, late HSK progression does require a previously unrecognized IL-12p40-independent, proinflammatory function of IL-12p35.
Collapse
Affiliation(s)
- Gregory M Frank
- Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
17
|
Chintakuntlawar AV, Chodosh J. Chemokine CXCL1/KC and its receptor CXCR2 are responsible for neutrophil chemotaxis in adenoviral keratitis. J Interferon Cytokine Res 2010; 29:657-66. [PMID: 19642907 DOI: 10.1089/jir.2009.0006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemic keratoconjunctivitis (EKC), caused by human adenovirus (HAdV), is one of the most common ocular infections and results in corneal inflammation and subepithelial infiltrates. Adenoviral keratitis causes significant morbidity to the patients, and is characterized by infiltration of leukocytes in the corneal stroma, and expression of chemokines. The exact role of these chemokines in adenoviral infection has not been studied due to lack of animal models. Here, we have characterized the role of chemokine CXCL1/KC and receptor CXCR2 in adenoviral keratitis using a novel mouse model. Analysis of chemokine expression, leukocyte infiltration, and development of keratitis was performed by ELISA, flow cytometry, and histopathology, respectively. Deficiency of CXCL1 and CXCR2 resulted in delayed infiltration of neutrophils, but not inflammatory monocytes in HAdV-37 corneal infection. CXCL1(-/-) mice showed decreased expression of CXCL2/MIP-2, but not CCL2/MCP-1. CXCR2(-/-) mice showed increased expression of CXCL1 and CXCL2, but not CCL2. Both CXCL1(-/-) and CXCR2(-/-) mice demonstrated keratitis similar to wild-type mice. In conclusion, both CXCL1 and CXCR2 play an important role in chemokine expression and neutrophil infiltration following adenoviral corneal infection, but have a redundant role in the development of keratitis.
Collapse
Affiliation(s)
- Ashish V Chintakuntlawar
- Molecular Pathogenesis of Eye Infection Research Center, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | |
Collapse
|
18
|
Shtein RM, Garcia DD, Musch DC, Elner VM. Herpes simplex virus keratitis: histopathologic inflammation and corneal allograft rejection. Ophthalmology 2009; 116:1301-5. [PMID: 19576497 DOI: 10.1016/j.ophtha.2009.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE To identify whether histopathologic and immunoassay biomarkers of inflammation are predictive for allograft rejection after penetrating keratoplasty (PKP) for herpes simplex virus (HSV) keratitis. DESIGN Retrospective, interventional case series with prospective component of pathologic evaluation of frozen tissue. PARTICIPANTS Sixty-two consecutive patients with HSV keratitis who underwent PKP. METHODS A chart review and histopathologic examination of the excised host corneal button was performed to identify associations between clinical data and histopathologic presence of inflammation. Enzyme-linked immunosorbent assay for interleukin (IL)-8 and monocyte chemotactic protein-1 (MCP-1) chemokines and immunohistochemical staining for human leukocyte antigen (HLA)-DR and intercellular adhesion molecule-1 (ICAM-1) antigens was also performed in inflamed and noninflamed specimens. MAIN OUTCOME MEASURES To determine whether the presence of subclinical inflammation at the time of PKP predicts allograft rejection. RESULTS Although 81% of patients had clinically quiescent disease, histopathology revealed that 74% had active corneal inflammation, a finding that was associated with the presence of clinical neovascularization (P = 0.01). Allograft rejections were experienced by 34% of the patients in this cohort. The histopathologic presence of inflammation was a risk factor for allograft rejection (P = 0.02). Corneal specimens demonstrating inflammation had significantly increased IL-8 (P = 0.0005) and MCP-1 (P = 0.003) levels, and greater immunoreactivity for HLA-DR and ICAM-1 when compared with specimens without inflammation. Treatment with IL-10 ex vivo significantly inhibited IL-8 (P = 0.006), and MCP-1 (P = 0.01) chemokines, and qualitatively substantially reduced HLA-DR, but not ICAM-1, expression. CONCLUSIONS Histopathologic inflammation is a risk factor for corneal allograft rejection.
Collapse
Affiliation(s)
- Roni M Shtein
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
19
|
Sarangi PP, Sehrawat S, Suvas S, Rouse BT. IL-10 and natural regulatory T cells: two independent anti-inflammatory mechanisms in herpes simplex virus-induced ocular immunopathology. THE JOURNAL OF IMMUNOLOGY 2008; 180:6297-306. [PMID: 18424753 DOI: 10.4049/jimmunol.180.9.6297] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two prominent anti-inflammatory mechanisms involved in controlling HSV-1-induced corneal immunopathology (stromal keratitis or SK) are the production of the cytokine IL-10 and the activity of natural regulatory T cells (nTregs). It is not known whether, under in vivo conditions, IL-10 and nTregs influence the corneal pathology independently or in concert. In the current study using wild-type and IL-10(-/-) animals, we have assessed the activity of nTregs in the absence of IL-10 both under in vitro and in vivo conditions. The IL-10(-/-) animals depleted of nTregs before ocular infection showed more severe SK lesions as compared with the undepleted IL-10(-/-) animals. In addition, nTregs purified from naive WT and IL-10(-/-) animals were equally able to suppress the proliferation and the cytokine production from anti-CD3-stimulated CD4(+)CD25(-) T cells in vitro. Furthermore, intracellular cytokine staining results indicated that nonregulatory cells expressing B220 and CD25 markers were the major IL-10-producing cell types in the lymphoid tissues of HSV-infected mice. In contrast, in the infected corneas, cells with the CD11b(+)Gr1(+) phenotype along with a minor population of Foxp3(-)CD4(+) and a few F4/80(+) cells produced IL-10. Our current investigations indicate that at least two independent anti-inflammatory mechanisms are involved in limiting the corneal lesions in SK, both of which may need to be modulated to control SK therapeutically.
Collapse
Affiliation(s)
- Pranita P Sarangi
- Comparative and Experimental Medicine Program, College of Veterinary Medicine, University of Tennessee, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
20
|
Sarangi PP, Kim B, Kurt-Jones E, Rouse BT. Innate recognition network driving herpes simplex virus-induced corneal immunopathology: role of the toll pathway in early inflammatory events in stromal keratitis. J Virol 2007; 81:11128-38. [PMID: 17686871 PMCID: PMC2045562 DOI: 10.1128/jvi.01008-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocular infection with herpes simplex virus (HSV) sets off an array of events that succeed in clearing virus from the cornea but leaves the tissue with a CD4(+) T-cell-orchestrated chronic inflammatory lesion that impairs vision. We demonstrate that Toll-like receptor (TLR) signaling forms a part of the recognition system that induces the syndrome that eventually culminates in immunopathology. Accordingly, in a comparison of the outcomes of infection in wild-type (WT) mice and those lacking TLR function, it was apparent that the absence of TLR2 and, to a lesser extent, TLR9 resulted in significantly diminished lesions. Similarly, mice lacking the adapter molecule MyD88 were resistant to lesion development, but such animals were also unable to control infection, with most succumbing to lethal encephalitis. The susceptibility of TLR4(-/-) animals was also evaluated. These animals developed lesions, which were more severe, more rapidly than did WT animals. We discuss the possible mechanisms by which early recognition of HSV constituents impacts the subsequent development of immunopathological lesions.
Collapse
Affiliation(s)
- Pranita P Sarangi
- Department of Microbiology, The University of Tennessee, M409 Walters Life Sciences Bldg., 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|