1
|
Xavier LL, Neves PFR, Paz LV, Neves LT, Bagatini PB, Timmers LFSM, Rasia-Filho AA, Mestriner RG, Wieck A. Does Angiotensin II Peak in Response to SARS-CoV-2? Front Immunol 2021; 11:577875. [PMID: 33519802 PMCID: PMC7842149 DOI: 10.3389/fimmu.2020.577875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Human infection by the SARS-CoV-2 is causing the current COVID-19 pandemic. With the growing numbers of cases and deaths, there is an urgent need to explore pathophysiological hypotheses in an attempt to better understand the factors determining the course of the disease. Here, we hypothesize that COVID-19 severity and its symptoms could be related to transmembrane and soluble Angiotensin-converting enzyme 2 (tACE2 and sACE2); Angiotensin II (ANG II); Angiotensin 1-7 (ANG 1-7) and angiotensin receptor 1 (AT1R) activation levels. Additionally, we hypothesize that an early peak in ANG II and ADAM-17 might represent a physiological attempt to reduce viral infection via tACE2. This viewpoint presents: (1) a brief introduction regarding the renin-angiotensin-aldosterone system (RAAS), detailing its receptors, molecular synthesis, and degradation routes; (2) a description of the proposed early changes in the RAAS in response to SARS-CoV-2 infection, including biological scenarios for the best and worst prognoses; and (3) the physiological pathways and reasoning for changes in the RAAS following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Paula Fernanda Ribas Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Lisiê Valeria Paz
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Pamela Brambilla Bagatini
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Luís Fernando Saraiva Macedo Timmers
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Programa de Pós-Graduação em Ciências Médicas (PPGCM), Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil
| | - Alberto Antônio Rasia-Filho
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Andrea Wieck
- Laboratório de Biologia Celular e Tecidual, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
2
|
Meyer B, Groseth A. Apoptosis during arenavirus infection: mechanisms and evasion strategies. Microbes Infect 2017; 20:65-80. [PMID: 29081359 DOI: 10.1016/j.micinf.2017.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 11/17/2022]
Abstract
In recent years there has been a greatly increased interest in the interactions of arenaviruses with the apoptotic machinery, and particularly the extent to which these interactions may be an important contributor to pathogenesis. Here we summarize the current state of our knowledge on this subject and address the potential for interplay with other immunological mechanisms known to be regulated by these viruses. We also compare and contrast what is known for arenavirus-induced apoptosis with observations from other segmented hemorrhagic fever viruses.
Collapse
Affiliation(s)
- Bjoern Meyer
- Viral Populations and Pathogenesis Unit, Institut Pasteur, 28 rue du Dr. Roux, 75724 Paris cedex 15, France.
| | - Allison Groseth
- Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
3
|
Extrinsically derived TNF is primarily responsible for limiting antiviral CD8+ T cell response magnitude. PLoS One 2017; 12:e0184732. [PMID: 28886201 PMCID: PMC5590991 DOI: 10.1371/journal.pone.0184732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/23/2017] [Indexed: 11/26/2022] Open
Abstract
TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF.
Collapse
|
4
|
Abe A, Tani-ichi S, Shitara S, Cui G, Yamada H, Miyachi H, Kitano S, Hara T, Abe R, Yoshikai Y, Ikuta K. An Enhancer of the IL-7 Receptor α-Chain Locus Controls IL-7 Receptor Expression and Maintenance of Peripheral T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3129-38. [PMID: 26336149 DOI: 10.4049/jimmunol.1302447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
The IL-7R plays critical roles in lymphocyte development and homeostasis. Although IL-7R expression is strictly regulated during lymphocyte differentiation and the immune response, little is known regarding its in vivo regulation. To address this issue, we established a mouse line with targeted deletion of the conserved non-coding sequence 1 (CNS1) element found 3.6 kb upstream of the IL-7Rα promoter. We report that IL-7Rα is expressed normally on T and B cells in thymus and bone marrow of CNS1(-/-) mice except for in regulatory T cells. In contrast, these mice show reduced IL-7Rα expression in conventional CD4 and CD8 T cells as well as regulatory T, NKT, and γδ T cells in the periphery. CD4 T cells of CNS1(-/-) mice showed IL-7Rα upregulation in the absence of growth factors and IL-7Rα downregulation by IL-7 or TCR stimulation, although the expression levels were lower than those in control mice. Naive CD4 and CD8 T cells of CNS1(-/-) mice show attenuated survival by culture with IL-7 and reduced homeostatic proliferation after transfer into lymphopenic hosts. CNS1(-/-) mice exhibit impaired maintenance of Ag-stimulated T cells. Furthermore, IL-7Rα upregulation by glucocorticoids and TNF-α was abrogated in CNS1(-/-) mice. This work demonstrates that the CNS1 element controls IL-7Rα expression and maintenance of peripheral T cells, suggesting differential regulation of IL-7Rα expression between central and peripheral lymphoid organs.
Collapse
Affiliation(s)
- Akifumi Abe
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Shizue Tani-ichi
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Soichiro Shitara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Guangwei Cui
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hisataka Yamada
- Division of Host Defense, Network Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hitoshi Miyachi
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and
| | - Satsuki Kitano
- Reproductive Engineering Team, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan; and
| | - Takahiro Hara
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Network Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Koichi Ikuta
- Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan;
| |
Collapse
|
5
|
Upton JW, Chan FKM. Staying alive: cell death in antiviral immunity. Mol Cell 2014; 54:273-80. [PMID: 24766891 DOI: 10.1016/j.molcel.2014.01.027] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 12/12/2013] [Indexed: 02/07/2023]
Abstract
Programmed cell death is an integral part of host defense against invading intracellular pathogens. Apoptosis, programmed necrosis, and pyroptosis each serve to limit pathogen replication in infected cells, while simultaneously promoting the inflammatory and innate responses that shape effective long-term host immunity. The importance of carefully regulated cell death is evident in the spectrum of inflammatory and autoimmune disorders caused by defects in these pathways. Moreover, many viruses encode inhibitors of programmed cell death to subvert these host responses during infection, thereby facilitating their own replication and persistence. Thus, as both virus and cell vie for control of these pathways, the battle for survival has shaped a complex host-pathogen interaction. This review will discuss the multifaceted role that programmed cell death plays in maintaining the immune system and its critical function in host defense, with a special emphasis on viral infections.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Francis Ka-Ming Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
DeBerge MP, Ely KH, Enelow RI. Soluble, but not transmembrane, TNF-α is required during influenza infection to limit the magnitude of immune responses and the extent of immunopathology. THE JOURNAL OF IMMUNOLOGY 2014; 192:5839-51. [PMID: 24790150 DOI: 10.4049/jimmunol.1302729] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
TNF-α is a pleotropic cytokine that has both proinflammatory and anti-inflammatory functions during influenza infection. TNF-α is first expressed as a transmembrane protein that is proteolytically processed to release a soluble form. Transmembrane TNF-α (memTNF-α) and soluble TNF-α (solTNF-α) have been shown to exert distinct tissue-protective or tissue-pathologic effects in several disease models. However, the relative contributions of memTNF-α or solTNF-α in regulating pulmonary immunopathology following influenza infection are unclear. Therefore, we performed intranasal influenza infection in mice exclusively expressing noncleavable memTNF-α or lacking TNF-α entirely and examined the outcomes. We found that solTNF-α, but not memTNF-α, was required to limit the size of the immune response and the extent of injury. In the absence of solTNF-α, there was a significant increase in the CD8(+) T cell response, including virus-specific CD8(+) T cells, which was due in part to an increased resistance to activation-induced cell death. We found that solTNF-α mediates these immunoregulatory effects primarily through TNFR1, because mice deficient in TNFR1, but not TNFR2, exhibited dysregulated immune responses and exacerbated injury similar to that observed in mice lacking solTNF-α. We also found that solTNF-α expression was required early during infection to regulate the magnitude of the CD8(+) T cell response, indicating that early inflammatory events are critical for the regulation of the effector phase. Taken together, these findings suggest that processing of memTNF-α to release solTNF-α is a critical event regulating the immune response during influenza infection.
Collapse
Affiliation(s)
- Matthew P DeBerge
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756; and
| | - Kenneth H Ely
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756; and
| | - Richard I Enelow
- Department of Medicine, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756; and Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, NH 03756
| |
Collapse
|
7
|
Inhibitors of apoptosis proteins (IAPs) are required for effective T-cell expansion/survival during antiviral immunity in mice. Blood 2014; 123:659-68. [DOI: 10.1182/blood-2013-01-479543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Key Points
IAPs are required for survival and expansion of activated T cells. IAP antagonists sensitize to tumor necrosis factor (TNF)-induced cell death of activated T cells during viral infection.
Collapse
|
8
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
9
|
Wortzman ME, Lin GHY, Watts TH. Intrinsic TNF/TNFR2 interactions fine-tune the CD8 T cell response to respiratory influenza virus infection in mice. PLoS One 2013; 8:e68911. [PMID: 23874808 PMCID: PMC3706430 DOI: 10.1371/journal.pone.0068911] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/06/2013] [Indexed: 12/20/2022] Open
Abstract
TNF is an important inflammatory mediator and a target for intervention. TNF is produced by many cell types and is involved in innate inflammation as well as adaptive immune responses. CD8 T cells produce TNF and can also respond to TNF. Deficiency of TNF or TNFR2 has been shown to affect anti-viral immunity. However, as the complete knockout of TNF or its receptors has effects on multiple cell types as well as on lymphoid architecture, it has been difficult to assess the role of TNF directly on T cells during viral infection. Here we have addressed this issue by analyzing the effect of CD8 T cell intrinsic TNF/TNFR2 interactions during respiratory influenza infection in mice, using an adoptive transfer model in which only the T cells lack TNF or TNFR2. During a mild influenza infection, the capacity of the responding CD8 T cells to produce TNF increases from day 6 through day 12, beyond the time of viral clearance. Although T cell intrinsic TNF is dispensable for initial expansion of CD8 T cells up to day 9 post infection, intrinsic TNF/TNFR2 interactions potentiate contraction of the CD8 T cell response in the lung between day 9 and 12 post infection. On the other hand, TNF or TNFR2-deficient CD8 T cells in the lung express lower levels of IFN-γ and CD107a per cell than their wild type counterparts. Comparison of TNF levels on the TNFR2 positive and negative T cells is consistent with TNF/TNFR2 interactions inducing feedback downregulation of TNF production by T cells, with greater effects in the lung compared to spleen. Thus CD8 T cell intrinsic TNF/TNFR2 interactions fine-tune the response to influenza virus in the lung by modestly enhancing effector functions, but at the same time potentiating the contraction of the CD8 T cell response post-viral clearance.
Collapse
Affiliation(s)
| | - Gloria H. Y. Lin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Tania H. Watts
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
10
|
Active evasion of CTL mediated killing and low quality responding CD8+ T cells contribute to persistence of brucellosis. PLoS One 2012; 7:e34925. [PMID: 22558103 PMCID: PMC3338818 DOI: 10.1371/journal.pone.0034925] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/09/2012] [Indexed: 02/02/2023] Open
Abstract
Brucellosis is a common zoonotic disease that remains endemic in many parts of the world. Dissecting the host immune response during this disease provides insight as to why brucellosis is often difficult to resolve. We used a Brucella epitope specific in vivo killing assay to investigate the ability of CD8+ T cells to kill targets treated with purified pathogenic protein. Importantly, we found the pathogenic protein TcpB to be a novel effector of adaptive immune evasion by inhibiting CD8+ T cell killing of Brucella epitope specific target cells in mice. Further, BALB/c mice show active Brucella melitensis infection beyond one year, many with previously unreported focal infection of the urogenital area. A fraction of CD8+ T cells show a CD8+ Tmem phenotype of LFA-1hi, CD127hi, KLRG-1lo during the course of chronic brucellosis, while the CD8+ T cell pool as a whole had a very weak polyfunctional cytokine response with diminished co-expression of IFN-γ with TNFα and/or IL-2, a hallmark of exhaustion. When investigating the expression of these 3 cytokines individually, we observed significant IFN-γ expression at 90 and 180 days post-infection. TNFα expression did not significantly exceed or fall below background levels at any time. IL-2 expression did not significantly exceeded background, but, interestingly, did fall significantly below that of uninfected mice at 180 days post-infection. Brucella melitensis evades and blunts adaptive immunity during acute infection and our findings provide potential mechanisms for the deficit observed in responding CD8+ T cells during chronic brucellosis.
Collapse
|
11
|
Tian T, Dubin K, Jin Q, Qureshi A, King SL, Liu L, Jiang X, Murphy GF, Kupper TS, Fuhlbrigge RC. Disruption of TNF-α/TNFR1 function in resident skin cells impairs host immune response against cutaneous vaccinia virus infection. J Invest Dermatol 2012; 132:1425-34. [PMID: 22318381 PMCID: PMC3326195 DOI: 10.1038/jid.2011.489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One strategy adopted by vaccinia virus (VV) to evade the host immune system is to encode homologs of TNF receptors (TNFRs) that block TNF-α function. The response to VV skin infection under conditions of TNF-α deficiency, however, has not been reported. We found that TNFR1-/- mice developed larger primary lesions, numerous satellite lesions, and higher skin virus levels after VV scarification. Following their recovery, VV-scarified TNFR1-/- mice were fully protected against challenge with a lethal intranasal dose of VV, suggesting these mice had developed an effective memory immune response. A functional systemic immune response was further demonstrated by enhanced production of VV-specific IFN-γ and VV-specific CD8(+) T cells in spleens and draining lymph nodes. Interestingly, bone marrow (BM)-reconstitution studies using wild-type (WT) BM in TNFR1-/- host mice, but not TNFR1-/- BM in WT host mice, reproduced the original results seen in TNFR1-/- mice, indicating that TNFR1 deficiency in resident skin cells, rather than hematopoietic cells, accounts for the impaired cutaneous immune response. Our data suggest that lack of TNFR1 leads to a skin-specific immune deficiency, and that resident skin cells have a crucial role in mediating an optimal immune defense to VV cutaneous infection via TNF-α/TNFR1 signaling.
Collapse
Affiliation(s)
- Tian Tian
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bassett JD, Swift SL, Bramson JL. Optimizing vaccine-induced CD8(+) T-cell immunity: focus on recombinant adenovirus vectors. Expert Rev Vaccines 2012; 10:1307-19. [PMID: 21919620 DOI: 10.1586/erv.11.88] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinant adenoviruses have emerged as promising viral vectors for CD8(+) T-cell vaccines. Our studies have indicated that unlike most acute infections, the CD8(+) T-cell memory population elicited by recombinant human adenovirus serotype 5 (rHuAd5) displays a dominant effector memory phenotype. Persistent, low-level transgene expression from the rHuAd5 vector sustains the CD8(+) T-cell memory population and a nonhematopoietic cell compartment appears to be involved in long-term presentation of adenoviral antigens. Although we are beginning to learn more about the factors that control the maintenance and functionality of memory CD8(+) T cells, we do not yet fully understand what comprises a protective CD8(+) T-cell response. Results from upcoming Phase II clinical trials will be important for determining whether rHuAd5 T-cell vaccines are effective in humans and should help identify correlates of CD8(+) T-cell protection.
Collapse
Affiliation(s)
- Jennifer D Bassett
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, Room MDCL-5071, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | | | | |
Collapse
|
13
|
Schmidt NW, Khanolkar A, Hancox L, Heusel JW, Harty JT. Perforin plays an unexpected role in regulating T-cell contraction during prolonged Listeria monocytogenes infection. Eur J Immunol 2012; 42:629-40. [PMID: 22161269 DOI: 10.1002/eji.201141902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/08/2011] [Accepted: 12/02/2011] [Indexed: 11/11/2022]
Abstract
After infection or vaccination, antigen-specific T cells proliferate then contract in numbers to a memory set point. T-cell contraction is observed after both acute and prolonged infections although it is unknown if contraction is regulated similarly in both scenarios. Here, we show that contraction of antigen-specific CD8(+) and CD4(+) T cells is markedly reduced in TNF/perforin-double deficient (DKO) mice responding to attenuated Listeria monocytogenes infection. Reduced contraction in DKO mice was associated with delayed clearance of infection and sustained T-cell proliferation during the normal contraction interval. Mechanistically, sustained T-cell proliferation mapped to prolonged infection in the absence of TNF; however, reduced contraction required the additional absence of perforin since T cells in mice lacking either TNF or perforin (singly deficient) underwent normal contraction. Thus, while T-cell contraction after acute infection is independent of peforin, a perforin-dependent pathway plays a previously unappreciated role to mediate contraction of antigen-specific CD8(+) and CD4(+) T cells during prolonged L. monocytogenes infection.
Collapse
Affiliation(s)
- Nathan W Schmidt
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
14
|
Damjanovic D, Divangahi M, Kugathasan K, Small CL, Zganiacz A, Brown EG, Hogaboam CM, Gauldie J, Xing Z. Negative regulation of lung inflammation and immunopathology by TNF-α during acute influenza infection. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2963-76. [PMID: 22001698 DOI: 10.1016/j.ajpath.2011.09.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/22/2011] [Accepted: 09/01/2011] [Indexed: 02/06/2023]
Abstract
Lung immunopathology is the main cause of influenza-mediated morbidity and death, and much of its molecular mechanisms remain unclear. Whereas tumor necrosis factor-α (TNF-α) is traditionally considered a proinflammatory cytokine, its role in influenza immunopathology is unresolved. We have investigated this issue by using a model of acute H1N1 influenza infection established in wild-type and TNF-α-deficient mice and evaluated lung viral clearance, inflammatory responses, and immunopathology. Whereas TNF-α was up-regulated in the lung after influenza infection, it was not required for normal influenza viral clearance. However, TNF-α deficiency led not only to a greater extent of illness but also to heightened lung immunopathology and tissue remodeling. The severe lung immunopathology was associated with increased inflammatory cell infiltration, anti-influenza adaptive immune responses, and expression of cytokines such as monocyte chemoattractant protein-1 (MCP-1) and fibrotic growth factor, TGF-β1. Thus, in vivo neutralization of MCP-1 markedly attenuated lung immunopathology and blunted TGF-β1 production following influenza infection in these hosts. On the other hand, in vivo transgenic expression of MCP-1 worsened lung immunopathology following influenza infection in wild-type hosts. Thus, TNF-α is dispensable for influenza clearance; however, different from the traditional belief, this cytokine is critically required for negatively regulating the extent of lung immunopathology during acute influenza infection.
Collapse
Affiliation(s)
- Daniela Damjanovic
- Department of Pathology and Molecular Medicine & McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Figel AM, Brech D, Prinz PU, Lettenmeyer UK, Eckl J, Turqueti-Neves A, Mysliwietz J, Anz D, Rieth N, Muenchmeier N, Buchner A, Porubsky S, Siegert SI, Segerer S, Nelson PJ, Noessner E. Human renal cell carcinoma induces a dendritic cell subset that uses T-cell crosstalk for tumor-permissive milieu alterations. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:436-51. [PMID: 21703422 DOI: 10.1016/j.ajpath.2011.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 03/17/2011] [Accepted: 03/21/2011] [Indexed: 12/20/2022]
Abstract
Tissue dendritic cells (DCs) may influence the progression of renal cell carcinoma (RCC) by regulating the functional capacity of antitumor effector cells. DCs and their interaction with T cells were analyzed in human RCC and control kidney tissues. The frequency of CD209(+) DCs in RCCs was found to be associated with an unfavorable T(H)1 cell balance in the tissue and advanced tumor stages. The CD209(+) DCs in RCC were unusual because most of them co-expressed macrophage markers (CD14, CD163). The phenotype of these enriched-in-renal-carcinoma DCs (ercDCs) could be reiterated in vitro by carcinoma-secreted factors (CXCL8/IL-8, IL-6, and vascular endothelial growth factor). ErcDCs resembled conventional DCs in costimulatory molecule expression and antigen cross-presentation. They did not suppress cognate cytotoxic T-lymphocyte function and did not cause CD3ζ down-regulation, FOXP3 induction, or T-cell apoptosis in situ or in vitro; thus, they are different from classic myeloid-derived suppressor cells. ErcDCs secreted high levels of metalloproteinase 9 and used T-cell crosstalk to increase tumor-promoting tumor necrosis factor α and reduce chemokines relevant for T(H)1-polarized lymphocyte recruitment. This modulation of the tumor environment exerted by ercDCs suggests an immunologic mechanism by which tumor control can fail without involving cytotoxic T-lymphocyte inhibition. Pharmacologic targeting of the deviated DC differentiation could improve the efficacy of immunotherapy against RCC.
Collapse
Affiliation(s)
- Ainhoa-M Figel
- Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Munir S, Hillyer P, Le Nouën C, Buchholz UJ, Rabin RL, Collins PL, Bukreyev A. Respiratory syncytial virus interferon antagonist NS1 protein suppresses and skews the human T lymphocyte response. PLoS Pathog 2011; 7:e1001336. [PMID: 21533073 PMCID: PMC3080852 DOI: 10.1371/journal.ppat.1001336] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 03/23/2011] [Indexed: 12/17/2022] Open
Abstract
We recently demonstrated that the respiratory syncytial virus (RSV) NS1 protein, an antagonist of host type I interferon (IFN-I) production and signaling, has a suppressive effect on the maturation of human dendritic cells (DC) that was only partly dependent on released IFN-I. Here we investigated whether NS1 affects the ability of DC to activate CD8+ and CD4+ T cells. Human DC were infected with RSV deletion mutants lacking the NS1 and/or NS2 genes and assayed for the ability to activate autologous T cells in vitro, which were analyzed by multi-color flow cytometry. Deletion of the NS1, but not NS2, protein resulted in three major effects: (i) an increased activation and proliferation of CD8+ T cells that express CD103, a tissue homing integrin that directs CD8+ T cells to mucosal epithelial cells of the respiratory tract and triggers cytolytic activity; (ii) an increased activation and proliferation of Th17 cells, which have recently been shown to have anti-viral effects and also indirectly attract neutrophils; and (iii) decreased activation of IL-4-producing CD4+ T cells--which are associated with enhanced RSV disease--and reduced proliferation of total CD4+ T cells. Except for total CD4+ T cell proliferation, none of the T cell effects appeared to be due to increased IFN-I signaling. In the infected DC, deletion of the NS1 and NS2 genes strongly up-regulated the expression of cytokines and other molecules involved in DC maturation. This was partly IFN-I-independent, and thus might account for the T cell effects. Taken together, these data demonstrate that the NS1 protein suppresses proliferation and activation of two of the protective cell populations (CD103+ CD8+ T cells and Th17 cells), and promotes proliferation and activation of Th2 cells that can enhance RSV disease.
Collapse
Affiliation(s)
- Shirin Munir
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Philippa Hillyer
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Cyril Le Nouën
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ursula J. Buchholz
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ronald L. Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander Bukreyev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Priyadharshini B, Welsh RM, Greiner DL, Gerstein RM, Brehm MA. Maturation-dependent licensing of naive T cells for rapid TNF production. PLoS One 2010; 5:e15038. [PMID: 21124839 PMCID: PMC2991336 DOI: 10.1371/journal.pone.0015038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/10/2010] [Indexed: 12/20/2022] Open
Abstract
The peripheral naïve T cell pool is comprised of a heterogeneous population of cells at various stages of development, which is a process that begins in the thymus and is completed after a post-thymic maturation phase in the periphery. One hallmark of naïve T cells in secondary lymphoid organs is their unique ability to produce TNF rapidly after activation and prior to acquiring other effector functions. To determine how maturation influences the licensing of naïve T cells to produce TNF, we compared cytokine profiles of CD4+ and CD8+ single positive (SP) thymocytes, recent thymic emigrants (RTEs) and mature-naïve (MN) T cells during TCR activation. SP thymocytes exhibited a poor ability to produce TNF when compared to splenic T cells despite expressing similar TCR levels and possessing comparable activation kinetics (upregulation of CD25 and CD69). Provision of optimal antigen presenting cells from the spleen did not fully enable SP thymocytes to produce TNF, suggesting an intrinsic defect in their ability to produce TNF efficiently. Using a thymocyte adoptive transfer model, we demonstrate that the ability of T cells to produce TNF increases progressively with time in the periphery as a function of their maturation state. RTEs that were identified in NG-BAC transgenic mice by the expression of GFP showed a significantly enhanced ability to express TNF relative to SP thymocytes but not to the extent of fully MN T cells. Together, these findings suggest that TNF expression by naïve T cells is regulated via a gradual licensing process that requires functional maturation in peripheral lymphoid organs.
Collapse
Affiliation(s)
- Bhavana Priyadharshini
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Raymond M. Welsh
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rachel M. Gerstein
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Molecular Genetics & Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael A. Brehm
- Program in Immunology and Virology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Olson MR, Russ BE, Doherty PC, Turner SJ. The role of epigenetics in the acquisition and maintenance of effector function in virus-specific CD8 T cells. IUBMB Life 2010; 62:519-26. [PMID: 20552633 DOI: 10.1002/iub.351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD8(+) T cells are critical for protecting the body from infectious disease. To achieve this protection, CD8(+) T cells must undergo a highly involved process of differentiation that involves the activation of naïve/quiescent cells followed by robust rounds of cell division and the acquisition of effector functions that mediate viral clearance. After the pathogen is eliminated, a small number of these cells survive into long-lived memory and maintain the capacity to respond rapidly and reacquire effector function after secondary exposure to their cognate antigen. This review focuses on how CD8(+) T cells acquire and regulate effector functions and how the capacity to produce effector molecules is maintained into memory.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | |
Collapse
|
19
|
Regulation of memory CD8 T-cell differentiation by cyclin-dependent kinase inhibitor p27Kip1. Mol Cell Biol 2010; 30:5145-59. [PMID: 20805358 DOI: 10.1128/mcb.01045-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Induction of potent T-cell memory is the goal of vaccinations, but the molecular mechanisms that regulate the formation of memory CD8 T cells are not well understood. Despite the recognition that controls of cellular proliferation and apoptosis govern the number of memory T cells, the cell cycle regulatory mechanisms that control these key cellular processes in CD8 T cells during an immune response are poorly defined. Here, we have identified the cyclin-dependent kinase inhibitor p27(Kip1) as a critical regulator of the CD8 T-cell homeostasis at all phases of the T-cell response to an acute viral infection in mice. By acting as a timer for cell cycle exit, p27(Kip1) curtailed the programmed expansion of interleukin-2-producing memory precursors and markedly limited the magnitude and quality of CD8 T-cell memory. In the absence of p27(Kip1), CD8 T cells showed superior recall responses shortly after vaccination with recombinant Listeria monocytogenes. Additionally, we show that p27(Kip1) constrains proliferative renewal of memory CD8 T cells, especially of the effector memory subset. These findings provide critical insights into the cell cycle regulation of CD8 T-cell homeostasis and suggest that modulation of p27(Kip1) could bolster vaccine-induced T-cell memory and protective immunity.
Collapse
|
20
|
Zhang B, Zhang Y, Niu L, Vella AT, Mittler RS. Dendritic cells and Stat3 are essential for CD137-induced CD8 T cell activation-induced cell death. THE JOURNAL OF IMMUNOLOGY 2010; 184:4770-8. [PMID: 20351189 DOI: 10.4049/jimmunol.0902713] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Agonistic anti-CD137 mAbs either positively or negatively regulate T cell function. When administered at the beginning of lymphocytic choriomeningitis virus Armstrong infection anti-CD137 induced immunosuppression and T cell deletion, and in the case of influenza infection led to increased mortality. In contrast, 72 h delay in anti-CD137 treatment led to an enhanced virus-specific CD8 T cell response and rapid viral clearance. Virus-specific CD8 T cells in anti-CD137-injected mice rapidly upregulate Fas expression, and although necessary, was insufficient to induce CD8 T cell deletion. Strikingly, CD137 signaling in T cells was found to be insufficient to induce suppression or deletion. Rather, immunosuppression and T cell deletion was only observed if CD137 signals were provided to T cells and dendritic cells (DCs). In vitro CD137 crosslinking in DCs led to phosphorylation of Stat3, and importantly, anti-CD137 treatment of lymphocytic choriomeningitis virus Armstrong infected Stat3 conditional knock-out mice induced neither immune suppression or T cell deletion. Taken together, these data suggest that CD137 signaling in DCs can regulate CD8 T cell survival through a Stat3 and Fas-mediated pathway.
Collapse
Affiliation(s)
- Benyue Zhang
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Human infections with highly pathogenic H5N1 avian influenza A viruses in the last decade have legitimized fears of a long-predicted pandemic. We thus investigated the response to secondary infections with an engineered, but still highly virulent, H5N1 influenza A virus in the C57BL/6 mouse model. Mice primed with the H1N1 A/Puerto Rico/8/34 (PR8) virus were partially protected from lethality following respiratory infection with the modified H5N1 virus A/Vietnam/1203/04 (DeltaVn1203). In contrast, those that had been comparably exposed to the HKx31 (H3N2) virus succumbed to the DeltaVn1203 challenge, despite similarities in viral replication, weight loss, and secondary CD8(+)-T-cell response characteristics. All three viruses share the internal genes of PR8 that are known to stimulate protective CD8(+)-T-cell-mediated immunity. This differential survival of PR8- and HKx31-primed mice was also apparent for antibody-deficient mice challenged with the DeltaVn1203 virus. The relative protection afforded by PR8 priming was abrogated in tumor necrosis factor-deficient (TNF(-/-)) mice, although lung fluids from the B6 HKx31-primed mice contained more TNF early after challenge. These data demonstrate that the nature of the primary infection can influence pathological outcomes following virulent influenza virus challenge, although the effect is not clearly correlated with classical measures of CD8(+)-T-cell-mediated immunity.
Collapse
|
22
|
Nie S, Cornberg M, Selin LK. Resistance to vaccinia virus is less dependent on TNF under conditions of heterologous immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:6554-60. [PMID: 19846867 DOI: 10.4049/jimmunol.0902156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TNF has been shown to be important for controlling many pathogens. Here, we directly demonstrate using wild-type TNF(-/-) and TNFR1(-/-) mice that TNF does play a role in protection against vaccinia virus (VV) infection in naive mice. Since VV replication is also partially controlled in lymphocytic choriomeningitis virus (LCMV)-immune C57BL/6J mice through the process of heterologous immunity, we questioned whether TNF was required in mediating this protection. VV-infected LCMV-immune mice that were TNF-deficient as a consequence of genetic deletion or receptor blockade demonstrated normal recruitment and selective expansion of cross-reactive LCMV-specific memory CD8 T cells and controlled VV infection similar to LCMV-immune mice having TNF function. This indicates that neither TNF nor lymphotoxin, which uses the same receptor, was required in mediating protective heterologous immunity against VV. Indeed, prior immunity to LCMV made the role of TNF in protection against VV infection much less important, even under conditions of lethal dose inoculum. Thus, heterologous immunity may help explain why treatment of patients with anti-TNF compounds is reasonably well tolerated with relatively few infectious complications.
Collapse
Affiliation(s)
- Siwei Nie
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | |
Collapse
|
23
|
Ngoi SM, Tovey MG, Vella AT. Targeting poly(I:C) to the TLR3-independent pathway boosts effector CD8 T cell differentiation through IFN-alpha/beta. THE JOURNAL OF IMMUNOLOGY 2008; 181:7670-80. [PMID: 19017955 DOI: 10.4049/jimmunol.181.11.7670] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Poly(I:C) is an adjuvant used for antitumor treatment and vaccines because of its prominent effects on CD8 T cells and NK cells. Poly(I:C) binds TLR3 and this interaction is thought to be central for driving cell-mediated immune responses. We investigated the importance of TLR3 in poly(I:C)-mediated endogenous CD8 T cell responses using the pathogenic T cell stimulant Staphylococcus aureus enterotoxin A. While the responsive CD8 T cells expanded comparably in both wild-type and TLR3(-/-) mice, differentiation of effector CD8 T cells was enhanced by poly(I:C) in the TLR3(-/-) mice. A higher percentage of Ag-specific CD8 T cells became IFN-gamma and TNF-alpha producers in the absence of TLR3 signaling. Consistent with this boosted response was the observation that TLR3-deficient cells synthesized less IL-10 compared with TLR3-sufficient cells in response to poly(I:C). Ultimately, however, the fundamental mechanism of CD8 effector T cell differentiation through the TLR3-independent pathway was shown to be completely IFN-alpha/beta-dependent. Administration of IFN-alpha/beta-neutralizing Abs abolished the poly(I:C) effects in TLR3(-/-) mice. These findings reveal specific roles of how dsRNA receptors shape CD8 T cell responses, which should be considered as poly(I:C) is authenticated as a therapeutic adjuvant used in vaccines.
Collapse
Affiliation(s)
- Soo M Ngoi
- Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | |
Collapse
|
24
|
Hoch NE, Guzik TJ, Chen W, Deans T, Maalouf SA, Gratze P, Weyand C, Harrison DG. Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol 2008; 296:R208-16. [PMID: 19073907 DOI: 10.1152/ajpregu.90521.2008] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The adaptive immune response and, in particular, T cells have been shown to be important in the genesis of hypertension. In the present study, we sought to determine how the interplay between ANG II, NADPH oxidase, and reactive oxygen species modulates T cell activation and ultimately causes hypertension. We determined that T cells express angiotensinogen, the angiotensin I-converting enzyme, and renin and produce physiological levels of ANG II. AT1 receptors were primarily expressed intracellularly, and endogenously produced ANG II increased T-cell activation, expression of tissue homing markers, and production of the cytokine TNF-alpha. Inhibition of T-cell ACE reduced TNF-alpha production, indicating endogenously produced ANG II has a regulatory role in this process. Studies with specific antagonists and T cells from AT1R and AT2R-deficient mice indicated that both receptor subtypes contribute to TNF-alpha production. We found that superoxide was a critical mediator of T-cell TNF-alpha production, as this was significantly inhibited by polyethylene glycol (PEG)-SOD, but not PEG-catalase. Thus, T cells contain an endogenous renin-angiotensin system that modulates T-cell function, NADPH oxidase activity, and production of superoxide that, in turn, modulates TNF-alpha production. These findings contribute to our understanding of how ANG II and T cells enhance inflammation in cardiovascular disease.
Collapse
Affiliation(s)
- Nyssa E Hoch
- Division of Cardiology, the Lowance Center of Human Immunology, Emory University School of Medicine, 1639 Pierce Dr., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Verhoeven D, Teijaro JR, Farber DL. Heterogeneous memory T cells in antiviral immunity and immunopathology. Viral Immunol 2008; 21:99-113. [PMID: 18476772 DOI: 10.1089/vim.2008.0002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Memory T cells are generated following an initial viral infection, and have the potential for mediating robust protective immunity to viral re-challenge due to their rapid and enhanced functional responses. In recent years, it has become clear that the memory T cell response to most viruses is remarkably diverse in phenotype, function, and tissue distribution, and can undergo dynamic changes during its long-term maintenance in vivo. However, the role of this variegation and compartmentalizationof memory T cells in protective immunity to viruses remains unclear. In this review,we discuss the diverse features of memory T cells that can delineate different subsets, the characteristics of memory T cells thus far identified to promote protective immune responses, and how the heterogeneous nature of memory T cells may also promote immunopathology during antiviral responses. We propose that given the profound heterogeneity of memory T cells, regulation of memory T cells during secondary responses could focus the response to participation of specific subsets,and/or inhibit memory T-cell subsets and functions that can lead to immunopathology.
Collapse
Affiliation(s)
- David Verhoeven
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|