1
|
Kaminski NE, Kaplan BLF. Immunomodulation by cannabinoids: Current uses, mechanisms, and identification of data gaps to be addressed for additional therapeutic application. ADVANCES IN PHARMACOLOGY 2021; 91:1-59. [PMID: 34099105 DOI: 10.1016/bs.apha.2021.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The endocannabinoid system plays a critical role in immunity and therefore its components, including cannabinoid receptors 1 and 2 (CB1 and CB2), are putative druggable targets for immune-mediated diseases. Whether modulating endogenous cannabinoid levels or interacting with CB1 or CB2 receptors directly, cannabinoids or cannabinoid-based therapeutics (CBTs) show promise as anti-inflammatory or immune suppressive agents. Herein we provide an overview of cannabinoid effects in animals and humans that provide support for the use of CBTs in immune-mediated disease such as multiple sclerosis (MS), inflammatory bowel disease (IBD), asthma, arthritis, diabetes, human immunodeficiency virus (HIV), and HIV-associated neurocognitive disorder (HAND). This is not an exhaustive review of cannabinoid effects on immune responses, but rather provides: (1) key studies in which initial and/or novel observations were made in animal studies; (2) critical human studies including meta-analyses and randomized clinical trials (RCTs) in which CBTs have been assessed; and (3) evidence for the role of CB1 or CB2 receptors in immune-mediated diseases through genetic analyses of single nucleotide polymorphisms (SNPs) in the CNR1 and CNR2 genes that encode CB1 or CB2 receptors, respectively. Perhaps most importantly, we provide our view of data gaps that exist, which if addressed, would allow for more rigorous evaluation of the efficacy and risk to benefit ratio of the use of cannabinoids and/or CBTs for immune-mediated diseases.
Collapse
Affiliation(s)
- Norbert E Kaminski
- Institute for Integrative Toxicology, Center for Research on Ingredient Safety, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States.
| |
Collapse
|
2
|
Froghi S, Grant CR, Tandon R, Quaglia A, Davidson B, Fuller B. New Insights on the Role of TRP Channels in Calcium Signalling and Immunomodulation: Review of Pathways and Implications for Clinical Practice. Clin Rev Allergy Immunol 2021; 60:271-292. [PMID: 33405100 PMCID: PMC7985118 DOI: 10.1007/s12016-020-08824-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Calcium is the most abundant mineral in the human body and is central to many physiological processes, including immune system activation and maintenance. Studies continue to reveal the intricacies of calcium signalling within the immune system. Perhaps the most well-understood mechanism of calcium influx into cells is store-operated calcium entry (SOCE), which occurs via calcium release-activated channels (CRACs). SOCE is central to the activation of immune system cells; however, more recent studies have demonstrated the crucial role of other calcium channels, including transient receptor potential (TRP) channels. In this review, we describe the expression and function of TRP channels within the immune system and outline associations with murine models of disease and human conditions. Therefore, highlighting the importance of TRP channels in disease and reviewing potential. The TRP channel family is significant, and its members have a continually growing number of cellular processes. Within the immune system, TRP channels are involved in a diverse range of functions including T and B cell receptor signalling and activation, antigen presentation by dendritic cells, neutrophil and macrophage bactericidal activity, and mast cell degranulation. Not surprisingly, these channels have been linked to many pathological conditions such as inflammatory bowel disease, chronic fatigue syndrome and myalgic encephalomyelitis, atherosclerosis, hypertension and atopy.
Collapse
Affiliation(s)
- Saied Froghi
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK. .,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK. .,HCA Senior Clinical Fellow (HPB & Liver Transplant), Wellington Hospital, St Johns Wood, London, UK.
| | - Charlotte R Grant
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK
| | - Radhika Tandon
- Sheffield Medical School, Beech Hill Road, Sheffield, UK, S10 2RX
| | - Alberto Quaglia
- Department of Pathology, Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation, Royal Free Hospital, Pond St, Hampstead, London, NW3 2QG, UK.,Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Barry Fuller
- Division of Surgery & Interventional Sciences/University College London (UCL), Royal Free Hospital, Pond Street, Hampstead, London, NW3 2QG, UK
| |
Collapse
|
3
|
Neuromolecular Mechanisms of Cannabis Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1264:15-28. [PMID: 33332001 DOI: 10.1007/978-3-030-57369-0_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Most of our current understanding of the neuromolecular mechanisms of Cannabis action focusses on two plant cannabinoids, THC and CBD. THC acts primarily through presynaptic CB cannabinoid receptors to regulate neurotransmitter release in the brain, spinal cord and peripheral nerves. CBD action, on the other hand, is probably mediated through multiple molecular targets.
Collapse
|
4
|
Acharya TK, Tiwari A, Majhi RK, Goswami C. TRPM8 channel augments T-cell activation and proliferation. Cell Biol Int 2020; 45:198-210. [PMID: 33090595 DOI: 10.1002/cbin.11483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 12/25/2022]
Abstract
The transient receptor potential melastatin 8 (TRPM8) is an ion channel that has been widely studied as a cold-sensitive nociceptor. However, its importance in nonneuronal cells is mostly unexplored. Here, we describe the presence and functional significance of endogenous TRPM8, a nonselective Ca2+ -channel in T cell functions. The major pool of TRPM8 resides at the T cell surface and its surface accumulation significantly increases in activated T cells. TRPM8 activation synergizes with T-cell receptor (TCR) stimulation to increase CD25, CD69 levels and enhances secretion of proinflammatory cytokine tumor necrosis factor. However, TRPM8 inhibition does not restrict TCR stimulation mediated activation of T cells, indicating that unlike the heat-sensitive TRPV1 and TRPV4 channels, the cold-sensitive TRPM8 channel may be dispensable during T-cell activation, at least in mice. In this study, we demonstrate that TRPM8 promotes TCR-induced intracellular calcium increase. TRPM8 activation is beneficial for T-cell activation and differentiation into effector cells. TRPM8 inhibition during the T-cell activation process may lead to altered phenotype and reduced proliferation, without affecting cell viability. These results collectively establish TRPM8 as a functional calcium channel whose activation may be utilized for mounting an effective immune response. The findings of this study will be relevant to the regulation and response of T cells during cell-mediated immunity. These results will likely further our understanding on the role of ion channels in T-cell activation.
Collapse
Affiliation(s)
- Tusar K Acharya
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Ankit Tiwari
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Rakesh K Majhi
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India.,Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
5
|
Pethő Z, Najder K, Carvalho T, McMorrow R, Todesca LM, Rugi M, Bulk E, Chan A, Löwik CWGM, Reshkin SJ, Schwab A. pH-Channeling in Cancer: How pH-Dependence of Cation Channels Shapes Cancer Pathophysiology. Cancers (Basel) 2020; 12:E2484. [PMID: 32887220 PMCID: PMC7565548 DOI: 10.3390/cancers12092484] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in the literature. Thus, the main focus of this review is to highlight possible events in tumor progression and tumor immunity where the pH sensitivity of cation channels could be of great importance.
Collapse
Affiliation(s)
- Zoltán Pethő
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Karolina Najder
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Tiago Carvalho
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Roisin McMorrow
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
| | - Luca Matteo Todesca
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Micol Rugi
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Etmar Bulk
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| | - Alan Chan
- Percuros B.V., 2333 CL Leiden, The Netherlands;
| | - Clemens W. G. M. Löwik
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3035 GD Rotterdam, The Netherlands; (R.M.); (C.W.G.M.L.)
- Department of Oncology CHUV, UNIL and Ludwig Cancer Center, 1011 Lausanne, Switzerland
| | - Stephan J. Reshkin
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 90126 Bari, Italy; (T.C.); (S.J.R.)
| | - Albrecht Schwab
- Institute of Physiology II, University Münster, 48147 Münster, Germany; (K.N.); (L.M.T.); (M.R.); (E.B.); (A.S.)
| |
Collapse
|
6
|
Nam JH, Kim WK. The Role of TRP Channels in Allergic Inflammation and its Clinical Relevance. Curr Med Chem 2020; 27:1446-1468. [PMID: 30474526 DOI: 10.2174/0929867326666181126113015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/03/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
Allergy refers to an abnormal adaptive immune response to non-infectious environmental substances (allergen) that can induce various diseases such as asthma, atopic dermatitis, and allergic rhinitis. In this allergic inflammation, various immune cells, such as B cells, T cells, and mast cells, are involved and undergo complex interactions that cause a variety of pathophysiological conditions. In immune cells, calcium ions play a crucial role in controlling intracellular Ca2+ signaling pathways. Cations, such as Na+, indirectly modulate the calcium signal generation by regulating cell membrane potential. This intracellular Ca2+ signaling is mediated by various cation channels; among them, the Transient Receptor Potential (TRP) family is present in almost all immune cell types, and each channel has a unique function in regulating Ca2+ signals. In this review, we focus on the role of TRP ion channels in allergic inflammatory responses in T cells and mast cells. In addition, the TRP ion channels, which are attracting attention in clinical practice in relation to allergic diseases, and the current status of the development of therapeutic agents that target TRP channels are discussed.
Collapse
Affiliation(s)
- Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea.,Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea.,Department of Internal Medicine Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do 10326, Korea
| |
Collapse
|
7
|
GWAS analysis using interspecific backcross progenies reveals superior blue catfish alleles responsible for strong resistance against enteric septicemia of catfish. Mol Genet Genomics 2018; 293:1107-1120. [PMID: 29737402 DOI: 10.1007/s00438-018-1443-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022]
Abstract
Infectious diseases pose significant threats to the catfish industry. Enteric septicemia of catfish (ESC) caused by Edwardsiella ictaluri is the most devastating disease for catfish aquaculture, causing huge economic losses annually. Channel catfish and blue catfish exhibit great contrast in resistance against ESC, with channel catfish being highly susceptible and blue catfish being highly resistant. As such, the interspecific backcross progenies provide an ideal system for the identification of quantitative trait locus (QTL). We previously reported one significant QTL on linkage group (LG) 1 using the third-generation backcrosses, but the number of founders used to make the second- and third-generation backcross progenies was very small. Although the third-generation backcross progenies provided a greater power for fine mapping than the first-generation backcrosses, some major QTL for disease resistance may have been missing due to the small numbers of founders used to produce the higher generation backcrosses. In this study, we performed a genome-wide association study using first-generation backcrosses with the catfish 690 K SNP arrays to identify additional ESC disease resistance QTL, especially those at the species level. Two genomic regions on LG1 and LG23 were determined to be significantly associated with ESC resistance as revealed by a mixed linear model and family-based association test. Examination of the resistance alleles indicated their origin from blue catfish, indicating that at least two major disease resistance loci exist among blue catfish populations. Upon further validation, markers linked with major ESC disease resistance QTL should be useful for marker-assisted introgression, allowing development of highly ESC resistant breeds of catfish.
Collapse
|
8
|
Irving A, Abdulrazzaq G, Chan SLF, Penman J, Harvey J, Alexander SPH. Cannabinoid Receptor-Related Orphan G Protein-Coupled Receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:223-247. [PMID: 28826536 DOI: 10.1016/bs.apha.2017.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Of the druggable group of G protein-coupled receptors in the human genome, a number remain which have yet to be paired with an endogenous ligand-orphan GPCRs. Among these 100 or so entities, 3 have been linked to the cannabinoid system. GPR18, GPR55, and GPR119 exhibit limited sequence homology with the established CB1 and CB2 cannabinoid receptors. However, the pharmacology of these orphan receptors displays overlap with CB1 and CB2 receptors, particularly for GPR18 and GPR55. The linking of GPR119 to the cannabinoid receptors is less convincing and emanates from structural similarities of endogenous ligands active at these GPCRs, but which do not cross-react. This review describes the evidence for describing these orphan GPCRs as cannabinoid receptor-like receptors.
Collapse
Affiliation(s)
- Andrew Irving
- The Conway Institute, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| | - Ghayth Abdulrazzaq
- Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Sue L F Chan
- Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - June Penman
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jenni Harvey
- Division of Neuroscience, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | | |
Collapse
|
9
|
Actions and Regulation of Ionotropic Cannabinoid Receptors. ADVANCES IN PHARMACOLOGY 2017; 80:249-289. [PMID: 28826537 DOI: 10.1016/bs.apha.2017.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Almost three decades have passed since the identification of the two specific metabotropic receptors mediating cannabinoid pharmacology. Thereafter, many cannabinoid effects, both at central and peripheral levels, have been well documented and characterized. However, numerous evidences demonstrated that these pharmacological actions could not be attributable solely to the activation of CB1 and CB2 receptors since several important cannabimimetic actions have been found in biological systems lacking CB1 or CB2 gene such as in specific cell lines or transgenic mice. It is now well accepted that, beyond their receptor-mediated effects, these molecules can act also via CB1/CB2-receptor-independent mechanism. Cannabinoids have been demonstrated to modulate several voltage-gated channels (including Ca2+, Na+, and various type of K+ channels), ligand-gated ion channels (i.e., GABA, glycine), and ion-transporting membranes proteins such as transient potential receptor class (TRP) channels. The first direct, cannabinoid receptor-independent interaction was reported on the function of serotonin 5-HT3 receptor-ion channel complex. Similar effects were reported also on the other above mentioned ion channels. In the early ninety, studies searching for endogenous modulators of L-type Ca2+ channels identified anandamide as ligand for L-type Ca2+ channel. Later investigations indicated that other types of Ca2+ currents are also affected by endocannabinoids, and, in the late ninety, it was discovered that endocannabinoids activate the vanilloid receptor subtype 1 (TRPV1), and nowadays, it is known that (endo)cannabinoids gate at least five distinct TRP channels. This chapter focuses on cannabinoid regulation of ion channels and lays special emphasis on their action at transient receptor channels.
Collapse
|
10
|
Lin VHC, Chen JJ, Liao CC, Lee SS, Chien EJ. The rapid immunosuppression in phytohemagglutinin-activated human T cells is inhibited by the proliferative Ca(2+) influx induced by progesterone and analogs. Steroids 2016; 111:71-78. [PMID: 26808612 DOI: 10.1016/j.steroids.2016.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/11/2016] [Accepted: 01/20/2016] [Indexed: 10/22/2022]
Abstract
Progesterone, an endogenous immunomodulator, suppresses human T-cell activation during pregnancy. A sustained Ca(2 +) influx is an important signal for T-cell proliferation after crosslinking of T-cell receptor/CD3 complexes by anti-CD3 antibodies or phytohemagglutinin (PHA). Progesterone targets cell membrane sites inducing rapid responses including elevated intracellular free calcium concentration ([Ca(2+)]i) and suppressed T-cell PHA-activated proliferation. Interestingly, both PHA and progesterone induce [Ca(2+)]i elevation, but it remains unclear whether the PHA-induced Ca(2+) influx is affected by progesterone leading to T-cell immunosuppression. Primary T-cells were isolated from human peripheral blood and the quench effect on intracellular fura-2 fluorescence of Mn(2+) was used to explore the responses to Ca(2+) influx with cell proliferation being determined by MTT assay. PHA-stimulated Ca(2+) influx was dose-dependently suppressed by progesterone and its agonist R5020, which correlated with PHA-activated T-cell proliferation inhibition. A similar dose-dependent suppression effect on cellular Ca(2+) influx and proliferation occurred with the TRPC channel inhibitor BTP2 and selective TRPC3 channel inhibitor Pyr3. In addition, two progesterone analogs, Org OD 02-0 and 20α-hydroxyprogesterone (20α-OHP), also produced dose-dependent suppression of Ca(2+) influx, but had no effect on proliferation. Finally, inhibition of PHA-activated T-cell proliferation by progesterone is further suppressed by 20α-OHP, but not by Org OD 02-0. Overall, progesterone and R5020 are able to rapidly decrease PHA-stimulated sustained Ca(2+) influx, probably via blockade of TRPC3 channels, which suppresses T-cell proliferation. Taken together, the roles of progesterone and its analogs regarding the rapid response Ca(2+) influx need to be further explored in relation to cytokine secretion and proliferation in activated T-cells.
Collapse
Affiliation(s)
- Veronica Hui-Chen Lin
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Jiann-Jong Chen
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City 23143, Taiwan, ROC
| | - Chen-Chung Liao
- Proteomics Research Center, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Shinn-Shing Lee
- Department of Medicine, Cheng Hsin General Hospital, Taipei 11220, Taiwan, ROC.
| | - Eileen Jea Chien
- Institute and Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC; Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC; Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
11
|
Bertin S, Raz E. Transient Receptor Potential (TRP) channels in T cells. Semin Immunopathol 2015; 38:309-19. [PMID: 26468011 DOI: 10.1007/s00281-015-0535-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/01/2015] [Indexed: 12/16/2022]
Abstract
The transient receptor potential (TRP) family of ion channels is widely expressed in many cell types and plays various physiological roles. Growing evidence suggests that certain TRP channels are functionally expressed in the immune system. Indeed, an increasing number of reports have demonstrated the functional expression of several TRP channels in innate and adaptive immune cells and have highlighted their critical role in the activation and function of these cells. However, very few reviews have been entirely dedicated to this subject. Here, we will summarize the recent findings with regards to TRP channel expression in T cells and discuss their emerging role as regulators of T cell activation and functions. Moreover, these studies suggest that beyond their pharmaceutical interest in pain management, certain TRP channels may represent potential novel therapeutic targets for various immune-related diseases.
Collapse
Affiliation(s)
- Samuel Bertin
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA.
| | - Eyal Raz
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0663, USA
| |
Collapse
|
12
|
Kumar A, Kumari S, Majhi RK, Swain N, Yadav M, Goswami C. Regulation of TRP channels by steroids: Implications in physiology and diseases. Gen Comp Endocrinol 2015; 220:23-32. [PMID: 25449179 DOI: 10.1016/j.ygcen.2014.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 10/09/2014] [Accepted: 10/10/2014] [Indexed: 01/26/2023]
Abstract
While effects of different steroids on the gene expression and regulation are well established, it is proven that steroids can also exert rapid non-genomic actions in several tissues and cells. In most cases, these non-genomic rapid effects of steroids are actually due to intracellular mobilization of Ca(2+)- and other ions suggesting that Ca(2+) channels are involved in such effects. Transient Receptor Potential (TRP) ion channels or TRPs are the largest group of non-selective and polymodal ion channels which cause Ca(2+)-influx in response to different physical and chemical stimuli. While non-genomic actions of different steroids on different ion channels have been established to some extent, involvement of TRPs in such functions is largely unexplored. In this review, we critically analyze the literature and summarize how different steroids as well as their metabolic precursors and derivatives can exert non-genomic effects by acting on different TRPs qualitatively and/or quantitatively. Such effects have physiological repercussion on systems such as in sperm cells, immune cells, bone cells, neuronal cells and many others. Different TRPs are also endogenously expressed in diverse steroid-producing tissues and thus may have importance in steroid synthesis as well, a process which is tightly controlled by the intracellular Ca(2+) concentrations. Tissue and cell-specific expression of TRP channels are also regulated by different steroids. Understanding of the crosstalk between TRP channels and different steroids may have strong significance in physiological, endocrinological and pharmacological context and in future these compounds can also be used as potential biomedicine.
Collapse
Affiliation(s)
- Ashutosh Kumar
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Shikha Kumari
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Rakesh Kumar Majhi
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Nirlipta Swain
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Manoj Yadav
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India
| | - Chandan Goswami
- School of Biology, National Institute of Science Education and Research, Sachivalaya Marg, Bhubaneswar, Orissa 751005, India.
| |
Collapse
|
13
|
Majhi RK, Sahoo SS, Yadav M, Pratheek BM, Chattopadhyay S, Goswami C. Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J 2015; 282:2661-81. [PMID: 25903376 DOI: 10.1111/febs.13306] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/02/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
The importance of Ca(2+) signalling and temperature in the context of T cell activation is well known. However, the molecular identities of key players involved in such critical regulations are still unknown. In this work we explored the endogenous expression of transient receptor potential vanilloid (TRPV) channels, a group of thermosensitive and non-selective cation channels, in T cells. Using flow cytometry and confocal microscopy, we demonstrate that members belonging to the TRPV subfamily are expressed endogenously in the human T cell line Jurkat, in primary human T cells and in primary murine splenic T cells. We also demonstrate that TRPV1- and TRPV4-specific agonists, namely resiniferatoxin and 4α-phorbol-12,13-didecanoate, can cause Ca(2+) influx in T cells. Moreover, our results show that expression of these channels can be upregulated in T cells during concanavalin A-driven mitogenic and anti-CD3/CD28 stimulated TCR activation of T cells. By specific blocking of TRPV1 and TRPV4 channels, we found that these TRPV inhibitors may regulate mitogenic and T cell receptor mediated T cell activation and effector cytokine(s) production by suppressing tumour necrosis factor, interleukin-2 and interferon-γ release. These results may have broad implications in the context of cell-mediated immunity, especially T cell responses and their regulations, neuro-immune interactions and molecular understanding of channelopathies.
Collapse
Affiliation(s)
- Rakesh K Majhi
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| | - Manoj Yadav
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| | - Belluru M Pratheek
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Orissa, India
| |
Collapse
|
14
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
15
|
Inayama M, Suzuki Y, Yamada S, Kurita T, Yamamura H, Ohya S, Giles WR, Imaizumi Y. Orai1-Orai2 complex is involved in store-operated calcium entry in chondrocyte cell lines. Cell Calcium 2015; 57:337-47. [PMID: 25769459 DOI: 10.1016/j.ceca.2015.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 02/01/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
Ca(2+) influx via store-operated Ca(2+) entry (SOCE) plays critical roles in many essential cellular functions. The Ca(2+) release-activated Ca(2+) (CRAC) channel complex, consisting of Orai and STIM, is one of the major components of store-operated Ca(2+) (SOC) channels. Our previous study demonstrated that histamine can cause sustained Ca(2+) entry through SOC channels in OUMS-27 cells derived from human chondrosarcoma. This SOCE was increased by low- and decreased by high-concentrations of 2-aminoethoxydiphenyl borate. Quantitative reverse transcription PCR and Western blot analyses revealed abundant expressions of Orai1, Orai2 and STIM1. Introduction of dominant negative mutant of Orai1, or siOrai1 knockdown significantly attenuated SOCE. Following histamine application, single molecule imaging using total internal reflection fluorescence (TIRF) microscopy demonstrated punctate Orai1-STIM1 complex formation in plasma membrane. In contrast, knockdown or over-expression of Orai2 resulted in an increase or a decrease in SOCE, respectively. Finally, TIRF imaging revealed direct coupling between Orai1 and Orai2, and suggested that Orai2 reduces Orai1 function by formation of a hetero-tetramer. These results provide substantial evidence that Orai1, Orai2 and STIM1 form functional CRAC channels in OUMS-27 cells and that these complexes are responsible for sustained Ca(2+) entry in response to agonist stimulation.
Collapse
Affiliation(s)
- Munenori Inayama
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yoshiaki Suzuki
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Satoshi Yamada
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Takashi Kurita
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hisao Yamamura
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Susumu Ohya
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Wayne R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Yuji Imaizumi
- Department of Molecular & Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan.
| |
Collapse
|
16
|
Impaired NFAT and NFκB activation are involved in suppression of CD40 ligand expression by Δ(9)-tetrahydrocannabinol in human CD4(+) T cells. Toxicol Appl Pharmacol 2013; 273:209-18. [PMID: 23999542 DOI: 10.1016/j.taap.2013.08.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 11/22/2022]
Abstract
We have previously reported that Δ(9)-tetrahydrocannabinol (Δ(9)-THC), the main psychoactive cannabinoid in marijuana, suppresses CD40 ligand (CD40L) expression by activated mouse CD4(+) T cells. CD40L is involved in pathogenesis of many autoimmune and inflammatory diseases. In the present study, we investigated the molecular mechanism of Δ(9)-THC-mediated suppression of CD40L expression using peripheral blood human T cells. Pretreatment with Δ(9)-THC attenuated CD40L expression in human CD4(+) T cells activated by anti-CD3/CD28 at both the protein and mRNA level, as determined by flow cytometry and quantitative real-time PCR, respectively. Electrophoretic mobility shift assays revealed that Δ(9)-THC suppressed the DNA-binding activity of both NFAT and NFκB to their respective response elements within the CD40L promoter. An assessment of the effect of Δ(9)-THC on proximal T cell-receptor (TCR) signaling induced by anti-CD3/CD28 showed significant impairment in the rise of intracellular calcium, but no significant effect on the phosphorylation of ZAP70, PLCγ1/2, Akt, and GSK3β. Collectively, these findings identify perturbation of the calcium-NFAT and NFκB signaling cascade as a key mechanistic event by which Δ(9)-THC suppresses human T cell function.
Collapse
|
17
|
Abstract
Transient receptor potential canonical (TRPC) channels are the canonical (C) subset of the TRP proteins, which are widely expressed in mammalian cells. They are thought to be primarily involved in determining calcium and sodium entry and have wide-ranging functions that include regulation of cell proliferation, motility and contraction. The channels are modulated by a multiplicity of factors, putatively existing as integrators in the plasma membrane. This review considers the sensitivities of TRPC channels to lipids that include diacylglycerols, phosphatidylinositol bisphosphate, lysophospholipids, oxidized phospholipids, arachidonic acid and its metabolites, sphingosine-1-phosphate, cholesterol and some steroidal derivatives and other lipid factors such as gangliosides. Promiscuous and selective lipid sensing have been detected. There appear to be close working relationships with lipids of the phospholipase C and A2 enzyme systems, which may enable integration with receptor signalling and membrane stretch. There are differences in the properties of each TRPC channel that are further complicated by TRPC heteromultimerization. The lipids modulate activity of the channels or insertion in the plasma membrane. Lipid microenvironments and intermediate sensing proteins have been described that include caveolae, G protein signalling, SEC14-like and spectrin-type domains 1 (SESTD1) and podocin. The data suggest that lipid sensing is an important aspect of TRPC channel biology enabling integration with other signalling systems.
Collapse
Affiliation(s)
- D. J. Beech
- Faculty of Biological Sciences, Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK
| |
Collapse
|
18
|
Hoyle CH. Evolution of neuronal signalling: Transmitters and receptors. Auton Neurosci 2011; 165:28-53. [DOI: 10.1016/j.autneu.2010.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 05/09/2010] [Accepted: 05/18/2010] [Indexed: 11/16/2022]
|
19
|
Karmaus PWF, Chen W, Kaplan BLF, Kaminski NE. Δ9-tetrahydrocannabinol suppresses cytotoxic T lymphocyte function independent of CB1 and CB 2, disrupting early activation events. J Neuroimmune Pharmacol 2011; 7:843-55. [PMID: 21789506 DOI: 10.1007/s11481-011-9293-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
Previously, CD8(+) T cells were found to be a sensitive target for suppression by Δ(9)-tetrahydrocannabinol (Δ(9)-THC) in a murine model of influenza infection. To study the effect of Δ(9)-THC on CD8(+) cytotoxic T lymphocytes (CTL), an allogeneic model of MHC I mismatch was used to elicit CTL. In addition, to determine the requirement for the cannabinoid receptors 1 (CB(1)) and 2 (CB(2)) in Δ(9)-THC-mediated CTL response modulation, mice null for both receptors were used (CB(1) (-/-)CB(2) (-/-)). Δ(9)-THC suppressed CTL function independent of CB(1) and CB(2) as evidenced by reduction of (51)Cr release by CTL generated from CB(1) (-/-)CB(2) (-/-) mice. Furthermore, viability in CD4(+) and CD8(+) cells was reduced in a concentration-dependent manner with Δ(9)-THC, independent of CB(1) and CB(2), but no effect of Δ(9)-THC on proliferation was observed, suggesting that Δ(9)-THC decreases the number of T cells initially activated. Δ(9)-THC increased expression of the activation markers, CD69 in CD8(+) cells and CD25 in CD4(+) cells in a concentration-dependent manner in cells derived from WT and CB(1) (-/-)CB(2) (-/-) mice. Furthermore, Δ(9)-THC synergized with the calcium ionophore, ionomycin, to increase CD69 expression on both CD4(+) and CD8(+) cells. In addition, without stimulation, Δ(9)-THC increased CD69 expression in CD8(+) cells from CB(1) (-/-)CB(2) (-/-) and WT mice. Overall, these results suggest that CB(1) and CB(2) are dispensable for Δ(9)-THC-mediated suppression and that perturbation of Ca(2+) signals during T cell activation plays an important role in the mechanism by which Δ(9)-THC suppresses CTL function.
Collapse
|
20
|
Wenning AS, Neblung K, Strauß B, Wolfs MJ, Sappok A, Hoth M, Schwarz EC. TRP expression pattern and the functional importance of TRPC3 in primary human T-cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:412-23. [DOI: 10.1016/j.bbamcr.2010.12.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/16/2022]
|
21
|
Li C, Jones PM, Persaud SJ. Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas. Pharmacol Ther 2011; 129:307-20. [DOI: 10.1016/j.pharmthera.2010.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/13/2010] [Indexed: 01/26/2023]
|
22
|
Abstract
Ion channels and notably TRP channels play a crucial role in a variety of physiological functions and in addition these channels have been also shown associated with several diseases including cancer. The process of cancer initiation and progression involves the altered expression of one or more of TRP proteins, depending on the nature of the cancer. The most clearly described role in pathogenesis has been evidenced for TRPM8, TRPV6 and TRPM1 channels. The increased expression of some other channels, such as TRPV1, TRPC1, TRPC6, TRPM4, and TRPM5 has also been demonstrated in some cancers. Further investigations are required to precise the role of TRP channels in cancer development and/or progression and to specifically develop further knowledge of TRP proteins as discriminative markers and prospective targets for pharmaceutical intervention in treating cancer.
Collapse
|
23
|
Zhang ZY, Wang WJ, Pan LJ, Xu Y, Zhang ZM. Measuring Ca2+ influxes of TRPC1-dependent Ca2+ channels in HL-7702 cells with non-invasive micro-test technique. World J Gastroenterol 2009; 15:4150-5. [PMID: 19725149 PMCID: PMC2738811 DOI: 10.3748/wjg.15.4150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the possibility of using the Non-invasive Micro-test Technique (NMT) to investigate the role of Transient Receptor Potential Canonical 1 (TRPC1) in regulating Ca(2+) influxes in HL-7702 cells, a normal human liver cell line. METHODS Net Ca(2+) fluxes were measured with NMT, a technology that can obtain dynamic information of specific/selective ionic/molecular activities on material surfaces, non-invasively. The expression levels of TRPC1 were increased by liposomal transfection, whose effectiveness was evaluated by Western-blotting and single cell reverse transcription-polymerase chain reaction. RESULTS Ca(2+) influxes could be elicited by adding 1 mmol/L CaCl(2) to the test solution of HL-7702 cells. They were enhanced by addition of 20 micromol/L noradrenaline and inhibited by 100 micromol/L LaCl(3) (a non-selective Ca(2+) channel blocker); 5 micromol/L nifedipine did not induce any change. Overexpression of TRPC1 caused increased Ca(2+) influx. Five micromoles per liter nifedipine did not inhibit this elevation, whereas 100 micromol/L LaCl(3) did. CONCLUSION In HL-7702 cells, there is a type of TRPC1-dependent Ca(2+) channel, which could be detected via NMT and inhibited by La(3+).
Collapse
Affiliation(s)
- Zhen-Ya Zhang
- Department of General Surgery, Digestive Medical Center, the First Affiliated Hospital, Medical School, Tsinghua University, Beijing 100016, China
| | | | | | | | | |
Collapse
|
24
|
Beech DJ, Bahnasi YM, Dedman AM, Al-Shawaf E. TRPC channel lipid specificity and mechanisms of lipid regulation. Cell Calcium 2009; 45:583-8. [PMID: 19324410 PMCID: PMC3878645 DOI: 10.1016/j.ceca.2009.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/17/2009] [Accepted: 02/19/2009] [Indexed: 12/31/2022]
Abstract
TRPC channels are a subset of the transient receptor potential (TRP) proteins widely expressed in mammalian cells. They are thought to be primarily involved in determining calcium or sodium entry and have broad-ranging functions that include regulation of cell proliferation, motility and contraction. The channels do not respond to a single stimulator but rather are activated or modulated by a multiplicity of factors, potentially existing as integrators at the plasma membrane. This review considers the sensitivity of TRPCs to lipid factors, with focus on sensitivities to diacylglycerols, lysophospholipids, arachidonic acid and its metabolites, sphingosine-1-phosphate (S1P), cholesterol and derivatives, and other lipid factors such as gangliosides. Promiscuous and selective lipid-sensing are apparent. In many cases the lipids stimulate channel function or increase insertion of channels in the membrane. Both direct and indirect (receptor-dependent) lipid effects are evident. Although information is limited, the lipid profiles are consistent with TRPCs having close working relationships with phospholipase C and A2 enzymes. We need much more information about lipid-sensing by TRPCs if we are to fully appreciate its significance, but the available data suggest that lipid-sensing is a key, but not exclusive, aspect of TRPC biology.
Collapse
Affiliation(s)
- David J Beech
- Institute of Membrane & Systems Biology, Faculty of Biological Sciences, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, UK.
| | | | | | | |
Collapse
|
25
|
(Endo)cannabinoids mediate different Ca2+ entry mechanisms in human bronchial epithelial cells. Naunyn Schmiedebergs Arch Pharmacol 2009; 380:67-77. [PMID: 19255745 DOI: 10.1007/s00210-009-0406-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/13/2009] [Indexed: 10/21/2022]
Abstract
In human bronchial epithelial (16HBE14o(-)) cells, CB(1) and CB(2) cannabinoid receptors are present, and their activation by the endocannabinoid virodhamine and the synthetic non-selective receptor agonist CP55,940 inhibits adenylyl cyclase and cellular interleukin-8 release. Here, we analyzed changes in intracellular calcium ([Ca2+](i)) evoked by Delta(9)-tetrahydrocannabinol (Delta(9)-THC), CP55,940, and virodhamine in 16HBE14o(-) cells. Delta(9)-THC induced [Ca2+](i) increase and a large transient [Ca2+](i) mobilization, the latter probably reflecting store-depletion-driven capacitative Ca2+ entry (CCE). In contrast, CP55,940 induced a rather moderate Ca2+ influx and a sustained [Ca2+](i) mobilization. CP55,940-induced Ca2+ influx was inhibited by Ni2+, indicating CCE, possibly mediated by transient receptor potential channel TRPC1, the mRNA of which is expressed in 16HBE14o(-) cells. CP55,940-induced calcium alterations were mimicked by virodhamine concentrations below 30 microM. Interestingly, higher virodhamine induced an additional Ca2+ entry, insensitive to Ni2+, but sensitive to the TRPV1 antagonist capsazepine, the TRPV1-TRPV4 inhibitor ruthenium red, and the non-CCE (NCCE) inhibitors La3+ and Gd3+. Such pharmacological profile is supported by the presence of TRPV1, TRPV4, and TRPC6 mRNAs as well as TRPV1 and TRPC6 proteins in 16HBE14o(-) cells. Cannabinoid receptor antagonists increased virodhamine-induced Ca2+ entry. Virodhamine also enhanced arachidonic acid release, which was insensitive to cannabinoid receptor antagonism, but sensitive to the phospholipase A(2) inhibitor quinacrine, and to capsazepine. Arachidonic acid induced [Ca2+](i) increase similar to virodhamine. Collectively, these observations suggest that [Ca2+](i) alterations induced by Delta(9)-THC, CP55,940 and by low concentrations of virodhamine involve mobilization and subsequent CCE mechanisms, whereas such responses by high virodhamine concentrations involve NCCE pathways.
Collapse
|
26
|
Abstract
Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field.
Collapse
Affiliation(s)
- Monika Vig
- Laboratory of Allergy and Immunology, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
27
|
Lu H, Kaplan BLF, Ngaotepprutaram T, Kaminski NE. Suppression of T cell costimulator ICOS by Delta9-tetrahydrocannabinol. J Leukoc Biol 2008; 85:322-9. [PMID: 18988696 DOI: 10.1189/jlb.0608390] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inducible costimulator (ICOS), a prototypic T cell costimulator, is induced on activated T cells. ICOS regulates T cell activation and Th cell differentiation and is principally involved in humoral immune responses. Previous work showed that T cell accessory function is modulated by the plant-derived cannabinoid, delta-9-tetrahydrocannabinol (Delta(9)-THC). In light of an emerging role by ICOS in T cell-mediated immunity, the objective of this study was to investigate the effect of Delta(9)-THC on ICOS in activated mouse T cells. Induction of ICOS mRNA levels by phorbol ester (PMA) plus ionomycin (Io) activation in mouse splenocytes was attenuated by Delta(9)-THC in a concentration-related manner. Similar results were obtained in the mouse T cell line, EL4.IL-2. Anti-CD3/CD28 induced ICOS expression on CD4(+) splenic T cells, which was suppressed by Delta(9)-THC in a time- and concentration-related manner. The PMA/Io-induced icos promoter luciferase reporter activity was also down-regulated by Delta(9)-THC, suggesting that the suppression of ICOS expression by Delta(9)-THC occurs at the transcriptional level. Moreover, transcriptional activation of the NFAT was also down-regulated by Delta(9)-THC as shown by a NFAT luciferase reporter assay, which is consistent with a putative role of NFAT in regulating ICOS expression. Collectively, Delta(9)-THC suppresses ICOS expression in activated T cells, and this suppression may be related, in part, to its modulation of NFAT signaling. The emerging role of ICOS in a wide range of immune-related diseases also suggests that it may represent a potential therapeutic target, which could be modulated by cannabinoid compounds.
Collapse
Affiliation(s)
- Haitian Lu
- Department of Pharmacology and Toxicology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1317, USA
| | | | | | | |
Collapse
|
28
|
Xu YJ, Tappia PS, Goyal RK, Dhalla NS. Mechanisms of the lysophosphatidic acid-induced increase in [Ca(2+)](i) in skeletal muscle cells. J Cell Mol Med 2008; 12:942-54. [PMID: 18494935 PMCID: PMC4401138 DOI: 10.1111/j.1582-4934.2008.00139.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although lysophosphatidic acid (LPA) is known to increase intracellularfree calcium concentration ([Ca2+]i) in different cell types, the effect of LPA on the skeletal muscle cells is not known. The present study was therefore undertaken to examine the effect of LPA on the [Ca2+]i in C2C12 cells. LPA induced a concentration and time dependent increase in [Ca2+]i, which was inhibited by VPC12249, VPC 32183 and dioctanoyl glycerol pyrophosphate, LPA1/3 receptor antagonists. Pertussis toxin, a Gi protein inhibitor, also inhibited the LPA-induced increase in [Ca2+]i. Inhibition of tyrosine kinase activities with tyrphostin A9 and genistein also prevented the increase in [Ca2+]i due to LPA. Likewise, wortmannin and LY 294002, phosphatidylinositol 3-kinase (PI3-K) inhibitors, inhibited [Ca2+]i response to LPA. The LPA effect was also attenuated by ethylene glycolbis(β-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), an extracellular Ca2+ chelator, Ni2+ and KB-R7943, inhibitors of the Na+-Ca2+ exchanger; the receptor operated Ca2+ channel (ROC) blockers, 2-aminoethoxydiphenyl borate and SK&F 96365. However, the L-type Ca2+ channel blockers, verapamil and diltiazem; the store operated Ca2+ channel blockers, La3+ and Gd3+; a sarcoplasmic reticulum calcium pump inhibitor, thapsigargin; an inositol trisphosphate receptor antagonist, xestospongin and a phospholipase C inhibitor, U73122, did not prevent the increase [Ca2+]i due to LPA. Our data suggest that the LPA-induced increase in [Ca2+]i might occur through Gi-protein coupled LPA1/3 receptors that may be linked to tyrosine kinase and PI3-K, and may also involve the Na+-Ca2+ exchanger as well as the ROC. In addition, LPA stimulated C2C12 cell proliferation via PI3-K. Thus, LPA may be an important phospholipid in the regulation of [Ca2+]i and growth of skeletal muscle cells.
Collapse
Affiliation(s)
- Yan-Jun Xu
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
29
|
Zhou H, Kong DH, Pan QW, Wang HH. Sources of calcium in agonist-induced contraction of rat distal colon smooth muscle in vitro. World J Gastroenterol 2008; 14:1077-83. [PMID: 18286690 PMCID: PMC2689411 DOI: 10.3748/wjg.14.1077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the origin of calcium necessary for agonist-induced contraction of the distal colon in rats.
METHODS: The change in intracellular calcium concentration ([Ca2+]i) evoked by elevating external Ca2+ was detected by fura 2/AM fluorescence. Contractile activity was measured with a force displacement transducer. Tension was continuously monitored and recorded using a Powerlab 4/25T data acquisition system with an ML110 bridge bioelectric physiographic amplifier.
RESULTS: Store depletion induced Ca2+ influx had an effect on [Ca2+]i. In nominally Ca2+-free medium, the sarco-endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin (1 &mgr;mol/L) increased [Ca2+]i from 68 to 241 nmol/L, and to 458 (P < 0.01) and 1006 nmol/L (P < 0.01), respectively, when 1.5 mmol/L and 3.0 mmol/L extracellular Ca2+ was reintroduced. Furthermore, the change in [Ca2+]i was observed with verapamil (5 &mgr;mol/L), La3+ (1 mmol/L) or KCl (40 mmol/L) in the bathing solution. These channels were sensitive to La3+ (P < 0.01), insensitive to verapamil, and voltage independent. In isolated distal colons we found that in normal Krebs solution, contraction induced by acetylcholine (ACh) was partially inhibited by verapamil, and the inhibitory rate was 41% (P < 0.05). On the other hand, in Ca2+-free Krebs solution, ACh induced transient contraction due to Ca2+ release from the intracellular stores. The transient contraction lasted until the Ca2+ store was depleted. Restoration of extracellular Ca2+ in the presence of atropine produced contraction, mainly due to Ca2+ influx. Such contraction was not inhibited by verapamil, but was decreased by La3+ (50 &mgr;mol/L) from 0.96 to 0.72 g (P < 0.01).
CONCLUSION: The predominant source of activator Ca2+ for the contractile response to agonist is extracellular Ca2+, and intracellular Ca2+ has little role to play in mediating excitation-contraction coupling by agonists in rat distal colon smooth muscle in vitro. The influx of extracellular Ca2+ is mainly mediated through voltage-, receptor- and store-operated Ca2+ channels, which can be used as an alternative to develop new drugs targeted on the dysfunction of digestive tract motility.
Collapse
|
30
|
|
31
|
Jousset H, Malli R, Girardin N, Graier W, Demaurex N, Frieden M. Evidence for a receptor-activated Ca2+ entry pathway independent from Ca2) store depletion in endothelial cells. Cell Calcium 2007; 43:83-94. [PMID: 17548108 PMCID: PMC6786894 DOI: 10.1016/j.ceca.2007.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/28/2007] [Accepted: 04/05/2007] [Indexed: 11/18/2022]
Abstract
Ca(2+) entry in endothelial cells is a key signaling event as it prolongs the Ca(2+) signal activated by a receptor agonist, and thus allows an adequate production of a variety of compounds. The possible routes that lead to Ca(2+) entry in non-excitable cells include the receptor-activated Ca(2+) entry (RACE), which requires the presence of an agonist to be activated, and the store-operated Ca(2+) entry (SOCE) pathway, whose activation requires the depletion of the ER Ca(2+) store. However, the relative importance of these two influx pathways during physiological stimulation is not known. In the present study we experimentally differentiated these two types of influxes and determined under which circumstances they are activated. We show that La(3+) (at 10 microM) is a discriminating compound that efficiently blocks SOCE but is almost without effect on histamine-induced Ca(2+) entry (RACE). In line with this, histamine does not induce massive store depletion when performed in the presence of extracellular Ca(2+). In addition, inhibition of mitochondrial respiration significantly reduces SOCE but modestly affects RACE. Thus, agonist-induced Ca(2+) entry is insensitive to La(3+), and only modestly affected by mitochondrial depolarization. These data shows that agonist relies almost exclusively on RACE for sustained Ca(2+) signaling in endothelial cells.
Collapse
Affiliation(s)
- H. Jousset
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - R. Malli
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - N. Girardin
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - W.F. Graier
- Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, Medical University Graz, 8010 Graz, Austria
| | - N. Demaurex
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - M. Frieden
- Department of Cell Physiology and Metabolism, Geneva Medical Center, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
- Corresponding author at: Department of Cell Physiology and Metabolism, University of Geneva Medical School, 1 Michel-Servet, 1211 Geneva 4, Switzerland. Tel.: +41 22 379 5198; fax: +41 22 379 5338. (M. Frieden)
| |
Collapse
|
32
|
Giudice ED, Rinaldi L, Passarotto M, Facchinetti F, D'Arrigo A, Guiotto A, Carbonare MD, Battistin L, Leon A. Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2H3 mast cells. J Leukoc Biol 2007; 81:1512-22. [PMID: 17339608 DOI: 10.1189/jlb.1206738] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cannabidiol (CBD), a prominent psychoinactive component of cannabis with negligible affinity for known cannabinoid receptors, exerts numerous pharmacological actions, including anti-inflammatory and immunosuppressive effects, the underlying mechanisms of which remain unclear. In the current study, we questioned whether CBD modulates activation of mast cells, key players in inflammation. By using the rat basophilic leukemia mast cell line (RBL-2H3), we demonstrate that CBD (3-10 muM) augments beta-hexosaminidase release, a marker of cell activation, from antigen-stimulated and unstimulated cells via a mechanism, which is not mediated by G(i)/G(o) protein-coupled receptors but rather is associated with a robust rise in intracellular calcium ([Ca(2+)](i)) levels sensitive to clotrimazole and nitrendipine (10-30 muM). This action, although mimicked by Delta(9)-tetrahydrocannabinol (THC), is opposite to that inhibitory, exerted by the synthetic cannabinoids WIN 55,212-2 and CP 55,940. Moreover, the vanilloid capsaicin, a full agonist of transient receptor potential channel VR1, did not affect [Ca(2+)](i)levels in the RBL-2H3 cells, thus excluding the involvement of this receptor in the CBD-mediated effects. Together, these results support existence of yet-to-be identified sites of interaction, i.e., receptors and/or ion channels associated with Ca(2+) influx of natural cannabinoids such as CBD and THC, the identification of which has the potential to provide for novel strategies and agents of therapeutic interest.
Collapse
|
33
|
Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, Hoth M. TRP channels in lymphocytes. Handb Exp Pharmacol 2007:445-56. [PMID: 17217072 DOI: 10.1007/978-3-540-34891-7_26] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
TRP proteins form ion channels that are activated following receptor stimulation. Several members of the TRP family are likely to be expressed in lymphocytes. However, in many studies, messenger RNA (mRNA) but not protein expression was analyzed and cell lines but not primary human or murine lymphocytes were used. Among the expressed TRP mRNAs are TRPC1, TRPC3, TRPM2, TRPM4, TRPM7, TRPV1, and TRPV2. Regulation of Ca2+ entry is a key process for lymphocyte activation, and TRP channels may both increase Ca2+ influx (such as TRPC3) or decrease Ca2+ influx through membrane depolarization (such as TRPM4). In the future, linking endogenous Ca2+/cation channels in lymphocytes with TRP proteins should lead to a better molecular understanding of lymphocyte activation.
Collapse
Affiliation(s)
- E C Schwarz
- Institut für Physiologie, Universität des Saarlandes, Gebäude 58, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Godin N, Rousseau E. TRPC6 silencing in primary airway smooth muscle cells inhibits protein expression without affecting OAG-induced calcium entry. Mol Cell Biochem 2006; 296:193-201. [PMID: 16977347 DOI: 10.1007/s11010-006-9309-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 08/11/2006] [Indexed: 10/24/2022]
Abstract
TRPC proteins have been described as non-selective cation channels and are thought to be involved in the regulation of Ca(2+) movement in various cells, including airway smooth muscle (ASM) cells. In order to study the role of these channels in ASM cells, transfection of a small interfering RNA (siRNA) designed against the TRPC6 channel was performed in guinea pig primary ASM cells. This specific siRNA was complexed with the new X-TremeGene (X-TG) chemical transfection reagent, whose efficiency and low cytotoxicity were determined by the use of a non-silencing rhodamine-tagged siRNA. It was found that more than 95% of cells were transfected by an optimized protocol. Verification of TRPC6 transcript down-regulation was determined by RT-PCR while Western blot analysis attested to lower protein content in the microsomal fraction. Micro-spectrofluorimetry measurements of control and siRNA-treated cells revealed that lower TRPC6 expression did not affect OAG-induced intracellular Ca(2+) movement. Thus, TRPC6 channels cannot be defined as simple Ca(2+) transporters but more likely as protein complexes supporting monovalent cation conductance in ASM cells. These conductances would in turn facilitate membrane depolarization of high input resistance cells, Ca(2+) channel activation and tone increase. In conclusion, this study defines a valuable model of RNA interference study in primary cultures of ASM cells, eventually allowing for silencing of other target proteins for which no pharmacological modulators are currently available.
Collapse
Affiliation(s)
- Nicolas Godin
- Le Bilarium, Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th avenue north, J1H 5N4, Sherbrooke, QC, Canada
| | | |
Collapse
|
35
|
Rao GK, Kaminski NE. Cannabinoid-Mediated Elevation of Intracellular Calcium: A Structure-Activity Relationship. J Pharmacol Exp Ther 2006; 317:820-9. [PMID: 16436496 DOI: 10.1124/jpet.105.100503] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This laboratory has reported previously that Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and cannabinol (CBN) robustly elevate intracellular calcium ([Ca(2+)](i)) in resting human and murine T cells, whereas CP55,940 [5-(1,1-dimethylheptyl)-2-(5-hydroxy-2-(3-hydroxypropyl)cyclohexyl)phenol], a high-affinity ligand for CB1 and CB2, does not. In light of our previous studies, the objective of the present investigation was to examine the ability of various cannabinoid compounds to elevate [Ca(2+)](i) in the CB2 receptor-expressing human peripheral blood acute lymphoid leukemia T cell line and the dependence of structural similarity to Delta(9)-THC therein. The present studies demonstrate that CBN and HU-210 [(6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol], both tricyclic and in that respect structurally similar to Delta(9)-THC, elevate [Ca(2+)](i). The [Ca(2+)](i) elevation elicited by both CBN and HU-210 was attenuated upon removal of extracellular calcium and upon pretreatment with SK&F96365 [1-[beta-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole], an inhibitor of receptor-operated cation channels. In addition, pretreatment with either CB1 or CB2 receptor antagonists attenuated the CBN- and HU-210-mediated [Ca(2+)](i) elevation. Further investigation of the dependence of Delta(9)-THC, CBN, and HU-210 on cannabinoid receptors using splenocytes from wild-type and CB1(-/-)/CB2(-/-) mice showed that the [Ca(2+)](i) elevation elicited by all three tricyclic cannabinoids was independent of CB1 and CB2. Moreover, both the CB1 and CB2 receptor antagonists attenuated that rise in [Ca(2+)](i) elicited by the tricyclic cannabinoids in the wild-type and CB1(-/-)/CB2(-/-) mouse splenocytes. Taken together, the present results demonstrate that classic tricyclic cannabinoids with structural similarity to Delta(9)-THC elicit a robust influx of calcium in T cells putatively through receptor-operated cation channels in a manner sensitive to the cannabinoid receptor antagonists, but independent of the CB1 and CB2 receptors.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cannabinoids/chemistry
- Cannabinoids/pharmacology
- Cell Line, Tumor
- Female
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Molecular Structure
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Spleen/cytology
- Structure-Activity Relationship
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Gautham K Rao
- Department of Pharmacology and Toxicology, Center for Integrative Toxicology, 315 Food Safety Building, Michigan State University, East Lansing, MI 48824-1317, USA
| | | |
Collapse
|