1
|
Rappold R, Kalogeropoulos K, La Regina G, auf dem Keller U, Slack E, Vogel V. Relaxation of mucosal fibronectin fibers in late gut inflammation following neutrophil infiltration in mice. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:4. [PMID: 39917413 PMCID: PMC11794144 DOI: 10.1038/s44341-024-00006-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/13/2024] [Indexed: 02/09/2025]
Abstract
The continuously remodeled extracellular matrix (ECM) plays a pivotal role in gastrointestinal health and disease, yet its precise functions remain elusive. In this study, we employed laser capture microdissection combined with low-input proteomics to investigate ECM remodeling during Salmonella-driven inflammation. To complement this, we probed how fibronectin fiber tension is altered using a mechanosensitive peptide probe. While fibronectin fibers in healthy intestinal tissue are typically stretched, many lose their tension in intestinal smooth muscles only hours after infection, despite the absence of bacteria in that area. In contrast, within the mucosa, where Salmonella is present starting 12 h post infection, fibronectin fiber relaxation occurred exclusively during late-stage infection at 72 h and was localized to already existing clusters of infiltrated neutrophils. Using N-terminomics, we identified three new cleavage sites in fibronectin in the inflamed cecum. The unique, tissue layer-specific changes in the molecular compositions and ECM fiber tension revealed herein might trigger new therapeutic strategies to fight acute intestinal inflammation.
Collapse
Affiliation(s)
- Ronja Rappold
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | | | - Gianna La Regina
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Emma Slack
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| | - Viola Vogel
- Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
- Botnar Research Center for Child Health, Basel, Switzerland
| |
Collapse
|
2
|
Jha R, Bernstock JD, Chalif JI, Hoffman SE, Gupta S, Guo H, Lu Y. Updates on Pathophysiology of Discogenic Back Pain. J Clin Med 2023; 12:6907. [PMID: 37959372 PMCID: PMC10647359 DOI: 10.3390/jcm12216907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Discogenic back pain, a subset of chronic back pain, is caused by intervertebral disc (IVD) degeneration, and imparts a notable socioeconomic health burden on the population. However, degeneration by itself does not necessarily imply discogenic pain. In this review, we highlight the existing literature on the pathophysiology of discogenic back pain, focusing on the biomechanical and biochemical steps that lead to pain in the setting of IVD degeneration. Though the pathophysiology is incompletely characterized, the current evidence favors a framework where degeneration leads to IVD inflammation, and subsequent immune milieu recruitment. Chronic inflammation serves as a basis of penetrating neovascularization and neoinnervation into the IVD. Hence, nociceptive sensitization emerges, which manifests as discogenic back pain. Recent studies also highlight the complimentary roles of low virulence infections and central nervous system (CNS) metabolic state alteration. Targeted therapies that seek to disrupt inflammation, angiogenesis, and neurogenic pathways are being investigated. Regenerative therapy in the form of gene therapy and cell-based therapy are also being explored.
Collapse
Affiliation(s)
- Rohan Jha
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Samantha E. Hoffman
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Saksham Gupta
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Hong Guo
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Kanta J, Zavadakova A, Sticova E, Dubsky M. Fibronectin in hyperglycaemia and its potential use in the treatment of diabetic foot ulcers: A review. Int Wound J 2022; 20:1750-1761. [PMID: 36537075 PMCID: PMC10088845 DOI: 10.1111/iwj.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolism of fibronectin, the protein that plays a key role in the healing of wounds, is changed in the patients with diabetes mellitus. Fibronectin can interact with other proteins and proteoglycans and organise them to form the extracellular matrix, the basis of the granulation tissue in healing wounds. However, diabetic foot ulcers (DFUs) suffer from inadequate deposition of this protein. Degradation prevails over fibronectin synthesis in the proteolytic inflammatory environment in the ulcers. Because of the lack of fibronectin in the wound bed, the assembly of the extracellular matrix and the deposition of the granulation tissue cannot be started. A number of methods have been designed that prevents fibronectin degradation, replace lacking fibronectin or support its formation in non-healing wounds in animal models of diabetes. The aim of this article is to review the metabolism of fibronectin in DFUs and to emphasise that it would be useful to pay more attention to fibronectin matrix assembly in the ulcers when laboratory methods are translated to clinical practice.
Collapse
Affiliation(s)
- Jiri Kanta
- Faculty of Medicine Charles University Hradec Kralove Czech Republic
| | - Anna Zavadakova
- Biomedical Center, Faculty of Medicine Charles University Pilsen Czech Republic
| | - Eva Sticova
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- Third Faculty of Medicine Charles University Prague Czech Republic
| | - Michal Dubsky
- Diabetes Center Institute for Clinical and Experimental Medicine Prague Czech Republic
- First Faculty of Medicine Charles University Prague Czech Republic
| |
Collapse
|
4
|
Marangio A, Biccari A, D’Angelo E, Sensi F, Spolverato G, Pucciarelli S, Agostini M. The Study of the Extracellular Matrix in Chronic Inflammation: A Way to Prevent Cancer Initiation? Cancers (Basel) 2022; 14:cancers14235903. [PMID: 36497384 PMCID: PMC9741172 DOI: 10.3390/cancers14235903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
Collapse
Affiliation(s)
- Asia Marangio
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Andrea Biccari
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Edoardo D’Angelo
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Department of Women’s and Children’s Health, University of Padova, 35128 Padova, Italy
| | - Gaya Spolverato
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Salvatore Pucciarelli
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Marco Agostini
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, 35129 Padova, Italy
- Correspondence: ; Tel.: +39-049-964-0160
| |
Collapse
|
5
|
Dubchak E, Obasanmi G, Zeglinski MR, Granville DJ, Yeung SN, Matsubara JA. Potential role of extracellular granzyme B in wet age-related macular degeneration and fuchs endothelial corneal dystrophy. Front Pharmacol 2022; 13:980742. [PMID: 36204224 PMCID: PMC9531149 DOI: 10.3389/fphar.2022.980742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Age-related ocular diseases are the leading cause of blindness in developed countries and constitute a sizable socioeconomic burden worldwide. Age-related macular degeneration (AMD) and Fuchs endothelial corneal dystrophy (FECD) are some of the most common age-related diseases of the retina and cornea, respectively. AMD is characterized by a breakdown of the retinal pigment epithelial monolayer, which maintains retinal homeostasis, leading to retinal degeneration, while FECD is characterized by degeneration of the corneal endothelial monolayer, which maintains corneal hydration status, leading to corneal edema. Both AMD and FECD pathogenesis are characterized by disorganized local extracellular matrix (ECM) and toxic protein deposits, with both processes linked to aberrant protease activity. Granzyme B (GrB) is a serine protease traditionally known for immune-mediated initiation of apoptosis; however, it is now recognized that GrB is expressed by a variety of immune and non-immune cells and aberrant extracellular localization of GrB substantially contributes to various age-related pathologies through dysregulated cleavage of ECM, tight junction, and adherens junction proteins. Despite growing recognition of GrB involvement in multiple age-related pathologies, its role in AMD and FECD remains poorly understood. This review summarizes the pathophysiology of, and similarities between AMD and FECD, outlines the current knowledge of the role of GrB in AMD and FECD, as well as hypothesizes putative contributions of GrB to AMD and FECD pathogenesis and highlights the therapeutic potential of pharmacologically inhibiting GrB as an adjunctive treatment for AMD and FECD.
Collapse
Affiliation(s)
- Eden Dubchak
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Gideon Obasanmi
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Matthew R. Zeglinski
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - David J. Granville
- ICORD Centre and Department of Pathology and Laboratory Medicine, Vancouver Coastal Health Research Institute, UBC, Vancouver, BC, Canada
| | - Sonia N. Yeung
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, University of British Columbia (UBC), Vancouver, BC, Canada
- *Correspondence: Joanne A. Matsubara,
| |
Collapse
|
6
|
Piri R, Nøddeskou‐Fink AH, Gerke O, Larsson M, Edenbrandt L, Enqvist O, Høilund‐Carlsen P, Stochkendahl MJ. PET/CT imaging of spinal inflammation and microcalcification in patients with low back pain: A pilot study on the quantification by artificial intelligence-based segmentation. Clin Physiol Funct Imaging 2022; 42:225-232. [PMID: 35319166 PMCID: PMC9322590 DOI: 10.1111/cpf.12751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/11/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Current imaging modalities are often incapable of identifying nociceptive sources of low back pain (LBP). We aimed to characterize these by means of positron emission tomography/computed tomography (PET/CT) of the lumbar spine region applying tracers 18 F-fluorodeoxyglucose (FDG) and 18 F-sodium fluoride (NaF) targeting inflammation and active microcalcification, respectively. METHODS Using artificial intelligence (AI)-based quantification, we compared PET findings in two sex- and age-matched groups, a case group of seven males and five females, mean age 45 ± 14 years, with ongoing LBP and a similar control group of 12 pain-free individuals. PET/CT scans were segmented into three distinct volumes of interest (VOIs): lumbar vertebral bodies, facet joints and intervertebral discs. Maximum, mean and total standardized uptake values (SUVmax, SUVmean and SUVtotal) for FDG and NaF uptake in the 3 VOIs were measured and compared between groups. Holm-Bonferroni correction was applied to adjust for multiple testing. RESULTS FDG uptake was slightly higher in most locations of the LBP group including higher SUVmean in the intervertebral discs (0.96 ± 0.34 vs. 0.69 ± 0.15). All NaF uptake values were higher in cases, including higher SUVmax in the intervertebral discs (11.63 ± 3.29 vs. 9.45 ± 1.32) and facet joints (14.98 ± 6.55 vs. 10.60 ± 2.97). CONCLUSION Observed intergroup differences suggest acute inflammation and microcalcification as possible nociceptive causes of LBP. AI-based quantification of relevant lumbar VOIs in PET/CT scans of LBP patients and controls appears to be feasible. These promising, early findings warrant further investigation and confirmation.
Collapse
Affiliation(s)
- Reza Piri
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | | | - Oke Gerke
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | | | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical PhysiologyRegion Västra Götaland, Sahlgrenska University HospitalGothenburgSweden
| | - Olof Enqvist
- Eigenvision ABMalmöSweden
- Department of Electrical EngineeringChalmers University of TechnologyGothenburgSweden
| | - Poul‐Flemming Høilund‐Carlsen
- Department of Nuclear MedicineOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
| | - Mette J. Stochkendahl
- Department of Sports Science and Clinical BiomechanicsUniversity of Southern DenmarkOdenseDenmark
- Chiropractic Knowledge HubOdenseDenmark
| |
Collapse
|
7
|
Huang Y, Yang J, Liu X, Wang X, Zhu K, Ling Z, Zeng B, Chen N, Liu S, Wei F. Cationic Polymer Brush-Modified Carbon Nanotube-Meditated eRNA LINC02569 Silencing Attenuates Nucleus Pulposus Degeneration by Blocking NF-κB Signaling Pathway and Alleviate Cell Senescence. Front Cell Dev Biol 2022; 9:837777. [PMID: 35111765 PMCID: PMC8802762 DOI: 10.3389/fcell.2021.837777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Enhancer RNAs (eRNAs) are noncoding RNAs that synthesized at active enhancers. eRNAs have important regulatory characteristics and appear to be significant for maintenance of cell identity and information processing. Series of functional eRNAs have been identified as potential therapeutic targets for multiple diseases. Nevertheless, the role of eRNAs on intervertebral disc degeneration (IDD) is still unknown yet. Herein, we utilized the nucleus pulposus samples of patients and identified a key eRNA (LINC02569) with the Arraystar eRNA Microarray. LINC02569 mostly locates in nucleus and plays an important role in the progress of IDD by activating nuclear factor kappa-B (NF-κB) signaling pathway. We used a cationic polymer brush coated carbon nanotube (oCNT-pb)-based siRNA delivery platform that we previously designed, to transport LINC02569 siRNA (si-02569) to nucleus pulposus cells. The siRNA loaded oCNT-pb accumulated in nucleus pulposus cells with lower toxicity and higher transfection efficiency, compared with the traditional siRNA delivery system. Moreover, the results showed that the delivery of si-02569 significantly alleviated the inflammatory response in the nucleus pulposus cells via inhibiting P65 phosphorylation and preventing its transfer into the nucleus, and meanwhile alleviated cell senescence by decreasing the expression of P21. Altogether, our results highlight that eRNA (LINC02569) plays important role in the progression of IDD and could be a potential therapeutic target for alleviation of IDD.
Collapse
Affiliation(s)
- Yulin Huang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jiaming Yang
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology/Orthopaedic Research Institute, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoshuai Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kai Zhu
- Orthopaedic Section II, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baozhu Zeng
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ningning Chen
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shaoyu Liu
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Fuxin Wei
- Department of Orthopedics Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Infarct in the Heart: What's MMP-9 Got to Do with It? Biomolecules 2021; 11:biom11040491. [PMID: 33805901 PMCID: PMC8064345 DOI: 10.3390/biom11040491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past three decades, numerous studies have shown a strong connection between matrix metalloproteinase 9 (MMP-9) levels and myocardial infarction (MI) mortality and left ventricle remodeling and dysfunction. Despite this fact, clinical trials using MMP-9 inhibitors have been disappointing. This review focuses on the roles of MMP-9 in MI wound healing. Infiltrating leukocytes, cardiomyocytes, fibroblasts, and endothelial cells secrete MMP-9 during all phases of cardiac repair. MMP-9 both exacerbates the inflammatory response and aids in inflammation resolution by stimulating the pro-inflammatory to reparative cell transition. In addition, MMP-9 has a dual effect on neovascularization and prevents an overly stiff scar. Here, we review the complex role of MMP-9 in cardiac wound healing, and highlight the importance of targeting MMP-9 only for its detrimental actions. Therefore, delineating signaling pathways downstream of MMP-9 is critical.
Collapse
|
9
|
Altered Vascular Extracellular Matrix in the Pathogenesis of Atherosclerosis. J Cardiovasc Transl Res 2021; 14:647-660. [PMID: 33420681 DOI: 10.1007/s12265-020-10091-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease continues to grow as a massive global health burden, with coronary artery disease being one of its most lethal varieties. The pathogenesis of atherosclerosis induces changes in the blood vessel and its extracellular matrix (ECM) in each vascular layer. The alteration of the ECM homeostasis has significant modulatory effects on the inflammatory response, the proliferation and migration of vascular smooth muscle cells, neointimal formation, and vascular fibrosis seen in atherosclerosis. In this literature review, the role of the ECM, the multitude of components, and alterations to these components in the pathogenesis of atherosclerosis are discussed with a focus on versatile cellular phenotypes in the structure of blood vessel. An understanding of the various effects of ECM alterations opens up a plethora of therapeutic options that would mitigate the substantial health toll of atherosclerosis on the global population.
Collapse
|
10
|
Kamali A, Ziadlou R, Lang G, Pfannkuche J, Cui S, Li Z, Richards RG, Alini M, Grad S. Small molecule-based treatment approaches for intervertebral disc degeneration: Current options and future directions. Theranostics 2021; 11:27-47. [PMID: 33391459 PMCID: PMC7681102 DOI: 10.7150/thno.48987] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Low back pain (LBP) is a major reason for disability, and symptomatic intervertebral disc (IVD) degeneration (IDD) contributes to roughly 40% of all LBP cases. Current treatment modalities for IDD include conservative and surgical strategies. Unfortunately, there is a significant number of patients in which conventional therapies fail with the result that these patients remain suffering from chronic pain and disability. Furthermore, none of the current therapies successfully address the underlying biological problem - the symptomatic degenerated disc. Both spinal fusion as well as total disc replacement devices reduce spinal motion and are associated with adjacent segment disease. Thus, there is an unmet need for novel and stage-adjusted therapies to combat IDD. Several new treatment options aiming to regenerate the IVD are currently under investigation. The most common approaches include tissue engineering, growth factor therapy, gene therapy, and cell-based treatments according to the stage of degeneration. Recently, the regenerative activity of small molecules (low molecular weight organic compounds with less than 900 daltons) on IDD was demonstrated. However, small molecule-based therapy in IDD is still in its infancy due to limited knowledge about the mechanisms that control different cell signaling pathways of IVD homeostasis. Small molecules can act as anti-inflammatory, anti-apoptotic, anti-oxidative, and anabolic agents, which can prevent further degeneration of disc cells and enhance their regeneration. This review pursues to give a comprehensive overview of small molecules, focusing on low molecular weight organic compounds, and their potential utilization in patients with IDD based on recent in vitro, in vivo, and pre-clinical studies.
Collapse
Affiliation(s)
- Amir Kamali
- AO Research Institute Davos, Davos, Switzerland
| | - Reihane Ziadlou
- AO Research Institute Davos, Davos, Switzerland
- Department of Biomedical Engineering, Medical Faculty of the University of Basel, Basel, CH
| | - Gernot Lang
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiburg, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | - Shangbin Cui
- AO Research Institute Davos, Davos, Switzerland
- The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | | | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
11
|
Chan AK, Tang X, Mummaneni NV, Coughlin D, Liebenberg E, Ouyang A, Dudli S, Lauricella M, Zhang N, Waldorff EI, Ryaby JT, Lotz JC. Pulsed electromagnetic fields reduce acute inflammation in the injured rat-tail intervertebral disc. JOR Spine 2019; 2:e1069. [PMID: 31891118 PMCID: PMC6920683 DOI: 10.1002/jsp2.1069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023] Open
Abstract
Pro-inflammatory cytokines are recognized contributors to intervertebral disc (IVD) degeneration and discogenic pain. We have recently reported the anti-inflammatory effect of pulsed electromagnetic fields (PEMF) on IVD cells in vitro. Whether these potentially therapeutic effects are sufficiently potent to influence disc health in vivo has not been demonstrated. We report here the effect of PEMF on acute inflammation arising from a rat-tail IVD injury model. Disc degeneration was induced by percutaneously stabbing the Co6-7, Co7-8, and Co8-9 levels using a 20-gauge needle. Seventy-two (72) rats were divided into three groups: sham control, needle stab, needle stab+PEMF. Treated rats were exposed to PEMF immediately following surgery and for either 4 or 7 days (4 hr/d). Stab and PEMF effects were evaluated by measuring inflammatory cytokine gene expression (RT-PCR) and protein levels (ELISA assay), anabolic and catabolic gene expression (RT-PCR), and histologic changes. We observed in untreated animals that at day 7 after injury, inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor α, and IL-1β) were significantly increased at both gene and protein levels (P < .05). Similarly, catabolic factors (MMP [metalloproteinases]-2, MMP-13 and the transcriptional factor NF-kβ gene expression) were significantly increased (P < .05). At day 7, PEMF treatment significantly inhibited inflammatory cytokine gene and protein expression induced by needle stab injury (P < .05). At day 4, PEMF downregulated FGF-1 and upregulated MMP-2 compared to the stab-only group. These data demonstrate that previously reported anti-inflammatory effects of PEMF on disc cells carry over to the in vivo situation, suggesting potential therapeutic benefits. Though we observed an inhibitory effect of PEMF on acute inflammatory cytokine expression, a consistent effect was not observed for acute changes in disc histology and anabolic and catabolic factor expression. Therefore, these findings should be further investigated in studies of longer duration following needle-stab injury.
Collapse
Affiliation(s)
- Andrew K. Chan
- Department of Neurological SurgeryUniversity of California San FranciscoSan FranciscoCalifornia
| | - Xinyan Tang
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Nikhil V. Mummaneni
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Dezba Coughlin
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Ellen Liebenberg
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Annie Ouyang
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Stefan Dudli
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | - Michael Lauricella
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| | | | | | | | - Jeffrey C. Lotz
- Department of Orthopaedic SurgeryUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
12
|
Epstein Shochet G, Wollin L, Shitrit D. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype. Respirology 2018. [PMID: 29532550 DOI: 10.1111/resp.13287] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. METHODS IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. RESULTS Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. CONCLUSION IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment.
Collapse
Affiliation(s)
| | - Lutz Wollin
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim, Biberach, Germany
| | - David Shitrit
- Pulmonary Medicine Department, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Ptaschinski C, Lukacs NW. Acute and Chronic Inflammation Induces Disease Pathogenesis. MOLECULAR PATHOLOGY 2018:25-43. [DOI: 10.1016/b978-0-12-802761-5.00002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Epstein Shochet G, Drucker L, Pomeranz M, Fishman A, Pasmanik-Chor M, Tartakover-Matalon S, Lishner M. First trimester human placenta prevents breast cancer cell attachment to the matrix: The role of extracellular matrix. Mol Carcinog 2016; 56:62-74. [PMID: 26859229 DOI: 10.1002/mc.22473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/27/2015] [Accepted: 01/28/2016] [Indexed: 01/13/2023]
Abstract
The extracellular matrix (ECM) affects cancer cell characteristics. Its detachment from the ECM induces cell apoptosis, termed anoikis. Cancer cells can develop anoikis resistance, a necessary step for metastasis, by switching integrins, over-expressing growth factor receptors, and inducing epithelial mesenchymal transition (EMT). The placenta is a non-supportive microenvironment for cancer cells. We showed that breast cancer cells (BCCL) were eliminated from placental implantation sites. During implantation, the placenta manipulates its surrounding matrix, which may induce BCCL elimination. Here, we explored the effect of placenta-induced ECM manipulations on BCCL. During experiments, BCCL (MCF-7/T47D) were cultured on placenta/BCCL-conditioned ECM (Matrigel used for first trimester placenta/BCCL culture and cleared by NH4 OH). After culturing the cells, we analyzed cancer cell phenotype (death, count, aggregation, MMP) and signaling (microarray analysis and pathway validation). We found that the BCCL did not attach to previous placental implantation sites and instead, similarly to anoikis-resistant cells, migrated away, displayed increased MMP levels/activity, and formed aggregates in distant areas. T47D were less affected than the MCF-7 cells, since MCF-7 also showed modest increases in cell death, EMT, and increased proliferation. Microarray analysis of the MCF-7 highlighted changes in the integrin, estrogen, EGFR, and TGFβ pathways. Indeed, placental ECM reduced ERα, induced Smad3/JNK phosphorylation and increased integrin-α5 expression (RGD-dependent integrin) in the BCCL. Addition of RGD or TGFβR/JNK inhibitors reversed the phenotypic changes. This study helps explain the absence of metastases to the placenta and why advanced cancer is found in pregnancy, and provides possible therapeutic targets for anoikis-resistant cells. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gali Epstein Shochet
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meir Pomeranz
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Ami Fishman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover-Matalon
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine A, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
15
|
Molinos M, Almeida CR, Caldeira J, Cunha C, Gonçalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 2015; 12:20141191. [PMID: 25673296 DOI: 10.1098/rsif.2014.1191] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.
Collapse
Affiliation(s)
- Maria Molinos
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| | - Catarina R Almeida
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Joana Caldeira
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Patologia e Imunologia-IPATIMUP, Universidade do Porto, Porto, Portugal
| | - Carla Cunha
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Raquel M Gonçalves
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| |
Collapse
|
16
|
Battiston K, Ouyang B, Honarparvar E, Qian J, Labow R, Simmons C, Santerre J. Interaction of a block-co-polymeric biomaterial with immunoglobulin G modulates human monocytes towards a non-inflammatory phenotype. Acta Biomater 2015; 24:35-43. [PMID: 26074158 DOI: 10.1016/j.actbio.2015.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/25/2015] [Accepted: 06/04/2015] [Indexed: 01/22/2023]
Abstract
Monocyte interactions with implanted biomaterials can contribute significantly to the ability of a biomaterial to support tissue integration and wound healing, as opposed to a chronic pro-inflammatory foreign body reaction, provided the materials are designed to do so. However, there are few biomaterials available designed to regulate immune cell response with the intention of reducing the pro-inflammatory activation state. Material chemistry is a powerful tool for regulating protein and cell interactions that can be incorporated into surfaces while maintaining desired mechanical properties. The aspects of material chemistry that can support monocyte activation away from a pro-inflammatory state are still poorly understood. Protein adsorption is a key initial event that transforms the surface of a biomedical device into a biological substrate that will govern subsequent cellular interactions. In this study, the chemistry of degradable block polyurethanes, termed degradable polar hydrophobic ionic (D-PHI) polyurethanes, were studied for their unique interactions with bound immunoglobulin G (IgG), a pro-inflammatory protein that supports monocyte-biomaterial interactions. The specific immunological active sites of the polyurethane-adsorbed protein were compared with IgG's adsorbed state on a homopolymeric material with surface chemistry conducive to cell interactions, e.g. tissue culture polystyrene (TCPS). IgG-coated TCPS supported sustained monocyte adhesion and enhanced monocyte spreading, effects not observed with IgG-coated PU. The degradable PU was subsequently shown to reduce the number of exposed IgG-Fab sites following pre-adsorption vs. IgG adsorbed to TCPS, with antibody inhibition experiments demonstrating that Fab-site exposure appears to dominate monocyte-biomaterial interactions. Minor changes in chemical segments within the PU molecular chains were subsequently investigated for their influence on directing IgG interactions towards reducing pro-inflammatory activity. A reduction in chemical heterogeneity within the PU, without significant differences in other material properties known to regulate monocyte response, was shown to increase Fab exposure and subsequently led to monocyte interactions similar to those observed for IgG-coated TCPS. These results infer that reduced IgG-Fab site exposure can be directed by material chemistry to attenuate pro-inflammatory monocyte interactions with biomaterial surfaces, and identify the chemical features of polymeric biomaterial design responsible for this process. STATEMENT OF SIGNIFICANCE There is currently limited understanding of material design features that can regulate protein-material interactions in order to prevent adverse inflammatory responses to implanted biomaterials. In this paper, monocyte interactions with biomaterials (specifically a block co-polymeric degradable polyurethane [D-PHI] and tissue culture polystyrene [TCPS]) were investigated as a function of their interactions with adsorbed immunoglobulin G (IgG). D-PHI was shown to attenuate IgG-induced monocyte retention and spreading by reducing IgG-Fab site exposure upon adsorption relative to TCPS. Aspects of D-PHI chemistry important in regulating Fab site exposure were determined. This study thus identifies features of biomaterials, using D-PHI as a case study, which can contribute to the development of new immunomodulatory biomaterial design.
Collapse
|
17
|
Voorhees AP, DeLeon-Pennell KY, Ma Y, Halade GV, Yabluchanskiy A, Iyer RP, Flynn E, Cates CA, Lindsey ML, Han HC. Building a better infarct: Modulation of collagen cross-linking to increase infarct stiffness and reduce left ventricular dilation post-myocardial infarction. J Mol Cell Cardiol 2015; 85:229-39. [PMID: 26080361 PMCID: PMC4530076 DOI: 10.1016/j.yjmcc.2015.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) deletion attenuates collagen accumulation and dilation of the left ventricle (LV) post-myocardial infarction (MI); however the biomechanical mechanisms underlying the improved outcome are poorly understood. The aim of this study was to determine the mechanisms whereby MMP-9 deletion alters collagen network composition and assembly in the LV post-MI to modulate the mechanical properties of myocardial scar tissue. Adult C57BL/6J wild-type (WT; n=88) and MMP-9 null (MMP-9(-/-); n=92) mice of both sexes underwent permanent coronary artery ligation and were compared to day 0 controls (n=42). At day 7 post-MI, WT LVs displayed a 3-fold increase in end-diastolic volume, while MMP-9(-/-) showed only a 2-fold increase (p<0.05). Biaxial mechanical testing revealed that MMP-9(-/-) infarcts were stiffer than WT infarcts, as indicated by a 1.3-fold reduction in predicted in vivo circumferential stretch (p<0.05). Paradoxically, MMP-9(-/-) infarcts had a 1.8-fold reduction in collagen deposition (p<0.05). This apparent contradiction was explained by a 3.1-fold increase in lysyl oxidase (p<0.05) in MMP-9(-/-) infarcts, indicating that MMP-9 deletion increased collagen cross-linking activity. Furthermore, MMP-9 deletion led to a 3.0-fold increase in bone morphogenetic protein-1, the metalloproteinase that cleaves pro-collagen and pro-lysyl oxidase (p<0.05) and reduced fibronectin fragmentation by 49% (p<0.05) to enhance lysyl oxidase activity. We conclude that MMP-9 deletion increases infarct stiffness and prevents LV dilation by reducing collagen degradation and facilitating collagen assembly and cross-linking through preservation of the fibronectin network and activation of lysyl oxidase.
Collapse
Affiliation(s)
- Andrew P Voorhees
- Department of Mechanical Engineering, The University of Texas at San Antonio, USA; Joint Biomedical Engineering Program, UTSA-UTHSCSA, USA; San Antonio Cardiovascular Proteomics Center, USA
| | - Kristine Y DeLeon-Pennell
- San Antonio Cardiovascular Proteomics Center, USA; Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, USA
| | - Yonggang Ma
- San Antonio Cardiovascular Proteomics Center, USA; Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, USA
| | - Ganesh V Halade
- San Antonio Cardiovascular Proteomics Center, USA; Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, USA
| | - Andriy Yabluchanskiy
- San Antonio Cardiovascular Proteomics Center, USA; Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, USA
| | - Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, USA; Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, USA
| | - Elizabeth Flynn
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, USA
| | - Courtney A Cates
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, USA
| | - Merry L Lindsey
- Joint Biomedical Engineering Program, UTSA-UTHSCSA, USA; San Antonio Cardiovascular Proteomics Center, USA; Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, USA; Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, USA
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, USA; Joint Biomedical Engineering Program, UTSA-UTHSCSA, USA; San Antonio Cardiovascular Proteomics Center, USA.
| |
Collapse
|
18
|
Ramanathan A, Karuri N. Proteolysis of decellularized extracellular matrices results in loss of fibronectin and cell binding activity. Biochem Biophys Res Commun 2015; 459:246-251. [PMID: 25724944 DOI: 10.1016/j.bbrc.2015.02.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 02/17/2015] [Indexed: 01/05/2023]
Abstract
Excessive inflammation in the chronic wound bed is believed to result in increased fibronectin (FN) proteolysis and poor tissue repair. However, FN fragments can prime the immune response and result in higher protease levels. The reciprocity between FN proteolysis and inflammation makes it challenging to determine the specific contribution of FN proteolysis in the extracellular matrix (ECM) on tissue responses. We studied the impact of proteolysis of decellularized extracellular matrices (dECMs) obtained from NIH 3T3 mouse fibroblasts on FN level and activity. The dECMs were treated with α chymotrypsin and proteolysis was stopped at different time points. The protease solution was obtained, the remaining dECM was scrapped and examined by immunoblotting and Bicinchoninic Acid assays. Fibronectin was 9.4 ± 1.8% of the total protein content in the dECM but was more susceptible to proteolysis. After 15 min of protease treatment there was a 67.6% and 11.1% decrease in FN and total protein, respectively, in the dECMs. Fibronectin fragments were present both in the proteolysis solution and in the dECM. Cell adhesion, spreading and actin extensions on dECMs decreased with increasing proteolysis time. Interestingly, the solutions obtained after proteolysis of the dECMs supported cell adhesion and spreading in a time dependent manner, thus demonstrating the presence of FN cell binding activity in the protease solution of dECMs. This study demonstrates the susceptibility of FN in the ECM to proteolysis and the resulting loss of cell adhesion due to the decrease of FN activity and places weight on bioengineering strategies to stabilize FN against proteolysis.
Collapse
Affiliation(s)
- Anand Ramanathan
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd St, Chicago, IL 60616, USA
| | - Nancy Karuri
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 W. 33rd St, Chicago, IL 60616, USA.
| |
Collapse
|
19
|
Mòdol T, Brice N, Ruiz de Galarreta M, García Garzón A, Iraburu MJ, Martínez-Irujo JJ, López-Zabalza MJ. Fibronectin peptides as potential regulators of hepatic fibrosis through apoptosis of hepatic stellate cells. J Cell Physiol 2015; 230:546-53. [PMID: 24976518 DOI: 10.1002/jcp.24714] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/26/2014] [Accepted: 06/24/2014] [Indexed: 12/23/2022]
Abstract
The turnover of extracellular matrix (ECM) components can generate signals that regulate several cellular functions such as proliferation, differentiation, and apoptosis. During liver injury, matrix metalloproteases (MMPs) production is enhanced and increased levels of peptides derived from extracellular matrix proteins can be generated. Synthetic peptides with sequences present in extracellular matrix proteins were previously found to induce both stimulating and apoptotic effects on several cell types including the inflammatory cells monocytes/macrophages. Therefore, in inflammatory liver diseases, locally accumulated peptides could be also important in regulating hepatic fibrosis by inducing apoptosis of hepatic stellate cells (HSC), the primary cellular source of extracellular matrix components. Here, we describe the apoptotic effect of fibronectin peptides on the cell line of human hepatic stellate cells LX-2 based on oligonucleosomal DNA fragmentation, caspase-3 and -9 activation, Bcl-2 depletion, and accumulation of Bax protein. We also found that these peptides trigger the activation of Src kinase, which in turn mediated the increase of JNK and p38 activities. By the use of specific inhibitors we demonstrated the involvement of Src, JNK, and p38 in apoptosis induced by fibronectin peptides on HSC. Moreover, fibronectin peptides increased iNOS expression in human HSC, and specific inhibition of iNOS significantly reduced the sustained activity of JNK and the programmed cell death caused by these peptides. Finally, the possible regulatory effect of fibronectin peptides in liver fibrosis was further supported by the ability of these peptides to induce metalloprotease-9 (MMP-9) expression in human monocytes.
Collapse
Affiliation(s)
- Teresa Mòdol
- Departamento de Bioquímica y Genética, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Fornetti J, Martinson HA, Betts CB, Lyons TR, Jindal S, Guo Q, Coussens LM, Borges VF, Schedin P. Mammary gland involution as an immunotherapeutic target for postpartum breast cancer. J Mammary Gland Biol Neoplasia 2014; 19:213-28. [PMID: 24952477 PMCID: PMC4363120 DOI: 10.1007/s10911-014-9322-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/09/2014] [Indexed: 12/24/2022] Open
Abstract
Postpartum mammary gland involution has been identified as tumor-promotional and is proposed to contribute to the increased rates of metastasis and poor survival observed in postpartum breast cancer patients. In rodent models, the involuting mammary gland microenvironment is sufficient to induce enhanced tumor cell growth, local invasion, and metastasis. Postpartum involution shares many attributes with wound healing, including upregulation of genes involved in immune responsiveness and infiltration of tissue by immune cells. In rodent models, treatment with non-steroidal anti-inflammatory drugs (NSAIDs) ameliorates the tumor-promotional effects of involution, consistent with the immune milieu of the involuting gland contributing to tumor promotion. Currently, immunotherapy is being investigated as a means of breast cancer treatment with the purpose of identifying ways to enhance anti-tumor immune responses. Here we review evidence for postpartum mammary gland involution being a uniquely defined 'hot-spot' of pro-tumorigenic immune cell infiltration, and propose that immunotherapy should be explored for prevention and treatment of breast cancers that arise in this environment.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
| | - Holly A. Martinson
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Courtney B. Betts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Traci R. Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Sonali Jindal
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Qiuchen Guo
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
| | - Lisa M. Coussens
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
| | - Pepper Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, Aurora, CO 80045, USA
- Program in Reproductive Sciences, University of Colorado Anschutz Medical Campus, 12801 East 17th Avenue, Aurora, CO 80045, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus, 12801 E 17th Ave, Aurora, CO 80045, USA
- Cell Biology, Stem cells, and Development, 12801 E 17th Ave, Aurora, CO 80045, USA
- Department of Cell & Developmental Biology, Knight Cancer Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
21
|
Cory TJ, Birket SE, Murphy BS, Mattingly C, Breslow-Deckman JM, Feola DJ. Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa. J Antimicrob Chemother 2012; 68:840-51. [PMID: 23248239 DOI: 10.1093/jac/dks476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Chronic azithromycin therapy has been associated with improved clinical outcomes in patients with cystic fibrosis (CF) who are chronically infected with Pseudomonas aeruginosa. We have previously demonstrated that azithromycin polarizes macrophages towards an alternatively activated phenotype, thereby blunting inflammation associated with infection. Because this phenotype is pro-fibrotic, it is important to evaluate azithromycin's consequential effects upon fibroblast function and extracellular matrix (ECM) protein production. METHODS We co-cultured macrophages and fibroblasts together and stimulated them by adding P. aeruginosa or lipopolysaccharide to assess the ability of azithromycin to alter the macrophage phenotype, along with the impact exerted upon the production of fibronectin and other effectors that govern tissue remodelling, including transforming growth factor β (TGFβ), matrix metalloproteinase-9 (MMP-9) and arginase. We supported these studies by evaluating the impact of azithromycin treatment on these proteins in a mouse model of P. aeruginosa infection. RESULTS Azithromycin increased arginase expression in vitro, as well as the activation of latent TGFβ, consistent with polarization to the alternative macrophage phenotype. While the drug increased fibronectin concentrations after stimulation in vitro, secretion of the ECM-degrading enzyme MMP-9 was also increased. Neutralization of active TGFβ resulted in the ablation of azithromycin's ability to increase fibronectin concentrations, but did not alter its ability to increase MMP-9 expression. In P. aeruginosa-infected mice, azithromycin significantly decreased MMP-9 and fibronectin concentrations in the alveolar space compared with non-treated, infected controls. CONCLUSIONS Our results suggest that azithromycin's effect on MMP-9 is regulated independently of TGFβ activity. Additionally, the beneficial effects of azithromycin may be partially due to effects on homeostasis in which ECM-degrading mediators like MMP-9 are up-regulated early after infection. This may impact the damaging effects of inflammation that lead to fibrosis in this patient population.
Collapse
Affiliation(s)
- Theodore J Cory
- Department of Pharmacy Practice and Science, University of Kentucky College of Pharmacy, 789 South Limestone, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
22
|
Tauber S, Paulsen K, Wolf S, Synwoldt P, Pahl A, Schneider-Stock R, Ullrich O. Regulation of MMP-9 by a WIN-binding site in the monocyte-macrophage system independent from cannabinoid receptors. PLoS One 2012; 7:e48272. [PMID: 23139770 PMCID: PMC3491062 DOI: 10.1371/journal.pone.0048272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/21/2012] [Indexed: 11/21/2022] Open
Abstract
The cannabinoid system is known to be involved in the regulation of inflammatory processes. Therefore, drugs targeting cannabinoid receptors are considered as candidates for anti-inflammatory and tissue protective therapy. We demonstrated that the prototypical cannabinoid agonist R(+)WIN55,212-2 (WIN) reduced the secretion of matrix metalloproteinase-9 (MMP-9) in a murine model of cigarette-smoke induced lung inflammation. In experiments using primary cells and cell lines of the monocyte-macrophage-system we found that binding of the cannabinoid-receptor agonist WIN to a stereo-selective, specific binding site in cells of the monocyte-macrophage-system induced a significant down-regulation of MMP-9 secretion and disturbance of intracellular processing, which subsequently down-regulated MMP-9 mRNA expression via a ERK1/2-phosphorylation-dependent pathway. Surprisingly, the anti-inflammatory effect was independent from classical cannabinoid receptors. Our experiments supposed an involvement of TRPV1, but other yet unidentified sites are also possible. We conclude that cannabinoid-induced control of MMP-9 in the monocyte-macrophage system via a cannabinoid-receptor independent pathway represents a general option for tissue protection during inflammation, such as during lung inflammation and other diseases associated with inflammatory tissue damage.
Collapse
Affiliation(s)
- Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Susanne Wolf
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | | | - Regine Schneider-Stock
- Institute of Pathology, Erlangen, Germany
- Institute of Pathology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute of Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Kakazu A, He J, Kenchegowda S, Bazan HEP. Lipoxin A₄ inhibits platelet-activating factor inflammatory response and stimulates corneal wound healing of injuries that compromise the stroma. Exp Eye Res 2012; 103:9-16. [PMID: 22828048 DOI: 10.1016/j.exer.2012.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 12/31/2022]
Abstract
Platelet-activating factor (PAF) is a bioactive lipid mediator with strong inflammatory properties. PAF induces the expression and activation of metalloproteinase-9 (MMP-9) in corneal epithelial cells and myofibroblasts, and delays epithelial wound healing in an organ culture system. Lipoxin A(4) (LXA(4)) is a lipid mediator involved in resolution of inflammation and cornea epithelial wound healing. We developed an in vivo mouse model of injury to the anterior stroma that is sustained by PAF and evaluated the action of LXA(4). In this model mice were treated with vehicle, PAF alone and in combination with PAF receptor antagonist LAU-0901 or LXA(4). Mice were euthanized 1, 2 and 7 days after injury and corneas were processed for histology (H&E staining) and immunofluorescence with antibodies for MMP-9, α-smooth muscle actin (α-SMA), fibronectin (FN) and neutrophil. Interleukin 1-α (IL-1α) and keratinocyte-derived chemokine (KC/CXCL1) were assayed by ELISA. Myeloperoxidase (MPO) activity was performed in corneal homogenates. In this in vivo model PAF inhibited epithelial wound healing that was blocked by the PAF receptor antagonist LAU-0901. Treatment with LXA(4) significantly reduced the injured area compared to PAF at 1 and 2 days of treatment. The strong stromal cell infiltration and MPO activity stimulated by PAF was also decreased with LXA(4) treatment. PAF increased MMP-9 and decreased FN expression compared to vehicle treatment and less α-SMA positive cells migrated to the wounded area. The PAF actions were reverted by LXA(4) treatment. The results demonstrated a powerful action of LXA(4) in protecting corneas with injuries that compromise the stroma by decreasing inflammation and increasing wound healing.
Collapse
Affiliation(s)
- Azucena Kakazu
- Louisiana State University Health Sciences Center, Department of Ophthalmology and The Neuroscience Center of Excellence, 2020 Gravier Street, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
24
|
Evans CE, Humphries J, Waltham M, Saha P, Mattock K, Patel A, Ahmad A, Wadoodi A, Modarai B, Rahman S, Patel Y, Smith A. Protein fragments from the VEGF binding domain of fibronectin are expressed in distinct spatial and temporal patterns during venous thrombus resolution. Thromb Res 2012; 130:281-4. [PMID: 22640974 DOI: 10.1016/j.thromres.2012.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
|
25
|
Van Ly D, Burgess JK, Brock TG, Lee TH, Black JL, Oliver BGG. Prostaglandins but not leukotrienes alter extracellular matrix protein deposition and cytokine release in primary human airway smooth muscle cells and fibroblasts. Am J Physiol Lung Cell Mol Physiol 2012; 303:L239-50. [PMID: 22637153 DOI: 10.1152/ajplung.00097.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eicosanoids are lipid-signaling mediators released by many cells in response to various stimuli. Increasing evidence suggests that eicosanoids such as leukotrienes and prostaglandins (PGs) may directly mediate remodeling. In this study, we assessed whether these substances could alter extracellular matrix (ECM) proteins and the inflammatory profiles of primary human airway smooth muscle cells (ASM) and fibroblasts. PGE(2) decreased both fibronectin and tenascin C in fibroblasts but only fibronectin in ASM. PGD(2) decreased both fibronectin and tenascin C in both ASM and fibroblasts, whereas PGF(2α) had no effect on ECM deposition. The selective PGI(2) analog, MRE-269, decreased fibronectin but not tenascin C in both cell types. All the PGs increased IL-6 and IL-8 release in a dose-dependent manner in ASM and fibroblasts. Changes in ECM deposition and cytokine release induced by prostaglandins in both ASM and fibroblasts were independent of an effect on cell number. Neither the acute nor repeated stimulation with leukotrienes had an effect on the deposition of ECM proteins or cytokine release from ASM or fibroblasts. We concluded that, collectively, these results provide evidence that PGs may contribute to ECM remodeling to a greater extent than leukotrienes in airway cells.
Collapse
Affiliation(s)
- David Van Ly
- Respiratory Research Group, Cell Biology, Woolcock Institute of Medical Research, PO Box M77, Missenden Rd., Camperdown NSW 2050 Australia.
| | | | | | | | | | | |
Collapse
|
26
|
Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther 2012; 134:317-37. [PMID: 22366287 DOI: 10.1016/j.pharmthera.2012.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
The extracellular matrix is a complex network of fibrous and nonfibrous molecules that not only provide structure to the lung but also interact with and regulate the behaviour of the cells which it surrounds. Recently it has been recognised that components of the extracellular matrix proteins are released, often through the action of endogenous proteases, and these fragments are termed matrikines. Matrikines have biological activities, independent of their role within the extracellular matrix structure, which may play important roles in the lung in health and disease pathology. Integrins are the primary cell surface receptors, characterised to date, which are used by the matrikines to exert their effects on cells. However, evidence is emerging for the need for co-factors and other receptors for the matrikines to exert their effects on cells. The potential for matrikines, and peptides derived from these extracellular matrix protein fragments, as therapeutic agents has recently been recognised. The natural role of these matrikines (including inhibitors of angiogenesis and possibly inflammation) make them ideal targets to mimic as therapies. A number of these peptides have been taken forward into clinical trials. The focus of this review will be to summarise our current understanding of the role, and potential for highly relevant actions, of matrikines in lung health and disease.
Collapse
Affiliation(s)
- Janette K Burgess
- Cell Biology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.
| | | |
Collapse
|
27
|
Wolf K, Friedl P. Extracellular matrix determinants of proteolytic and non-proteolytic cell migration. Trends Cell Biol 2011; 21:736-44. [PMID: 22036198 DOI: 10.1016/j.tcb.2011.09.006] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/20/2011] [Accepted: 09/22/2011] [Indexed: 11/25/2022]
Abstract
Cell invasion into the 3D extracellular matrix (ECM) is a multistep biophysical process involved in inflammation, tissue repair, and metastatic cancer invasion. Migrating cells navigate through tissue structures of complex and often varying physicochemical properties, including molecular composition, porosity, alignment and stiffness, by adopting strategies that involve deformation of the cell and engagement of matrix-degrading proteases. We review how the ECM determines whether or not pericellular proteolysis is required for cell migration, ranging from protease-driven invasion and secondary tissue destruction, to non-proteolytic, non-destructive movement that solely depends on cell deformability and available tissue space. These concepts call for therapeutic targeting of proteases to prevent invasion-associated tissue destruction rather than the migration process per se.
Collapse
Affiliation(s)
- Katarina Wolf
- Department of Cell Biology, Nijmegen Center for Molecular Life Science, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
28
|
Chiao YA, Dai Q, Zhang J, Lin J, Lopez EF, Ahuja SS, Chou YM, Lindsey ML, Jin YF. Multi-analyte profiling reveals matrix metalloproteinase-9 and monocyte chemotactic protein-1 as plasma biomarkers of cardiac aging. ACTA ACUST UNITED AC 2011; 4:455-62. [PMID: 21685172 DOI: 10.1161/circgenetics.111.959981] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND We have previously shown that cardiac sarcopenia occurs with age in C57/BL6J mice. However, underlying mechanisms and plasma biomarkers of cardiac aging have not been identified. Accordingly, the objective of this study was to identify and evaluate plasma biomarkers that reflect cardiac aging phenotypes. METHODS AND RESULTS Plasma from adult (7.5±0.5 months old, n=27) and senescent (31.7±0.5 months old, n=25) C57/BL6J mice was collected, and levels of 69 markers were measured by multi-analyte profiling. Of these, 26 analytes were significantly increased and 3 were significantly decreased in the senescent group compared with the adult group. The majority of analytes that increased in the senescent group were inflammatory markers associated with macrophage functions, including matrix metalloproteinase-9 (MMP-9) and monocyte chemotactic protein-1 (MCP-1/CCL-2). Immunoblotting (n=12/group) showed higher MMP-9 and MCP-1 levels in the left ventricle (LV) of senescent mice (P<0.05), and their expression levels in the LV correlated with plasma levels (ρ=0.50 for MMP-9 and ρ =0.62 for MCP1, P<0.05). Further, increased plasma MCP-1 and MMP-9 levels correlated with the increase in end-diastolic dimensions that occurs with senescence. Immunohistochemistry (n=3/group) for Mac-3, a macrophage marker, showed increased macrophage densities in the senescent LV, and dual-labeling immunohistochemistry of Mac-3 and MMP-9 revealed robust colocalization of MMP-9 to the macrophages in the senescent LV sections, indicating that the macrophage is a major contributor of MMP-9 in the senescent LV. CONCLUSIONS Our results suggest that MCP-1 and MMP-9 are potential plasma markers for cardiac aging and that augmented MCP-1 and MMP-9 levels and macrophage content in the LV could provide an underlying inflammatory mechanism of cardiac aging.
Collapse
Affiliation(s)
- Ying Ann Chiao
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio, 78245, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jourdan-LeSaux C, Zhang J, Lindsey ML. Extracellular matrix roles during cardiac repair. Life Sci 2010; 87:391-400. [PMID: 20670633 PMCID: PMC2946433 DOI: 10.1016/j.lfs.2010.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/30/2010] [Accepted: 07/16/2010] [Indexed: 02/06/2023]
Abstract
The cardiac extracellular matrix (ECM) provides a platform for cells to maintain structure and function, which in turn maintains tissue function. In response to injury, the ECM undergoes remodeling that involves synthesis, incorporation, and degradation of matrix proteins, with the net outcome determined by the balance of these processes. The major goals of this review are a) to serve as an initial resource for students and investigators new to the cardiac ECM remodeling field, and b) to highlight a few of the key exciting avenues and methodologies that have recently been explored. While we focus on cardiac injury and responses of the left ventricle (LV), the mechanisms reviewed here have pathways in common with other wound healing models.
Collapse
Affiliation(s)
- Claude Jourdan-LeSaux
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Jianhua Zhang
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| | - Merry L. Lindsey
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio
| |
Collapse
|
30
|
Zamilpa R, Lopez EF, Chiao YA, Dai Q, Escobar GP, Hakala K, Weintraub ST, Lindsey ML. Proteomic analysis identifies in vivo candidate matrix metalloproteinase-9 substrates in the left ventricle post-myocardial infarction. Proteomics 2010; 10:2214-23. [PMID: 20354994 DOI: 10.1002/pmic.200900587] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) deletion has been shown to improve remodeling of the left ventricle post-myocardial infarction (MI), but the mechanisms to explain this improvement have not been fully elucidated. MMP-9 has a broad range of in vitro substrates, but relevant in vivo substrates are incompletely defined. Accordingly, we evaluated the infarct regions of wild-type (wt) and MMP-9 null (null) mice using a proteomic strategy. Wt and null groups showed similar infarct sizes (48+/-3 in wt and 45+/-3% in null), indicating that both groups received an equal injury stimulus. Left ventricle infarct tissue was homogenized and analyzed by 2-DE and MS. Of 31 spot intensity differences, the intensities of 9 spots were higher and 22 spots were lower in null mice compared to wt (all p<0.05). Several extracellular matrix proteins were identified in these spots by MS, including fibronectin, tenascin-C, thrombospondin-1, and laminin. Fibronectin was observed on the gels at a lower than expected molecular weight in the wt group, which suggested substrate cleavage, and the lower molecular weight spot was observed at lower intensity in the MMP-9 null group, which suggested cleavage by MMP-9. Immunoblotting confirmed the presence of fibronectin cleavage products in the wt samples and lower levels in the absence of MMP-9. In conclusion, examining infarct tissue from wt and MMP-9 null mice by proteomic analysis provides a powerful and unique method to identify in vivo candidate MMP substrates.
Collapse
Affiliation(s)
- Rogelio Zamilpa
- Department of Medicine, Division of Cardiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
To WS, Midwood KS. Cryptic domains of tenascin-C differentially control fibronectin fibrillogenesis. Matrix Biol 2010; 29:573-85. [DOI: 10.1016/j.matbio.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 08/02/2010] [Accepted: 08/04/2010] [Indexed: 12/20/2022]
|
32
|
Arroyo AG, Iruela-Arispe ML. Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 2010; 86:226-35. [PMID: 20154066 DOI: 10.1093/cvr/cvq049] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Inflammation and angiogenesis are frequently coupled in pathological situations such as atherosclerosis, diabetes, and arthritis. The inflammatory response increases capillary permeability and induces endothelial activation, which, when persistent, results in capillary sprouting. This inflammation-induced angiogenesis and the subsequent remodelling steps are in large part mediated by extracellular matrix (ECM) proteins and proteases. The focal increase in capillary permeability is an early consequence of inflammation, and results in the deposition of a provisional fibrin matrix. Subsequently, ECM turnover by proteases permits an invasive program by specialized endothelial cells whose phenotype can be regulated by inflammatory stimuli. ECM activity also provides specific mechanical forces, exposes cryptic adhesion sites, and releases biologically active fragments (matrikines) and matrix-sequestered growth factors, all of which are critical for vascular morphogenesis. Further matrix remodelling and vascular regression contribute to the resolution of the inflammatory response and facilitate tissue repair.
Collapse
Affiliation(s)
- Alicia G Arroyo
- Department of Vascular Biology and Inflammation, Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | | |
Collapse
|
33
|
Espira L, Czubryt MP. Emerging concepts in cardiac matrix biologyThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:996-1008. [DOI: 10.1139/y09-105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac extracellular matrix, far from being merely a static support structure for the heart, is now recognized to play central roles in cardiac development, morphology, and cell signaling. Recent studies have better shaped our understanding of the tremendous complexity of this active and dynamic network. By activating intracellular signal cascades, the matrix transduces myocardial physical forces into responses by myocytes and fibroblasts, affecting their function and behavior. In turn, cardiac fibroblasts and myocytes play active roles in remodeling the matrix. Coupled with the ability of the matrix to act as a dynamic reservoir for growth factors and cytokines, this interplay between the support structure and embedded cells has the potential to exert dramatic effects on cardiac structure and function. One of the clearest examples of this occurs when cell–matrix interactions are altered inappropriately, contributing to pathological fibrosis and heart failure. This review will examine some of the recent concepts that have emerged regarding exactly how the cardiac matrix mediates these effects, how our collective vision of the matrix has changed as a result, and the current state of attempts to pharmacologically treat fibrosis.
Collapse
Affiliation(s)
- Leon Espira
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
34
|
Monocyte CD49e and 110-120 kDa fibronectin fragments: HIV prognostic indicators independent of viral load and CD4 T-cell counts. AIDS 2009; 23:2247-53. [PMID: 19710592 DOI: 10.1097/qad.0b013e3283318ff4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the prognostic impact of chronic inflammation associated with HIV infections. Previously, we had observed that proteases, released in the course of HIV infections, cause 110-120 kDa fibronectin fragments (FNf) to appear in the blood of many patients. In vitro, at concentrations within the range found in patients' plasma, FNf stimulate monocytes to release proteolytic enzymes that remove CD49e from the cell surface and produce cytokines that suppress proliferation of activated T cells when stimulated by agents that crosslink their antigen receptors. DESIGN A long-term observational study of patients whose plasma FNf and monocyte CD49e had been measured at 90-day intervals for 1.4 + or - 0.5 years. METHODS Plasma FNf was measured by a quantitative western blot assay and monocyte CD49e expression by flow cytometry. Patients were monitored clinically for up to 5 years after enrollment. RESULTS All-cause mortality was significantly higher in patients who had at least 5 microg/ml FNf in more than 50% of plasma samples and/or persistent depletion of monocyte CD49e. Persistence of FNf and depletion of monocyte CD49e were not associated with changes in viral load or CD4 T-cell counts. CONCLUSION Persistently reduced expression of blood monocyte CD49e and/or the persistent presence of FNf in plasma are adverse prognostic markers in HIV-infected patients.
Collapse
|
35
|
Moor AN, Vachon DJ, Gould LJ. Proteolytic activity in wound fluids and tissues derived from chronic venous leg ulcers. Wound Repair Regen 2009; 17:832-9. [DOI: 10.1111/j.1524-475x.2009.00547.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
36
|
Extracellular matrix turnover and signaling during cardiac remodeling following MI: causes and consequences. J Mol Cell Cardiol 2009; 48:558-63. [PMID: 19559709 DOI: 10.1016/j.yjmcc.2009.06.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/10/2009] [Accepted: 06/17/2009] [Indexed: 11/22/2022]
Abstract
The concept that extracellular matrix (ECM) turnover occurs during cardiac remodeling is a well-accepted paradigm. To date, a multitude of studies document that remodeling is accompanied by increases in the synthesis and deposition of ECM components as well as increases in extracellular proteases, especially matrix metalloproteinases (MMPs), which break down ECM components. Further, soluble ECM fragments generated from enzymatic action serve to stimulate cell behavior and have been proposed as candidate plasma biomarkers of cardiac remodeling. This review briefly summarizes our current knowledge base on cardiac ECM turnover following myocardial infarction (MI), but more importantly extends discussion by defining avenues that remain to be explored to drive the ECM remodeling field forward. Specifically, this review will discuss cause and effect roles for the ECM changes observed following MI and the potential role of the ECM changes that may serve as trigger points to regulate remodeling. While the pattern of remodeling following MI is qualitatively similar but quantitatively different from various types of injury, the basic theme in remodeling is repeated. Therefore, while we use the MI model as the prototype injury model, the themes discussed here are also relevant to cardiac remodeling due to other types of injury.
Collapse
|
37
|
Chung AS, Kao WJ. Fibroblasts regulate monocyte response to ECM-derived matrix: The effects on monocyte adhesion and the production of inflammatory, matrix remodeling, and growth factor proteins. J Biomed Mater Res A 2009; 89:841-53. [DOI: 10.1002/jbm.a.32431] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
O’Brien J, Schedin P. Macrophages in breast cancer: do involution macrophages account for the poor prognosis of pregnancy-associated breast cancer? J Mammary Gland Biol Neoplasia 2009; 14:145-57. [PMID: 19350209 PMCID: PMC2693782 DOI: 10.1007/s10911-009-9118-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/24/2022] Open
Abstract
Macrophage influx is associated with negative outcomes for women with breast cancer and has been demonstrated to be required for metastasis of mammary tumors in mouse models. Pregnancy-associated breast cancer is characterized by particularly poor outcomes, however the reasons remain obscure. Recently, post-pregnancy mammary involution has been characterized as having a wound healing signature. We have proposed the involution-hypothesis, which states that the wound healing microenvironment of the involuting gland is tumor promotional. Macrophage influx is one of the prominent features of the involuting gland, identifying the macrophage a potential instigator of tumor progression and a novel target for breast cancer treatment and prevention.
Collapse
Affiliation(s)
- Jenean O’Brien
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, 12801 East 17th Avenue Aurora, Denver, CO 80045 USA
- Program in Cancer Biology, University of Colorado Denver, 12801 East 17th Avenue Aurora, Denver, CO 80045 USA
| | - Pepper Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, 12801 East 17th Avenue Aurora, Denver, CO 80045 USA
- Program in Cancer Biology, University of Colorado Denver, 12801 East 17th Avenue Aurora, Denver, CO 80045 USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver, 12801 East 17th Avenue Aurora, Denver, CO 80045 USA
- AMC Cancer Research Center, University of Colorado Denver, 12801 East 17th Avenue Aurora, Denver, CO 80045 USA
| |
Collapse
|
39
|
Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 2007; 40:1101-10. [PMID: 18243041 DOI: 10.1016/j.biocel.2007.12.005] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 12/17/2022]
Abstract
Classically, the extracellular matrix (ECM) was viewed as a supporting structure for stabilizing the location of cells in tissues and for preserving the architecture of tissues. This conception has changed dramatically over the past few decades with discoveries that ECM has profound influences on the structure, viability, and functions of cells. Much of the data supporting this new paradigm has been obtained from studies of normal and pathological structural cells such as fibroblasts, smooth muscle cells, and malignant cells, as, for example, breast cancer epithelial cells. However, there has also been recognition that effects of ECM on cells extend to inflammatory cells. In this context, attention has been drawn to fragments of ECM components. In this review, we present information supporting the concept that proteolytic fragments of ECM affect multiple functions and properties of inflammatory and immune cells. Our focus is particularly upon neutrophils, monocytes, and macrophages and fragments derived from collagens, elastin, and laminins. Hyaluronan fragments, although they are not products of proteolysis, are also discussed, as they are a notable example of ECM fragments that exhibit important effects on inflammatory cells. Further, we summarize some exciting recent developments in this field as a result of mouse models in which defined ECM fragments and their receptors are clearly implicated in inflammation in vivo. Thus, this review underscores the idea that proteolysis of ECM may well have implications that go beyond modifying the structural environment of cells and tissues.
Collapse
|