1
|
Jurek B, Neumann ID. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol Rev 2018; 98:1805-1908. [DOI: 10.1152/physrev.00031.2017] [Citation(s) in RCA: 408] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The many facets of the oxytocin (OXT) system of the brain and periphery elicited nearly 25,000 publications since 1930 (see FIGURE 1 , as listed in PubMed), which revealed central roles for OXT and its receptor (OXTR) in reproduction, and social and emotional behaviors in animal and human studies focusing on mental and physical health and disease. In this review, we discuss the mechanisms of OXT expression and release, expression and binding of the OXTR in brain and periphery, OXTR-coupled signaling cascades, and their involvement in behavioral outcomes to assemble a comprehensive picture of the central and peripheral OXT system. Traditionally known for its role in milk let-down and uterine contraction during labor, OXT also has implications in physiological, and also behavioral, aspects of reproduction, such as sexual and maternal behaviors and pair bonding, but also anxiety, trust, sociability, food intake, or even drug abuse. The many facets of OXT are, on a molecular basis, brought about by a single receptor. The OXTR, a 7-transmembrane G protein-coupled receptor capable of binding to either Gαior Gαqproteins, activates a set of signaling cascades, such as the MAPK, PKC, PLC, or CaMK pathways, which converge on transcription factors like CREB or MEF-2. The cellular response to OXT includes regulation of neurite outgrowth, cellular viability, and increased survival. OXTergic projections in the brain represent anxiety and stress-regulating circuits connecting the paraventricular nucleus of the hypothalamus, amygdala, bed nucleus of the stria terminalis, or the medial prefrontal cortex. Which OXT-induced patterns finally alter the behavior of an animal or a human being is still poorly understood, and studying those OXTR-coupled signaling cascades is one initial step toward a better understanding of the molecular background of those behavioral effects.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Mitogen-Activated Protein Kinase Kinase 2, a Novel E2-Interacting Protein, Promotes the Growth of Classical Swine Fever Virus via Attenuation of the JAK-STAT Signaling Pathway. J Virol 2016; 90:10271-10283. [PMID: 27605672 PMCID: PMC5105662 DOI: 10.1128/jvi.01407-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023] Open
Abstract
The mitogen-activated protein kinase kinase/extracellular regulated kinase (MEK1/2/ERK1/2) cascade is involved in the replication of several members of the Flaviviridae family, including hepatitis C virus and dengue virus. The effects of the cascade on the replication of classical swine fever virus (CSFV), a fatal pestivirus of pigs, remain unknown. In this study, MEK2 was identified as a novel binding partner of the E2 protein of CSFV using yeast two-hybrid screening. The E2-MEK2 interaction was confirmed by glutathione S-transferase pulldown, coimmunoprecipitation, and laser confocal microscopy assays. The C termini of E2 (amino acids [aa] 890 to 1053) and MEK2 (aa 266 to 400) were mapped to be crucial for the interaction. Overexpression of MEK2 significantly promoted the replication of CSFV, whereas knockdown of MEK2 by lentivirus-mediated small hairpin RNAs dramatically inhibited CSFV replication. In addition, CSFV infection induced a biphasic activation of ERK1/2, the downstream signaling molecules of MEK2. Furthermore, the replication of CSFV was markedly inhibited in PK-15 cells treated with U0126, a specific inhibitor for MEK1/2/ERK1/2, whereas MEK2 did not affect CSFV replication after blocking the interferon-induced Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway by ruxolitinib, a JAK-STAT-specific inhibitor. Taken together, our results indicate that MEK2 positively regulates the replication of CSFV through inhibiting the JAK-STAT signaling pathway. IMPORTANCE Mitogen-activated protein kinase kinase 2 (MEK2) is a kinase that operates immediately upstream of extracellular regulated kinase 1/2 (ERK1/2) and links to Raf and ERK via phosphorylation. Currently, little is known about the role of MEK2 in the replication of classical swine fever virus (CSFV), a devastating porcine pestivirus. Here, we investigated the roles of MEK2 and the MEK2/ERK1/2 cascade in the growth of CSFV for the first time. We show that MEK2 positively regulates CSFV replication. Notably, we demonstrate that MEK2 promotes CSFV replication through inhibiting the interferon-induced JAK-STAT signaling pathway, a key antiviral pathway involved in innate immunity. Our work reveals a novel role of MEK2 in CSFV infection and sheds light on the molecular basis by which pestiviruses interact with the host cell.
Collapse
|
3
|
Scanu A, Oliviero F, Gruaz L, Galozzi P, Luisetto R, Ramonda R, Burger D, Punzi L. Synovial fluid proteins are required for the induction of interleukin-1β production by monosodium urate crystals. Scand J Rheumatol 2016; 45:384-93. [DOI: 10.3109/03009742.2015.1124452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- A Scanu
- Rheumatology Unit, Department of Medicine, University of Padova, Italy
| | - F Oliviero
- Rheumatology Unit, Department of Medicine, University of Padova, Italy
| | - L Gruaz
- Division of Immunology and Allergy, Inflammation and Allergy Research Group, Hans Wilsdorf Laboratory, University Hospital and Faculty of Medicine, University of Geneva, Switzerland
| | - P Galozzi
- Rheumatology Unit, Department of Medicine, University of Padova, Italy
| | - R Luisetto
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
| | - R Ramonda
- Rheumatology Unit, Department of Medicine, University of Padova, Italy
| | - D Burger
- Division of Immunology and Allergy, Inflammation and Allergy Research Group, Hans Wilsdorf Laboratory, University Hospital and Faculty of Medicine, University of Geneva, Switzerland
| | - L Punzi
- Rheumatology Unit, Department of Medicine, University of Padova, Italy
| |
Collapse
|
4
|
Carpintero R, Burger D. IFNβ and glatiramer acetate trigger different signaling pathways to regulate the IL-1 system in multiple sclerosis. Commun Integr Biol 2014. [DOI: 10.4161/cib.14205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A 2014; 111:E4478-84. [PMID: 25288745 DOI: 10.1073/pnas.1410293111] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Toll-like receptor (TLR)10 is the only pattern-recognition receptor without known ligand specificity and biological function. We demonstrate that TLR10 is a modulatory receptor with mainly inhibitory effects. Blocking TLR10 by antagonistic antibodies enhanced proinflammatory cytokine production, including IL-1β, specifically after exposure to TLR2 ligands. Blocking TLR10 after stimulation of peripheral blood mononuclear cells with pam3CSK4 (Pam3Cys) led to production of 2,065 ± 106 pg/mL IL-1β (mean ± SEM) in comparison with 1,043 ± 51 pg/mL IL-1β after addition of nonspecific IgG antibodies. Several mechanisms mediate the modulatory effects of TLR10: on the one hand, cotransfection in human cell lines showed that TLR10 acts as an inhibitory receptor when forming heterodimers with TLR2; on the other hand, cross-linking experiments showed specific induction of the anti-inflammatory cytokine IL-1 receptor antagonist (IL-1Ra, 16 ± 1.7 ng/mL, mean ± SEM). After cross-linking anti-TLR10 antibody, no production of IL-1β and other proinflammatory cytokines could be found. Furthermore, individuals bearing TLR10 polymorphisms displayed an increased capacity to produce IL-1β, TNF-α, and IL-6 upon ligation of TLR2, in a gene-dose-dependent manner. The modulatory effects of TLR10 are complex, involving at least several mechanisms: there is competition for ligands or for the formation of heterodimer receptors with TLR2, as well as PI3K/Akt-mediated induction of the anti-inflammatory cytokine IL-1Ra. Finally, transgenic mice expressing human TLR10 produced fewer cytokines when challenged with a TLR2 agonist. In conclusion, to our knowledge we demonstrate for the first time that TLR10 is a modulatory pattern-recognition receptor with mainly inhibitory properties.
Collapse
|
6
|
Brandt KJ, Fickentscher C, Boehlen F, Kruithof EKO, de Moerloose P. NF-κB is activated from endosomal compartments in antiphospholipid antibodies-treated human monocytes. J Thromb Haemost 2014; 12:779-91. [PMID: 24612386 DOI: 10.1111/jth.12536] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/12/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND The antiphospholipid antibody syndrome (APS) is an autoimmune disease associated with arterial or venous thrombosis and/or recurrent fetal loss and is caused by pathogenic antiphospholipid antibodies (aPLA). We recently demonstrated that Toll-like receptor 2 (TLR2) and CD14 contribute to monocyte activation of aPLA. OBJECTIVE To study the mechanisms of cell activation by aPLA, leading to pro-coagulant and pro-inflammatory responses. METHODS AND RESULTS For this study, we used purified antibodies from the plasmas of 10 different patients with APS and healthy donors. We demonstrate that aPLA, but not control IgG, co-localizes with TLR2 and TLR1 or TLR6 on human monocytes. Blocking antibodies to TLR2, TLR1 or TLR6, but not to TLR4, decreased TNF and tissue factor (TF) responses to aPLA. Pharmacological and siRNA approaches revealed the importance of the clathrin/dynamin-dependent endocytic pathway in cell activation by aPLA. In addition, soluble aPLA induced NF-κB activation, while bead-immobilized aPLA beads, which cannot be internalized, were unable to activate NF-κB. Internalization of aPLA in monocytes and NF-κB activation were dependent on the presence of CD14. CONCLUSION We show that TLR2 and its co-receptors, TLR1 and TLR6, contribute to the pathogenicity of aPLA, that aPLA are internalized via clathrin- and CD14-dependent endocytosis and that endocytosis is required for NF-κB activation. Our results contribute to a better understanding of the APS and provide a possible therapeutic approach.
Collapse
Affiliation(s)
- K J Brandt
- Division of Angiology and Hemostasis, University Hospital of Geneva and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
7
|
TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes. PLoS One 2013; 8:e80743. [PMID: 24349012 PMCID: PMC3861177 DOI: 10.1371/journal.pone.0080743] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/06/2013] [Indexed: 11/24/2022] Open
Abstract
Localization of Toll-like receptors (TLR) in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.
Collapse
|
8
|
Scanu A, Luisetto R, Oliviero F, Gruaz L, Sfriso P, Burger D, Punzi L. High-density lipoproteins inhibit urate crystal-induced inflammation in mice. Ann Rheum Dis 2013; 74:587-94. [DOI: 10.1136/annrheumdis-2013-203803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Jurek B, Slattery DA, Maloumby R, Hillerer K, Koszinowski S, Neumann ID, van den Burg EH. Differential contribution of hypothalamic MAPK activity to anxiety-like behaviour in virgin and lactating rats. PLoS One 2012; 7:e37060. [PMID: 22615888 PMCID: PMC3355176 DOI: 10.1371/journal.pone.0037060] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/12/2012] [Indexed: 12/18/2022] Open
Abstract
The c-Raf – MEK1/2 – ERK1/2 mitogen-activated protein kinase (MAPK) intracellular signalling cascade in neurons plays important roles in the control of a variety of behaviours, including social behaviours and anxiety. These roles partially overlap with those described for oxytocin (OXT), and it has been shown that OXT activates the MAPK pathway in the hypothalamus (of male), and hippocampus (of female) rats. Here, by combining behavioural (light/dark box) and biochemical analyses (western blotting), we tested two hypotheses: (i) that OXT is anxiolytic within the hypothalamus of females, and (ii) that this effect, as well as that of lactation-associated anxiolysis, depends on the recruitment of the MAPK pathway. We found that, when injected bilaterally into the hypothalamic paraventricular nucleus (PVN), OXT decreased anxiety-like behaviour in virgins, and that this effect depended on phosphorylation of MEK1/2. MAPK pathway activation in lactation was evident by high phosphorylated (p) MEK1/2 levels, and nuclear translocation of ERK1. The high pMEK1/2 levels were necessary for the anxiolytic phenotype typically observed during lactation. Interestingly, exogenous OXT in lactating rats reduced pMEK1/2 levels without a concomitant effect on anxiety, indicating that OXT receptor activation can lead to recruitment of additional intracellular pathways to modulate MEK activity. Still other pathways could include MEK, but without subsequent activation of ERK, as we did not observe any increase in OXT-induced ERK phosphorylation. Together the results demonstrate that the MAPK pathway, especially MEK1/2, is critically involved in the regulation of anxiety-like behaviour in female rats.
Collapse
Affiliation(s)
- Benjamin Jurek
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - David A. Slattery
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Katharina Hillerer
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Sophie Koszinowski
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- * E-mail: Inga
| | - Erwin H. van den Burg
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
10
|
Leander K, Gigante B, Silveira A, Vikström M, Hamsten A, Högberg J. NAMPT (visfatin) and AKT1 genetic variants associate with myocardial infarction. Clin Chim Acta 2012; 413:727-32. [PMID: 22251423 DOI: 10.1016/j.cca.2012.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 12/31/2011] [Accepted: 01/03/2012] [Indexed: 01/24/2023]
Abstract
BACKGROUND High plasma levels of the adipokine NAMPT (or visfatin) have been associated with cardiovascular disease. However experimental data suggest that NAMPT, via Akt signaling, protects the myocardium against hypoxic insults. We studied whether the NAMPT rs1319501, AKT1 rs3730358, p53 rs1042522, Mdm2 rs2279744 or eNOS rs1799983 SNP:s linked to NAMPT and Akt signaling associate with risk of myocardial infarction (MI). METHODS Cases were 828 men and 346 women aged 45-70 who had suffered a first MI. Control individuals, 1062 men and 513 women, were randomly chosen from the study base. We employed unconditional logistic regression analysis. RESULTS The rs1319501 minor allele associated with MI among women aged 45-60; odds ratio (OR) under a recessive model of inheritance: 2.96 (95% confidence interval [CI] 1.06-8.29). Replication analysis in an independent material yielded OR point estimates in the same direction. The rs3730358 minor allele associated with low MI risk in men aged 45-60 (OR dominant model: 0.72, 95% CI 0.53-0.97), an association completely attenuated by adjusting for inflammatory markers. CONCLUSIONS The NAMPT rs1319501 minor allele associates with increased MI risk in young women. In young men a protective effect of the AKT1 rs3730358 minor allele was suggested, possibly related to an attenuated inflammation.
Collapse
Affiliation(s)
- Karin Leander
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
11
|
MEK1–ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antiviral Res 2012; 93:110-7. [DOI: 10.1016/j.antiviral.2011.11.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 01/12/2023]
|
12
|
Carpintero R, Burger D. IFNβ and glatiramer acetate trigger different signaling pathways to regulate the IL-1 system in multiple sclerosis. Commun Integr Biol 2011; 4:112-4. [PMID: 21509198 DOI: 10.4161/cib.4.1.14205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/19/2022] Open
Abstract
Imbalance in cytokine homeostasis plays an important part in the pathogenesis of various chronic inflammatory diseases. In multiple sclerosis (MS), the pro-inflammatory cytokine interleukin-1β (IL-1β) is present in the central nervous system, being expressed mainly in infiltrating macrophages and microglial cells. IL-1β activity is inhibited by the secreted form of IL-1 receptor antagonist (sIL-1Ra) whose production is increased in patients' blood and induced in human monocytes by IFNβ and glatiramer acetate (GA)-both immunomodulators displaying similar therapeutic efficacy in MS. Because intracellular pathways are currently considered as potential therapeutic targets, identification of specific kinases used by both immunomodulators might lead to more specific therapeutic targeting. We addressed the question of intracellular pathways used by IFNβ and GA to induce sIL-1Ra in human monocytes in two recent studies. This addendum to these studies aims at discussing common pathways and different elements used by IFNβ and GA to induce sIL-1Ra in human monocytes. This pinpoints PI3Kδ activation as a requirement to induce sIL-1Ra production downstream monocyte stimulation by either IFNβ or GA. However, the immunomodulators differentially use MEK/ERK pathway to induce sIL-1Ra production in human monocytes. Together, our current studies suggest that PI3Kδ and MEK2 might represent new targets in MS therapy.
Collapse
Affiliation(s)
- Rakel Carpintero
- Division of Immunology and Allergy; Inflammation and Allergy Research Group; Hans Wilsdorf Laboratory; University Hospital and Faculty of Medicine; University of Geneva; Geneva, Switzerland
| | | |
Collapse
|