1
|
Imiquimod induces skin inflammation in humanized BRGSF mice with limited human immune cell activity. PLoS One 2023; 18:e0281005. [PMID: 36800344 PMCID: PMC9937455 DOI: 10.1371/journal.pone.0281005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Human immune system (HIS) mouse models can be valuable when cross-reactivity of drug candidates to mouse systems is missing. However, no HIS mouse models of psoriasis have been established. In this study, it was investigated if imiquimod (IMQ) induced psoriasis-like skin inflammation was driven by human immune cells in human FMS-related tyrosine kinase 3 ligand (hFlt3L) boosted (BRGSF-HIS mice). BRGSF-HIS mice were boosted with hFlt3L prior to two or three topical applications of IMQ. Despite clinical skin inflammation, increased epidermal thickness and influx of human immune cells, a human derived response was not pronounced in IMQ treated mice. However, the number of murine neutrophils and murine cytokines and chemokines were increased in the skin and systemically after IMQ application. In conclusion, IMQ did induce skin inflammation in hFlt3L boosted BRGSF-HIS mice, although, a limited human immune response suggest that the main driving cellular mechanisms were of murine origin.
Collapse
|
2
|
Wang Y, Hu Z, Wu J, Wang P, Yang Q, Li Y, Zhu F, Yang J, Deng Y, Han M, Yao Y, Zeng R, Pei G, Xu G. High renal DC-SIGN + cell density is associated with severe renal lesions and poor prognosis in patients with immunoglobulin A nephropathy. Histopathology 2019; 74:744-758. [PMID: 30520136 DOI: 10.1111/his.13803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 12/01/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS In this observational cohort study, we assessed the prognostic value of DC-SIGN+ cells in the pathogenesis and progression of IgA nephropathy (IgAN). METHODS AND RESULTS A total of 139 adult IgAN patients were enrolled into this study from June 2009 to June 2010. We characterised DC-SIGN+ cells by immunohistochemistry or immunofluorescence in renal biopsy tissue. Correlations between the DC-SIGN, intercellular adhesion molecule 3 (ICAM-3), CD4 and CD8 were evaluated. Patients were classified into the DC-SIGNhigh and DC-SIGNlow groups. Depending on an average of 100-month follow-up, the predictive value of DC-SIGN+ cells in IgAN progression was analysed. DC-SIGN+ cells were found frequently in IgAN kidneys while rarely observed in normal kidneys, and almost all DC-SIGN+ cells expressed MHC-II. We also found that DC-SIGN+ cells were adjacent to ICAM-3-positive CD4+ and CD8+ lymphocytes. The density of DC-SIGN+ cells was positively and linearly correlated with the density of ICAM-3+ cells, CD4+ cells and CD8+ cells in renal biopsy tissues. In the DC-SIGNhigh group, the degree of renal lesion and inflammatory cell infiltration was more severe compared to the DC-SIGNlow group. Patients in the DC-SIGNhigh group also had increased incidences of deteriorating renal function during the follow up compared to patients in the DC-SIGNlow group. CONCLUSIONS DC-SIGN+ cells probably served as a potential contributor to exacerbate local inflammatory response. The density of DC-SIGN+ cells was associated with the severity of renal lesions of the patients. High renal DC-SIGN+ cell density might be used as a predictor of poor prognosis in patients with IgAN.
Collapse
Affiliation(s)
- Yuxi Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhizhi Hu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianliang Wu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengge Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanjun Deng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Han
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangchang Pei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Tkach M, Kowal J, Zucchetti AE, Enserink L, Jouve M, Lankar D, Saitakis M, Martin-Jaular L, Théry C. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. EMBO J 2017; 36:3012-3028. [PMID: 28923825 PMCID: PMC5641679 DOI: 10.15252/embj.201696003] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 08/14/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC-peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T-cell activation in vitro When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN-γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN-γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles.
Collapse
Affiliation(s)
- Mercedes Tkach
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Joanna Kowal
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | | | - Lotte Enserink
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Mabel Jouve
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Danielle Lankar
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | - Michael Saitakis
- Institut Curie, PSL Research University INSERM U932, Paris, France
| | | | - Clotilde Théry
- Institut Curie, PSL Research University INSERM U932, Paris, France
| |
Collapse
|
4
|
Bene KP, Kavanaugh DW, Leclaire C, Gunning AP, MacKenzie DA, Wittmann A, Young ID, Kawasaki N, Rajnavolgyi E, Juge N. Lactobacillus reuteri Surface Mucus Adhesins Upregulate Inflammatory Responses Through Interactions With Innate C-Type Lectin Receptors. Front Microbiol 2017; 8:321. [PMID: 28326063 PMCID: PMC5339304 DOI: 10.3389/fmicb.2017.00321] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
The vertebrate gut symbiont Lactobacillus reuteri exhibits strain-specific adhesion and health-promoting properties. Here, we investigated the role of the mucus adhesins, CmbA and MUB, upon interaction of L. reuteri ATCC PTA 6475 and ATCC 53608 strains with human monocyte-derived dendritic cells (moDCs). We showed that mucus adhesins increased the capacity of L. reuteri strains to interact with moDCs and promoted phagocytosis. Our data also indicated that mucus adhesins mediate anti- and pro-inflammatory effects by the induction of interleukin-10 (IL-10), tumor necrosis factor alpha (TNF-α), IL-1β, IL-6, and IL-12 cytokines. L. reuteri ATCC PTA 6475 and ATCC 53608 were exclusively able to induce moDC-mediated Th1 and Th17 immune responses. We further showed that purified MUB activates moDCs and induces Th1 polarized immune responses associated with increased IFNγ production. MUB appeared to mediate these effects via binding to C-type lectin receptors (CLRs), as shown using cell reporter assays. Blocking moDCs with antibodies against DC-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) or Dectin-2 did not affect the uptake of the MUB-expressing strain, but reduced the production of TNF-α and IL-6 by moDCs significantly, in line with the Th1 polarizing capacity of moDCs. The direct interaction between MUB and CLRs was further confirmed by atomic force spectroscopy. Taken together these data suggest that mucus adhesins expressed at the cell surface of L. reuteri strains may exert immunoregulatory effects in the gut through modulating the Th1-promoting capacity of DCs upon interaction with C-type lectins.
Collapse
Affiliation(s)
- Krisztián P Bene
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Devon W Kavanaugh
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Charlotte Leclaire
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Allan P Gunning
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | - Donald A MacKenzie
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| | | | - Ian D Young
- Food and Health Programme, Institute of Food Research Norwich, UK
| | | | - Eva Rajnavolgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Nathalie Juge
- The Gut Health and Food Safety Programme, Institute of Food Research Norwich, UK
| |
Collapse
|
5
|
Santos Souza HF, da Silva Almeida B, Boscardin SB. Early dengue virus interactions: the role of dendritic cells during infection. Virus Res 2016; 223:88-98. [PMID: 27381061 DOI: 10.1016/j.virusres.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
Dengue is an acute infectious disease caused by dengue virus (DENV) that affects approximately 400 million people annually, being the most prevalent human arthropod-borne disease. DENV infection causes a wide variety of clinical manifestations that range from asymptomatic to dengue fever, and in some cases may evolve to the more severe dengue hemorrhagic fever and dengue shock syndrome. The exact reasons why some patients do not have symptoms while others develop the severe forms of disease are still elusive, but gathered evidence showed correlation between a secondary infection with a heterologous DENV serotype and the occurrence of severe symptoms. Despite several advances, the mechanisms of DENV infection are still not completely elucidated, and efforts have been made to understand the development of immunity and/or pathology to DENV. When a mosquito transmits DENV, the virus is initially deposited in the skin, where mononuclear phagocytic cells, such as dendritic cells (DCs), become infected. DCs play a critical role in the induction of immune responses, as they are able to rapidly detect pathogen-associated molecular patterns, endocytose and process antigens, and efficiently activate naïve-T and B cells. Recent findings have shown that DCs serve as DENV targets, but they are also important mediators of immunity against the virus. In this review, we will briefly discuss DENV infection pathogenesis, and introduce DCs as central players in the induction of anti-DENV immune responses. Then, we will review in more detail how DENV interacts with and is sensed by DCs, with particular emphasis in two classes of receptors implicated in viral entry.
Collapse
Affiliation(s)
- Higo Fernando Santos Souza
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bianca da Silva Almeida
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; National Institute of Science and Technology in Vaccines, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Afsal K, Selvaraj P. Effect of 1,25-dihydroxyvitamin D3 on the expression of mannose receptor, DC-SIGN and autophagy genes in pulmonary tuberculosis. Tuberculosis (Edinb) 2016; 99:1-10. [PMID: 27449998 DOI: 10.1016/j.tube.2016.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/03/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
1,25-dihydroxyvitamin D3 [1,25(OH)2D3] is a powerful immuno-modulator, which enhances expression of antimicrobial peptides and induces autophagy in monocytes/macrophages. Since 1,25(OH)2D3 increases the phagocytic potential of monocytes/macrophages, we have explored the effect of 1,25(OH)2D3 on the expression of receptors such as mannose receptor (CD206) and DC-SIGN (CD209) as well as autophagy genes such as ATG5 and Beclin-1 (BECN1) in monocytes/macrophages of healthy controls (HCs) and pulmonary tuberculosis (PTB) patients with and without cavitary disease. Peripheral blood mononuclear cells (PBMCs) were isolated from 40 HCs and 40 PTB patients and were cultured for 72 h with Mtb in the presence or absence of 1,25(OH)2D3 at 10(-7) M concentration. 1,25(OH)2D3 significantly upregulated the expression of mannose receptor, ATG5 and BECN1; whereas DC-SIGN expression was suppressed in Mtb infected cells of both study groups (p < 0.05). The 1,25(OH)2D3-induced expression of CD206, ATG5 and BECN1 genes was lower in PTB patients compared to HCs, whereas expression of these genes was impaired in PTB patients with cavitary disease. Moreover, the relative expression of ATG5 and BECN1 was positively correlated with monocyte/macrophage phagocytosis and cathelicidin antimicrobial peptide gene expression in HCs and PTB patients (p < 0.05). Our study results suggest that vitamin D supplementation in PTB patients without cavitary disease could enhance innate immune functions and may help to control intracellular growth of mycobacteria in macrophages.
Collapse
Affiliation(s)
- K Afsal
- Department of Immunology, National Institute for Research in Tuberculosis (Formerly Tuberculosis Research Centre), Indian Council of Medical Research, 1, Mayor Sathyamoorthy Road, Chennai 600 031, India
| | - P Selvaraj
- Department of Immunology, National Institute for Research in Tuberculosis (Formerly Tuberculosis Research Centre), Indian Council of Medical Research, 1, Mayor Sathyamoorthy Road, Chennai 600 031, India.
| |
Collapse
|
7
|
Batal I, De Serres SA, Safa K, Bijol V, Ueno T, Onozato ML, Iafrate AJ, Herter JM, Lichtman AH, Mayadas TN, Guleria I, Rennke HG, Najafian N, Chandraker A. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival. J Am Soc Nephrol 2015; 26:3102-13. [PMID: 25855773 DOI: 10.1681/asn.2014080804] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 02/03/2015] [Indexed: 12/16/2022] Open
Abstract
Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival.
Collapse
Affiliation(s)
- Ibrahim Batal
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts;
| | - Sacha A De Serres
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Kassem Safa
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Vanesa Bijol
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Takuya Ueno
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Maristela L Onozato
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jan M Herter
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tanya N Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Indira Guleria
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Helmut G Rennke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nader Najafian
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| | - Anil Chandraker
- Renal Division, Schuster Family Transplantation Research Center, Brigham and Women's Hospital, Boston Children's Hospital, and Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
8
|
Kumar S, Naqvi RA, Bhat AA, Rani R, Ali R, Agnihotri A, Khanna N, Rao D. IL-10 production from dendritic cells is associated with DC SIGN in human leprosy. Immunobiology 2013; 218:1488-96. [DOI: 10.1016/j.imbio.2013.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 01/28/2023]
|
9
|
van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol 2013; 34:208-15. [PMID: 23485516 DOI: 10.1016/j.it.2013.01.005] [Citation(s) in RCA: 247] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/18/2013] [Accepted: 01/22/2013] [Indexed: 02/07/2023]
Abstract
The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis.
Collapse
Affiliation(s)
- Peter van Baarlen
- Host Microbe Interactomics Group, Wageningen University, De Elst 1, 6708WD Wageningen, The Netherlands
| | | | | |
Collapse
|
10
|
Chen Q, He F, Kwang J, Chan JKY, Chen J. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. THE JOURNAL OF IMMUNOLOGY 2012; 189:5223-9. [PMID: 23089398 DOI: 10.4049/jimmunol.1201789] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Engraftment of human hematopoietic stem cells into immunodeficient mice that lack T cells, B cells, and NK cells results in reconstitution of human blood lineage cells, especially B cells, in the recipient mice. However, these humanized mice do not make any significant level of IgG Ab in response to Ag stimulation. In this study, we show that in humanized mice, B cells are immature, and there is a complete deficiency of CD209(+) (DC-SIGN) human dendritic cells. These defects can be corrected by expression of human GM-CSF and IL-4 in humanized mice. As a result, these cytokine-treated humanized mice produced significant levels of Ag-specific IgG after immunization, including the production of neutralizing Abs specific for H5N1 avian influenza virus. A significant level of Ag-specific CD4 T cell response was also induced. Thus, we have identified defects in humanized mice and devised approaches to correct these defects such that the platform can be used for studying Ab responses and to generate novel human Abs against virulent pathogens and other clinically relevant targets.
Collapse
Affiliation(s)
- Qingfeng Chen
- Interdisciplinary Research Group in Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore 138602
| | | | | | | | | |
Collapse
|
11
|
van den Berk LCJ, Jansen BJH, Siebers-Vermeulen KGC, Netea MG, Latuhihin T, Bergevoet S, Raymakers RA, Kögler G, Figdor CC, Adema GJ, Torensma R. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med 2011; 13:3415-26. [PMID: 20196781 PMCID: PMC4516497 DOI: 10.1111/j.1582-4934.2009.00653.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recently, the antagonizing effect on the differentiation of mesenchymal stem cells (MSCs) by toll-like receptor (TLR) ligands, was described. Our study shows that on more primitive cord blood derived MSCs, the expression of TLRs and ligand-induced triggering differs from that of bone marrow derived MSCs. At the RNA level, cord blood MSCs (unrestricted somatic stem cells; USSCs) express low levels of TLR1,3,5,9 and high levels of TLR4 and TLR6. At the protein level expression of TLR5 and very low expression of TLR4 was observed. NF-κB translocation studies revealed that both TLR4 and TLR5 are functional, although signalling kinetics induced by the individual ligands differed. Stimulation of USSCs with either lipopolysaccharide (LPS) or flagellin resulted in a marked increase of interleukin (IL)-6 and/or IL-8 production although levels differed significantly between both stimuli. Interestingly, tumour necrosis factor (TNF)-α was undetectable after TLR stimulation, which appeared to be due to an inactivated TNF-α promoter in USSCs. Moreover, osteoblastic differentiation was enhanced after triggering USSCs with LPS and flagellin. In summary, TLR4 and 5 signalling in USSCs is slow and results in the up-regulation of a restricted number of pro-inflammatory cytokines and enhanced osteoblastic differentiation. Apparently, the outcome of TLR signalling depends on the cell type that expresses them.
Collapse
Affiliation(s)
- Lieke C J van den Berk
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation. Blood 2011; 118:4111-9. [PMID: 21860028 DOI: 10.1182/blood-2011-04-346957] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Targeting antigens to dendritic cell (DC)-specific receptors, such as DC-SIGN, induces potent T cell-mediated immune responses. DC-SIGN is a transmembrane C-type lectin receptor with a long extracellular neck region and a carbohydrate recognition domain (CRD). Thus far, only antibodies binding the CRD have been used to target antigens to DC-SIGN. We evaluated the endocytic pathway triggered by antineck antibodies as well as their intracellular routing and ability to induce CD8(+) T-cell activation. In contrast to anti-CRD antibodies, antineck antibodies induced a clathrin-independent mode of DC-SIGN internalization, as demonstrated by the lack of colocalization with clathrin and the observation that silencing clathrin did not affect antibody internalization in human DCs. Interestingly, we observed that anti-neck and anti-CRD antibodies were differentially routed within DCs. Whereas anti-CRD antibodies were mainly routed to late endosomal compartments, anti-neck antibodies remained associated with early endosomal compartments positive for EEA-1 and MHC class I for up to 2 hours after internalization. Finally, cross-presentation of protein antigen conjugated to antineck antibodies was approximately 1000-fold more effective than nonconjugated antigen. Our studies demonstrate that anti-neck antibodies trigger a distinct mode of DC-SIGN internalization that shows potential for targeted vaccination strategies.
Collapse
|
13
|
Wang L, Chen RF, Liu JW, Lee IK, Lee CP, Kuo HC, Huang SK, Yang KD. DC-SIGN (CD209) Promoter -336 A/G polymorphism is associated with dengue hemorrhagic fever and correlated to DC-SIGN expression and immune augmentation. PLoS Negl Trop Dis 2011; 5:e934. [PMID: 21245921 PMCID: PMC3014977 DOI: 10.1371/journal.pntd.0000934] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 12/02/2010] [Indexed: 12/29/2022] Open
Abstract
Background The C-type lectin DC-SIGN (CD209) is known to be the major dengue receptor on human dendritic cells, and a single nucleotide polymorphism (SNP) in the promoter region of CD209 (−336 A/G; rs4804803) is susceptible to many infectious diseases. We reason that variations in the DC-SIGN gene might have a broad influence on viral replication and host immune responses. Methods and Findings We studied whether the rs4804803 SNP was associated with a susceptibility to dengue fever (DF) and/or dengue hemorrhagic fever (DHF) through genotyping analysis in a Taiwanese cohort. We generated monocyte-derived dendritic cells (MDDCs) from individuals with AA or AG genotype of rs4804803 to study the viral replication and immune responses for functional validation. A total of 574 DNA samples were genotyped, including 176 DF, 135 DHF, 143 other non-dengue febrile illnesses (OFI) and 120 population controls. A strong association between GG/AG genotypes of rs4804803 and risk of DHF was found when compared among DF, OFI and controls (p = 0.004, 3×10−5 and 0.001, respectively). The AA genotype was associated with protection against dengue infection compared with OFI and controls (p = 0.002 and 0.020, respectively). Moreover, MDDCs from individuals with AG genotype with a higher cell surface DC-SIGN expression had a significantly higher TNFα, IL-12p40, and IP-10 production than those with AA genotype in response to dengue infection. However, the viral replication in MDDCs with AG genotype was significantly lower than those with AA genotype. With both genotypes, MDDCs revealed an increase in viral replication following the addition of anti-IP-10 neutralizing antibody. Conclusions/Significance The rs4804803 SNP in the CD209 promoter contributed to susceptibility to dengue infection and complication of DHF. This SNP with AG genotype affects the cell surface DC-SIGN expression related to immune augmentation and less viral replication. Dengue fever (DF) is an arthropod-borne disease that is prevalent in tropical and subtropical regions of the world. DC-SIGN [dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing non-integrin] is a major receptor for dengue infection. DC-SIGN, also called CD209, expresses on dendritic cells (DCs) that bind to ICAM-3, which is expressed on T cells to facilitate the initial interaction between DCs and T cells. Variations in the CD209 promoter (−336 A/G; rs4804803) genotype are involved in the pathogenesis of human infectious diseases. Here we found that patients with dengue hemorrhagic fever (DHF) had a higher frequency of the AG or GG genotype of rs4804803 than DF or controls. Functional studies determined that monocyte-derived DCs (MDDCs) from individuals with AG genotype had significantly higher cell surface DC-SIGN expression, associated with higher TNFα, IL-12p40, and IP-10 production, but lower viral replication than those with AA genotype. An increase in DEN-2 replication in MDDCs was observed following the addition of anti-IP-10 neutralizing antibody. These findings highlight the fact that the rs4804803 SNP in the CD209 promoter is associated with DHF and correlated to DC-SIGN expression and immune augmentation.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center (CGMH-KMC), Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Rong-Fu Chen
- Department of Medical Research, CGMH-KMC, Kaohsiung, Taiwan
| | - Jien-Wei Liu
- Division of Infectious Diseases, Department of Internal Medicine, CGMH-KMC, Kaohsiung, Taiwan
| | - Ing-Kit Lee
- Division of Infectious Diseases, Department of Internal Medicine, CGMH-KMC, Kaohsiung, Taiwan
| | - Chiu-Ping Lee
- Department of Medical Research, CGMH-KMC, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center (CGMH-KMC), Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shau-Ku Huang
- Johns Hopkins Asthma and Allergy Center, Baltimore, Maryland, United States of America
| | - Kuender D. Yang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center (CGMH-KMC), Kaohsiung, Taiwan
- Department of Medical Research, CGMH-KMC, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
14
|
van den Berk LCJ, Roelofs H, Huijs T, Siebers-Vermeulen KGC, Raymakers RA, Kögler G, Figdor CG, Torensma R. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells. Immunology 2010; 128:564-72. [PMID: 19930046 DOI: 10.1111/j.1365-2567.2009.03142.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.
Collapse
Affiliation(s)
- Lieke C J van den Berk
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Berk LCVD, Jansen BJ, Siebers-Vermeulen KG, Netea MG, Latuhihin T, Bergevoet S, Raymakers RA, Kögler G, Figdor CC, Adema GJ, Torensma R. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med 2010. [DOI: 10.1111/j.1582-4934.2008.00653.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Sierra-Filardi E, Estecha A, Samaniego R, Fernández-Ruiz E, Colmenares M, Sánchez-Mateos P, Steinman RM, Granelli-Piperno A, Corbí AL. Epitope mapping on the dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN) pathogen-attachment factor. Mol Immunol 2010; 47:840-8. [DOI: 10.1016/j.molimm.2009.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Revised: 09/20/2009] [Accepted: 09/30/2009] [Indexed: 12/26/2022]
|
17
|
Wilde B, van Paassen P, Damoiseaux J, Heerings-Rewinkel P, van Rie H, Witzke O, Tervaert JWC. Dendritic cells in renal biopsies of patients with ANCA-associated vasculitis. Nephrol Dial Transplant 2009; 24:2151-6. [PMID: 19193740 DOI: 10.1093/ndt/gfp019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) maintain immune tolerance and are able to initiate immune responses. Their involvement in ANCA-associated vasculitis (AAV) is unknown. In this study, the participation of DC subsets is investigated in renal biopsies of AAV patients. METHOD A total of 25 patients with biopsy-proven AAV and five healthy controls (HC) with normal renal histology were included. Renal biopsies were stained for mature (CD208), immature (CD209), plasmacytoid (CD303) and Langerhans (CD1a) DC subsets. Furthermore, T-cells were stained using a T-cell marker (CD3). The interstitial cellular infiltrate was graded semi-quantitatively from 0+ (= absence of cells) to 3+ (= numerous cells). Within the glomeruli, an absolute count was performed for positive cells. RESULTS CD208+ and CD209+ cells were found within patients' glomeruli but not in HC (1 +/- 0.3 versus 0.08 +/- 0.1 cells/glom; 2 +/- 0.3 versus 0.1 +/- 0.07 cells/glom). An average of 0.3 +/- 0.1 cell/glom expressed CD3 in patients while few cells were found in HC (0.1 +/- 0.7 cell/glom). Focal interstitial cellular infiltrates were observed in patients' biopsies but not in HC. Interstitial infiltration with CD3+ and CD209+ cells was assessed at an average of 1+, but some glomeruli and tubuli were surrounded by CD3+ and CD209+ cells forming clusters. Serial sections revealed that CD209+ cells were present in CD3+ rich areas. CONCLUSION Both mature and immature glomerular DCs are found in renal biopsies of patients with AAV. Immature DCs cluster with T-cells in interstitial infiltrates in these biopsies. Since DCs form aggregates in T-cell areas, we hypothesize that these cells interact with each other and are involved in lymphoid neogenesis.
Collapse
Affiliation(s)
- Benjamin Wilde
- Division of Clinical and Experimental Immunology, Department of Internal Medicine, University Hospital Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Grolleau-Julius A, Abernathy L, Harning E, Yung RL. Mechanisms of murine dendritic cell antitumor dysfunction in aging. Cancer Immunol Immunother 2008; 58:1935-9. [PMID: 19082999 DOI: 10.1007/s00262-008-0636-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 11/23/2008] [Indexed: 11/28/2022]
Abstract
Effective cancer immunotherapy depends on the body's ability to generate tumor antigen-presenting cells and tumor-reactive effector lymphocytes. As the most potent antigen presenting cells (APCs), dendritic cells (DCs) are capable of sensitizing T cells to new and recall antigens. Clinical trials of antigen-pulsed autologous DCs have been conducted in patients with a number of hematological and solid cancers, including malignant melanoma, lymphoma, myeloma, and non-small cell lung cancer. These studies suggest that antigen-loaded DC vaccination is a potentially safe and effective cancer therapy. However, the clinical results have been variable. Since the elderly are preferentially affected by diseases targeted by DC-directed immunotherapy, it is quite striking that few studies to date have focused on the effect of aging on DC function, a key aspect of optimal immunotherapy design in an aging population. In the present paper, we will discuss the consequences of aging on murine bone marrow-derived DC function and their use in cancer immunotherapy.
Collapse
Affiliation(s)
- Annabelle Grolleau-Julius
- Divisions of Geriatric Medicine and Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-0940, USA.
| | | | | | | |
Collapse
|
19
|
Grolleau-Julius A, Harning EK, Abernathy LM, Yung RL. Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res 2008; 68:6341-9. [PMID: 18676859 DOI: 10.1158/0008-5472.can-07-5769] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We recently reported that bone marrow-derived dendritic cells (DC) from aged miced are less effective than their young counterparts in inducing the regression of B16-ovalbumin (OVA) melanomas. To examine the underlying mechanisms, we investigated the effect of aging on DC tumor antigen presentation and migration. Although aging does not affect the ability of DCs to present OVA peptide((257-264)), DCs from aged mice are less efficient than those from young mice in stimulating OVA-specific T cells in vitro. Phenotypic analysis revealed a selective decrease in DC-specific/intracellular adhesion molecule type-3-grabbing nonintegrin (DC-SIGN) level in aged DCs. Adoptive transfer experiments showed defective in vivo DC trafficking in aging. This correlates with impaired in vitro migration and defective CCR7 signaling in response to CCL21 in aged DCs. Interestingly, vaccination of young mice using old OVA peptide((257-264))-pulsed DCs (OVA PP-DC) resulted in impaired activation of OVA-specific CD8(+) T cells in vivo. Effector functions of these T cells, as determined by IFN-gamma production and cytotoxic activity, were similar to those obtained from mice vaccinated with young OVA PP-DCs. A decreased influx of intratumor CD8(+) T cells was also observed. Importantly, although defective in vivo migration could be restored by increasing the number of old DCs injected, the aging defect in DC tumor surveillance and OVA-specific CD8(+) T-cell induction remained. Taken together, our findings suggest that defective T-cell stimulation contributes to the observed impaired DC tumor immunotherapeutic response in aging.
Collapse
Affiliation(s)
- Annabelle Grolleau-Julius
- Department of Internal Medicine, Division of Geriatric Medicine, University of Michigan and Geriatric Research Education and Clinical Centers, Ann Arbor Veterans Affairs Health System, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
20
|
Irache JM, Salman HH, Gamazo C, Espuelas S. Mannose-targeted systems for the delivery of therapeutics. Expert Opin Drug Deliv 2008; 5:703-24. [DOI: 10.1517/17425247.5.6.703] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Gijzen K, Raymakers RAP, Broers KM, Figdor CG, Torensma R. Interaction of acute lymphopblastic leukemia cells with C-type lectins DC-SIGN and L-SIGN. Exp Hematol 2008; 36:860-70. [PMID: 18375037 DOI: 10.1016/j.exphem.2008.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 12/13/2022]
Abstract
The C-type lectins DC-SIGN (CD209) and L-SIGN (CD299) recognize defined carbohydrates expressed on pathogens and cells. Those lectins are expressed on dendritic cells (DC) and/or on liver-sinusoidal endothelial cells. Both cell types modulate immune responses. In acute lymphoblastic leukemia (ALL), aberrant glycosylation of blast cells can alter their interaction with the C-type lectins DC-SIGN and L-SIGN, thereby affecting their immunological elimination. We investigated whether recombinant DC-SIGN and L-SIGN bind to blood or bone marrow cells from B- and T-ALL patients and compared that with binding of peripheral blood lymphocytes from healthy donors. It was found that increased binding of ALL cells to DC-SIGN and L-SIGN was observed compared to cells from healthy donors. Furthermore, L-SIGN bound a higher percentage of leukemic and normal cells than DC-SIGN. B-ALL bone marrow cells showed the highest binding to L-SIGN. DC-SIGN bound equally well to B-ALL and T-ALL cells. Within ALL subtypes, DC-SIGN binding was higher with mature T-ALL. Interestingly, our data demonstrate that increased binding of DC-SIGN and L-SIGN to peripheral leukemic cells from B-ALL patients is associated with poor survival. These data demonstrate that high binding of B-ALL peripheral blood cells to DC-SIGN and L-SIGN correlates with poor prognosis. Apparently, when B-ALL cells enter the blood circulation and are able to interact with DC-SIGN and L-SIGN the immune response is shifted toward tolerance. Additional studies are necessary to ascertain the possible role of these results in terms of disease pathogenesis and their potential as target to eradicate leukemic cells.
Collapse
Affiliation(s)
- Karlijn Gijzen
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Grayson MH, Holtzman MJ. Emerging role of dendritic cells in respiratory viral infection. J Mol Med (Berl) 2007; 85:1057-68. [PMID: 17891367 DOI: 10.1007/s00109-007-0212-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/30/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
Respiratory viral infections are a major health problem, especially in the immunocompromised, young, and elderly. In order for the host to effectively clear viral infections, a productive adaptive immune response must be developed. Crucial to the initiation of the adaptive response is the dendritic cell, which induces the proliferation and activation of T cells early in an antiviral response. This review examines the role of lung dendritic cells in the immune response to respiratory viruses. The phenotypic and functional differences between conventional and plasmacytoid dendritic cells are discussed, as are the mechanisms behind homeostatic recruitment of these cells in the normal lung. Focusing on respiratory syncytial virus and influenza, the role of the two dendritic cell subsets during an antiviral response is explored. Through evolution, viruses have developed several mechanisms to interfere with the normal function of dendritic cells and prevent appropriate induction of an adaptive immune response, which are also discussed. Finally, we identify potential targets for future therapeutic strategies to ameliorate disease caused by respiratory virus infection.
Collapse
Affiliation(s)
- Mitchell H Grayson
- Department of Internal Medicine, Washington University School of Medicine, Campus Box 8122, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| | | |
Collapse
|