1
|
Okabe Y. Development and organization of omental milky spots. Immunol Rev 2024; 324:68-77. [PMID: 38662554 DOI: 10.1111/imr.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
The milky spots in omentum are atypical lymphoid tissues that play a pivotal role in regulating immune responses in the peritoneal cavity. The milky spots act as central hubs for collecting antigens and particles from the peritoneal cavity, regulating lymphocyte trafficking, promoting the differentiation and self-renewal of immune cells, and supporting the local germinal centre response. In addition, the milky spots exhibit unique developmental characteristics that combine the features of secondary and tertiary lymphoid tissues. These structures are innately programmed to form during foetal development; however, they can also be formed postnatally in response to peritoneal irritation such as inflammation, infection, obesity, or tumour metastasis. In this review, I discuss emerging perspectives on homeostatic development and organization of the milky spots.
Collapse
Affiliation(s)
- Yasutaka Okabe
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Screening of Sepsis Biomarkers Based on Bioinformatics Data Analysis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6788569. [PMID: 36199375 PMCID: PMC9529510 DOI: 10.1155/2022/6788569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Methods Gene expression profiles of GSE13904, GSE26378, GSE26440, GSE65682, and GSE69528 were obtained from the National Center for Biotechnology Information (NCBI). The differentially expressed genes (DEGs) were searched using limma software package. Gene Ontology (GO) functional analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and protein-protein interaction (PPI) network analysis were performed to elucidate molecular mechanisms of DEGs and screen hub genes. Results A total of 108 DEGs were identified in the study, of which 67 were upregulated and 41 were downregulated. 15 superlative diagnostic biomarkers (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1) for sepsis were identified by bioinformatics analysis. Conclusion 15 hub genes (CCL5, CCR7, CD2, CD27, CD274, CD3D, GNLY, GZMA, GZMH, GZMK, IL2RB, IL7R, ITK, KLRB1, and PRF1) have been elucidated in this study, and these biomarkers may be helpful in the diagnosis and therapy of patients with sepsis.
Collapse
|
3
|
Olson WJ, Jakic B, Labi V, Woelk J, Derudder E, Baier G, Hermann-Kleiter N. A role for the nuclear receptor NR2F6 in peritoneal B cell homeostasis. Front Immunol 2022; 13:845235. [PMID: 36052079 PMCID: PMC9425112 DOI: 10.3389/fimmu.2022.845235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
B cells are key mediators of humoral immunity. Mature B cells fall into various sub-classes that can be separated by their ontogeny, expression of cell surface markers, anatomical location, and function. B1 subsets play important roles in natural immunity and constitute the majority of B cells in newborns. In the adult, B1 cells predominate in the pleural and peritoneal cavities, while the mature B2 follicular subset makes up the major fraction of B cells in lymphoid tissue, although important subsets of antibody-secreting B1 cells are also present at these sites. B1 cells are the main producers of natural IgM but can also contribute to elimination of some pathogens, while B2 cells primarily mediate response to foreign antigens. The differential molecular underpinning of the B1 and B2 subsets remains incompletely understood. Here we demonstrate that germline-deficiency of the orphan nuclear receptor NR2F6 causes a partial loss of B1b and B2 B cells in the peritoneum while leaving peritoneal B1a cells unaltered. A competitive bone marrow chimera in Nr2f6+/+ host mice produced similar numbers of Nr2f6+/+ and Nr2f6-/- peritoneal B1b and B2 cells. The proliferation of Nr2f6-/- peritoneal B cells was not altered, while the migration marker CXCR5 was reduced on all subsets but Beta7-integrin was reduced only on peritoneal B1b and B2 cells. Similarly, B1b and B2 but not B1a cells, exhibited significantly reduced survival.
Collapse
Affiliation(s)
- William J. Olson
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- *Correspondence: William J. Olson, ; Natascha Hermann-Kleiter,
| | - Bojana Jakic
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Labi
- Institute of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Woelk
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Gottfried Baier
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- Translational Cell Genetics, Department of Pharmacology and Genetics, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: William J. Olson, ; Natascha Hermann-Kleiter,
| |
Collapse
|
4
|
Yordanova IA, Jürchott K, Steinfelder S, Vogt K, Krüger U, Kühl AA, Sawitzki B, Hartmann S. The Host Peritoneal Cavity Harbors Prominent Memory Th2 and Early Recall Responses to an Intestinal Nematode. Front Immunol 2022; 13:842870. [PMID: 35418979 PMCID: PMC8996181 DOI: 10.3389/fimmu.2022.842870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal parasitic nematodes affect a quarter of the world’s population, typically eliciting prominent effector Th2-driven host immune responses. As not all infected hosts develop protection against reinfection, our current understanding of nematode-induced memory Th2 responses remains limited. Here, we investigated the activation of memory Th2 cells and the mechanisms driving early recall responses to the enteric nematode Heligmosomoides polygyrus in mice. We show that nematode-cured mice harbor memory Th2 cells in lymphoid and non-lymphoid organs with distinct transcriptional profiles, expressing recirculation markers like CCR7 and CD62-L in the mesenteric lymph nodes (mLN), and costimulatory markers like Ox40, as well as tissue homing and activation markers like CCR2, CD69 and CD40L in the gut and peritoneal cavity (PEC). While memory Th2 cells persist systemically in both lymphoid and non-lymphoid tissues following cure of infection, peritoneal memory Th2 cells in particular displayed an initial prominent expansion and strong parasite-specific Th2 responses during early recall responses to a challenge nematode infection. This effect was paralleled by a significant influx of dendritic cells (DC) and eosinophils, both also appearing exclusively in the peritoneal cavity of reinfected mice. In addition, we show that within the peritoneal membrane lined by peritoneal mesothelial cells (PeM), the gene expression levels of cell adhesion markers VCAM-1 and ICAM-1 decrease significantly in response to a secondary infection. Overall, our findings indicate that the host peritoneal cavity in particular harbors prominent memory Th2 cells and appears to respond directly to H. polygyrus by an early recall response via differential regulation of cell adhesion markers, marking the peritoneal cavity an important site for host immune responses to an enteric pathogen.
Collapse
Affiliation(s)
- Ivet A Yordanova
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Karsten Jürchott
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Katrin Vogt
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrike Krüger
- Core Unite Genomics, Berlin Institute of Health (BIH), Berlin, Germany
| | - Anja A Kühl
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, iPATH.Berlin, Core Unit for Immunopathology for Experimental Models, Berlin, Germany
| | - Birgit Sawitzki
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Hartmann
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
5
|
Riese J, Gromann A, Lührs F, Kleinwort A, Schulze T. Sphingosine-1-Phosphate Receptor Type 4 (S1P 4) Is Differentially Regulated in Peritoneal B1 B Cells upon TLR4 Stimulation and Facilitates the Egress of Peritoneal B1a B Cells and Subsequent Accumulation of Splenic IRA B Cells under Inflammatory Conditions. Int J Mol Sci 2021; 22:ijms22073465. [PMID: 33801658 PMCID: PMC8037865 DOI: 10.3390/ijms22073465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background: Gram-negative infections of the peritoneal cavity result in profound modifications of peritoneal B cell populations and induce the migration of peritoneal B cells to distant secondary lymphoid organs. However, mechanisms controlling the egress of peritoneal B cells from the peritoneal cavity and their subsequent trafficking remain incompletely understood. Sphingosine-1-phosphate (S1P)-mediated signaling controls migratory processes in numerous immune cells. The present work investigates the role of S1P-mediated signaling in peritoneal B cell trafficking under inflammatory conditions. Methods: Differential S1P receptor expression after peritoneal B cell activation was assessed semi‑quantitatively using RT-PCR in vitro. The functional implications of differential S1P1 and S1P4 expression were assessed by transwell migration in vitro, by adoptive peritoneal B cell transfer in a model of sterile lipopolysaccharide (LPS)‑induced peritonitis and in the polymicrobial colon ascendens stent peritonitis (CASP) model. Results: The two sphingosine-1-phosphate receptors (S1PRs) expressed in peritoneal B cell subsets S1P1 and S1P4 are differentially regulated upon stimulation with the TLR4 agonist LPS, but not upon PMA/ionomycin or B cell receptor (BCR) crosslinking. S1P4 deficiency affects both the trafficking of activated peritoneal B cells to secondary lymphoid organs and the positioning of these cells within the functional compartments of the targeted organ. S1P4 deficiency in LPS-activated peritoneal B cells results in significantly reduced numbers of splenic innate response activator B cells. Conclusions: The S1P-S1PR system is implicated in the trafficking of LPS-activated peritoneal B cells. Given the protective role of peritoneal B1a B cells in peritoneal sepsis, further experiments to investigate the impact of S1P4-mediated signaling on the severity and mortality of peritoneal sepsis are warranted.
Collapse
Affiliation(s)
- Janik Riese
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Alina Gromann
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Felix Lührs
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Annabel Kleinwort
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| | - Tobias Schulze
- Experimental Surgical Research Laboratory, Department of General Surgery, Visceral, Thoracic and Vascular Surgery, Universitätsmedizin Greifswald, 17475 Greifswald, Germany
| |
Collapse
|
6
|
Lei ZY, Chen JJ, Cao ZJ, Ao MZ, Yu LJ. Efficacy of Aeschynomene indica L. leaves for wound healing and isolation of active constituent. JOURNAL OF ETHNOPHARMACOLOGY 2019; 228:156-163. [PMID: 30107245 DOI: 10.1016/j.jep.2018.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, the aerial parts of Aeschynomene indica L. (AIL) have been used for wound healing, and to treat urinary tract infection, hepatitis, enteritis, dysentery, nyctalopia, conjunctivitis, urticaria, and furuncle. However, no scientific investigation has been conducted on its wound healing potential. AIM OF THE STUDY To investigate the effects of AIL extract on wound healing, isolate the active constituent and reveal the possible mechanism of enhancing wound healing. MATERIALS AND METHODS The circular excision wound healing model was used to evaluate in vivo wound-healing activity. Hematoxylin and eosin staining was applied to assess inflammatory cells infiltration, angiogenesis, fibroblast proliferation, collagen synthesis, collagen remodeling, and skin appendages generation. Sirius red-picric acid staining was employed for quantitative analysis of the ratio of collagen I/III. Immunohistochemical staining for CD68, CCR7 (CD197), CD163, TGF-β1 and α-SMA was performed to determine macrophages phenotypes transition (M1-to-M2) and prove the scar-improving effect of AIL on wound healing. RESULTS We successfully isolated the active constituent (Sub-Fr0.2) for wound healing from AIL extract, circular excision wound healing experiment and hematoxylin & eosin staining showed Sub-Fr0.2 has a significant promoting effect on wound healing. Results of sirius red-picric acid staining demonstrated a reduced ratio of collagen I/III in the Sub-Fr0.2 group as compared with the vehicle group. Immunohistochemical staining for CD68, CCR7 (CD197), and CD163 in the Sub-Fr0.2 group exhibited an elevated speed of macrophages transiting from M1 phenotype to M2 phenotype, when compared with the vehicle group. Besides, the expression of TGF-β1 and α-SMA were inhibited on wounds treated with the ointment containing Sub-Fr0.2. CONCLUSION Leaves of AIL and its active constituent (Sub-Fr0.2) effectively promoted wound healing and reduced scar formation, this efficacy might be exerted by accelerating macrophages phenotypes transition and inhibiting TGF-β1 and α-SMA expression.
Collapse
Affiliation(s)
- Zhi-Yong Lei
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing-Jing Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi-Jian Cao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming-Zhang Ao
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Long-Jiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
7
|
Srivastava R, Coulon PG, Roy S, Chilukuri S, Garg S, BenMohamed L. Phenotypic and Functional Signatures of Herpes Simplex Virus-Specific Effector Memory CD73 +CD45RA highCCR7 lowCD8 + T EMRA and CD73 +CD45RA lowCCR7 lowCD8 + T EM Cells Are Associated with Asymptomatic Ocular Herpes. THE JOURNAL OF IMMUNOLOGY 2018; 201:2315-2330. [PMID: 30201808 DOI: 10.4049/jimmunol.1800725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
HSV type 1 (HSV-1)-specific CD8+ T cells protect from herpes infection and disease. However, the nature of protective CD8+ T cells in HSV-1 seropositive healthy asymptomatic (ASYMP) individuals (with no history of clinical herpes disease) remains to be determined. In this study, we compared the phenotype and function of HSV-specific CD8+ T cells from HLA-A*02:01-positive ASYMP and symptomatic (SYMP) individuals (with a documented history of numerous episodes of recurrent ocular herpetic disease). We report that although SYMP and ASYMP individuals have similar frequencies of HSV-specific CD8+ T cells, the "naturally" protected ASYMP individuals have a significantly higher proportion of multifunctional HSV-specific effector memory CD8+ T cells (CD73+CD45RAhighCCR7lowCD8+ effector memory RA (TEMRA) and CD73+CD45RAlowCCR7lowCD8+ effector memory (TEM) as compared with SYMP individuals. Similar to humans, HSV-1-infected ASYMP B6 mice had frequent multifunctional HSV-specific CD73+CD8+ T cells in the cornea, as compared with SYMP mice. Moreover, in contrast to wild type B6, CD73-/- deficient mice infected ocularly with HSV-1 developed more recurrent corneal herpetic infection and disease. This was associated with less functional CD8+ T cells in the cornea and trigeminal ganglia, the sites of acute and latent infection. The phenotypic and functional characteristics of HSV-specific circulating and in situ CD73+CD8+ T cells, demonstrated in both ASYMP humans and mice, suggest a positive role for effector memory CD8+ T cells expressing the CD73 costimulatory molecule in the protection against ocular herpes infection and disease. These findings are important for the development of safe and effective T cell-based herpes immunotherapy.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Sumit Garg
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697; and.,Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
8
|
Belikan P, Bühler U, Wolf C, Pramanik GK, Gollan R, Zipp F, Siffrin V. CCR7 on CD4 + T Cells Plays a Crucial Role in the Induction of Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2018; 200:2554-2562. [PMID: 29549177 DOI: 10.4049/jimmunol.1701419] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/14/2018] [Indexed: 01/15/2023]
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disease of the CNS. Myelin-specific CD4+ Th lymphocytes are known to play a major role in both MS and its animal model experimental autoimmune encephalomyelitis (EAE). CCR7 is a critical element for immune cell trafficking and recirculation, that is, lymph node homing, under homeostatic conditions; blocking CCR7+ central memory cells from egress of lymph nodes is a therapeutic approach in MS. To define the effect of CD4+ T cell-specific constitutive deletion of CCR7 in the priming and effector phase in EAE, we used an active EAE approach in T cell reconstituted Rag1-/- mice, as well as adoptive transfer EAE, in which mice received in vitro-primed CCR7-/- or CCR7+/+ myelin Ag TCR-transgenic 2d2 Th17 cells. Two-photon laser scanning microscopy was applied in living anesthetized mice to monitor the trafficking of CCR7-deficient and wild-type CD4+ T cells in inflammatory lesions within the CNS. We demonstrate that CD4+ T cell-specific constitutive deletion of CCR7 led to impaired induction of active EAE. In adoptive transfer EAE, mice receiving in vitro-primed CCR7-/- 2d2 Th17 cells showed similar disease onset as mice adoptively transferred with CCR7+/+ 2d2 Th17 cells. Using two-photon laser scanning microscopy CCR7-/- and CCR7+/+ CD4+ T cells did not reveal differences in motility in either animal model of MS. These findings indicate a crucial role of CCR7 in neuroinflammation during the priming of autoimmune CD4+ T cells but not in the CNS.
Collapse
Affiliation(s)
- Patrick Belikan
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ulrike Bühler
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Christina Wolf
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gautam K Pramanik
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - René Gollan
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Volker Siffrin
- Department of Neurology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
9
|
Li X, Lu T, Xue W, Wang Y, Luo Q, Ge H, Tan R, Shen Y, Xu Q. Small molecule-mediated upregulation of CCR7 ameliorates murine experimental autoimmune encephalomyelitis by accelerating T-cell homing. Int Immunopharmacol 2017; 53:33-41. [DOI: 10.1016/j.intimp.2017.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
|
10
|
Nardone V, Botta C, Caraglia M, Martino EC, Ambrosio MR, Carfagno T, Tini P, Semeraro L, Misso G, Grimaldi A, Boccellino M, Facchini G, Berretta M, Vischi G, Rocca BJ, Barone A, Tassone P, Tagliaferri P, Del Vecchio MT, Pirtoli L, Correale P. Tumor infiltrating T lymphocytes expressing FoxP3, CCR7 or PD-1 predict the outcome of prostate cancer patients subjected to salvage radiotherapy after biochemical relapse. Cancer Biol Ther 2017; 17:1213-1220. [PMID: 27791459 DOI: 10.1080/15384047.2016.1235666] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor immunologic microenvironment is strongly involved in tumor progression and the presence of tumor infiltrating lymphocytes (TIL) with different phenotypes has been demonstrated to be of prognostic relevance in different malignancies. We investigated whether TIL infiltration of tumor tissues could also predict the outcome of prostate cancer patients. To this end, we carried out a retrospective analysis correlating the outcome of locally advanced prostate cancer patients undergone salvage radiotherapy upon relapse after radical surgery with the infiltration by different TIL populations. Twenty-two patients with resectable prostate cancer, with a mean age of 67 (+/-3.93) years, who received salvage radiotherapy with a mean of 69.66 (+/- 3.178) Gy in 8 weeks, between June 1999 and January 2009 and with a median follow up of 123 (+/- 55.82) months, were enrolled in this study. We evaluated, by immunohistochemistry, the intratumoral (t) and peripheral stroma (p) infiltration by CD45, CD3, CD4, CD8, CCR7, FoxP3 or PD-1-positive cells on tumor samples taken at the diagnosis (d) and relapse times (R). We correlated these variables with patients' biochemical progression free survival (bPFS), post-radiotherapy progression free survival (PFS), and overall survival (OS). Substantial changes in the rate of TIL subsets were found between the first and the second biopsy with progressive increase in CD4, CCR7, FoxP3, PD-1+ cells. Our analysis revealed that higher CD8p,R+ and lower PD-1R+ TIL scores correlated to a longer bPFS. Higher CD8p,R+ and CCR7t,R+ TIL scores and lower CD45p,R+ and FoxP3p,R+ TIL scores correlated to a prolonged PFS and OS. These results suggest that the immunological microenvironment of primary tumor is strictly correlated with patient outcome and provide the rationale for immunological treatment of prostate cancer.
Collapse
Affiliation(s)
- Valerio Nardone
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy.,b Tuscany Tumor Institute (ITT) , Firenze , Italy
| | - Cirino Botta
- c Medical Oncology Unit, Department of Clinical and Experimental Medicine , "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Michele Caraglia
- d Department of Biochemistry , Biophysics and General Pathology, Second University of Naples , Naples , Italy
| | - Elodia Claudia Martino
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy
| | - Maria Raffaella Ambrosio
- e Section of Pathology, Department of Medical Biotechnology , University of Siena , Siena , Italy
| | - Tommaso Carfagno
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy.,b Tuscany Tumor Institute (ITT) , Firenze , Italy
| | - Paolo Tini
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy.,b Tuscany Tumor Institute (ITT) , Firenze , Italy
| | - Leonardo Semeraro
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy.,b Tuscany Tumor Institute (ITT) , Firenze , Italy
| | - Gabriella Misso
- d Department of Biochemistry , Biophysics and General Pathology, Second University of Naples , Naples , Italy
| | - Anna Grimaldi
- d Department of Biochemistry , Biophysics and General Pathology, Second University of Naples , Naples , Italy
| | - Mariarosaria Boccellino
- d Department of Biochemistry , Biophysics and General Pathology, Second University of Naples , Naples , Italy
| | - Gaetano Facchini
- f Urogynechological Department , INT Fondazione "G. Pascale " Naples , Italy
| | | | - Gianluca Vischi
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy.,b Tuscany Tumor Institute (ITT) , Firenze , Italy
| | - Bruno Jim Rocca
- e Section of Pathology, Department of Medical Biotechnology , University of Siena , Siena , Italy.,h Pathology Unit , Ospedale di Circolo di Busto Arsizio (VA) Italy
| | - Aurora Barone
- e Section of Pathology, Department of Medical Biotechnology , University of Siena , Siena , Italy
| | - Pierfrancesco Tassone
- c Medical Oncology Unit, Department of Clinical and Experimental Medicine , "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Pierosandro Tagliaferri
- c Medical Oncology Unit, Department of Clinical and Experimental Medicine , "Magna Graecia" University of Catanzaro , Catanzaro , Italy
| | - Maria Teresa Del Vecchio
- e Section of Pathology, Department of Medical Biotechnology , University of Siena , Siena , Italy
| | - Luigi Pirtoli
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy.,b Tuscany Tumor Institute (ITT) , Firenze , Italy
| | - Pierpaolo Correale
- a Radiotherapy Unit, Department of Oncology , Siena University School of Medicine , Italy.,b Tuscany Tumor Institute (ITT) , Firenze , Italy
| |
Collapse
|
11
|
Pastina P, Nardone V, Croci S, Battaglia G, Vanni F, Bellan C, Barbarino M, Ricci V, Costantini S, Capone F, Botta C, Zarone MR, Misso G, Boccellino M, Caraglia M, Giordano A, Paladini P, Tassone P, Tagliaferri P, Cusi MG, Pirtoli L, Correale P. Anti-cancer activity of dose-fractioned mPE +/- bevacizumab regimen is paralleled by immune-modulation in advanced squamous NSLC patients. J Thorac Dis 2017; 9:3123-3131. [PMID: 29221287 DOI: 10.21037/jtd.2017.08.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Results from the BEVA2007 trial, suggest that the metronomic chemotherapy regimen with dose-fractioned cisplatin and oral etoposide (mPE) +/- bevacizumab, a monoclonal antibody to the vascular endothelial growth factor (VEGF), shows anti-angiogenic and immunological effects and is a safe and active treatment for metastatic non-small cell lung cancer (mNSCLC) patients. We carried out a retrospective analysis aimed to evaluate the antitumor effects of this treatment in a subset of patients with squamous histology. Methods Retrospective analysis was carried out in a subset of 31 patients with squamous histology enrolled in the study between September 2007 and September 2015. All of the patients received chemotherapy with cisplatin (30 mg/sqm, days 1-3q21) and oral etoposide (50 mg, days 1-15q21) (mPE) and 14 of them also received bevacizumab 5 mg/kg on the day 3q21 (mPEBev regimen). Results This treatment showed a disease control rate of 71% with a mean progression free survival (PFS) and overall survival (OS) of 13.6 and 17 months respectively. After 4 treatment courses, 6 patients showing a remarkable tumor shrinkage, underwent to radical surgery, attaining a significant advantage in term of survival (P=0.048). Kaplan-Meier and log-rank test identified the longest survival in patients presenting low baseline levels in neutrophil-to-lymphocyte ratio (NLR) (P=0.05), interleukin (IL) 17A (P=0.036), regulatory-T-cells (Tregs) (P=0.020), and activated CD83+ dendritic cells (DCs) (P=0.03). Conclusions These results suggest that the mPE +/- bevacizumab regimen is feasible and should be tested in comparative trials in advanced squamous-NSCLC (sqNSCLC). Moreover, its immune-biological effects strongly suggest the investigation in sequential combinations with immune check-point inhibitors.
Collapse
Affiliation(s)
- Pierpaolo Pastina
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Valerio Nardone
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Stefania Croci
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Giuseppe Battaglia
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Francesca Vanni
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Cristiana Bellan
- Pathology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Marcella Barbarino
- Pathology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Veronica Ricci
- Radiology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Francesca Capone
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS, Napoli, Italy
| | - Cirino Botta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Mayra Rachele Zarone
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosaria Boccellino
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Pathology Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Piero Paladini
- Unit of Thoracic Surgery, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Maria Grazia Cusi
- Microbiology and Virology Unit, Department of Medical Biotechnology, Siena University, Siena, Italy
| | - Luigi Pirtoli
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| | - Pierpaolo Correale
- Radiotherapy Unit, Department of Medicine, Surgery, and Neuroscience, Siena University, Siena, Italy
| |
Collapse
|
12
|
Ernandez T, Mayadas TN. The Changing Landscape of Renal Inflammation. Trends Mol Med 2016; 22:151-163. [PMID: 26778189 DOI: 10.1016/j.molmed.2015.12.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 12/11/2022]
Abstract
Kidney inflammation is a major contributor to progressive renal injury, leading to glomerulonephritis (GN) and chronic kidney disease. We review recent advances in our understanding of leukocyte accumulation in the kidney, emphasizing key chemokines involved in GN. We discuss features of renal inflammation such as the evolving concept of immune cell plasticity. We also describe certain aspects of organ-specific tissue microenvironments in shaping immune cell responses, as well as the current knowledge of how regulatory T lymphocytes impact on other immune effector cell populations to control inflammation. It is clear that present and future research in these areas may contribute to the development of novel targeted therapeutics, with the hope of alleviating the burden of end-stage renal disease (ESRD).
Collapse
Affiliation(s)
- Thomas Ernandez
- Service of Nephrology, Department of Medical Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Tanya Norton Mayadas
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Herter JM, Grabie N, Cullere X, Azcutia V, Rosetti F, Bennett P, Herter-Sprie GS, Elyaman W, Luscinskas FW, Lichtman AH, Mayadas TN. AKAP9 regulates activation-induced retention of T lymphocytes at sites of inflammation. Nat Commun 2015; 6:10182. [PMID: 26680259 PMCID: PMC4703868 DOI: 10.1038/ncomms10182] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/12/2015] [Indexed: 12/14/2022] Open
Abstract
The mechanisms driving T cell homing to lymph nodes and migration to tissue are well described but little is known about factors that affect T cell egress from tissues. Here, we generate mice with a T cell-specific deletion of the scaffold protein A kinase anchoring protein 9 (AKAP9) and use models of inflammatory disease to demonstrate that AKAP9 is dispensable for T cell priming and migration into tissues and lymph nodes, but is required for T cell retention in tissues. AKAP9 deficiency results in increased T cell egress to draining lymph nodes, which is associated with impaired T cell re-activation in tissues and protection from organ damage. AKAP9-deficient T cells exhibit reduced microtubule-dependent recycling of TCRs back to the cell surface and this affects antigen-dependent activation, primarily by non-classical antigen-presenting cells. Thus, AKAP9-dependent TCR trafficking drives efficient T cell re-activation and extends their retention at sites of inflammation with implications for disease pathogenesis. A-kinase anchoring protein 9 (AKAP9) is a scaffold protein that binds signalling proteins and regulates microtubules. Here the authors show that during inflammation AKAP9 in T cells is required for their reactivation and retention at the inflammation site and that its deletion protects from inflammation-induced organ damage.
Collapse
Affiliation(s)
- Jan M Herter
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Nir Grabie
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Xavier Cullere
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Veronica Azcutia
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Florencia Rosetti
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Paul Bennett
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Grit S Herter-Sprie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Avenue, Boston, Massachusetts 02115, USA
| | - Wassim Elyaman
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Francis W Luscinskas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Andrew H Lichtman
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| | - Tanya N Mayadas
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Phenotypic and functional characterization of herpes simplex virus glycoprotein B epitope-specific effector and memory CD8+ T cells from symptomatic and asymptomatic individuals with ocular herpes. J Virol 2015; 89:3776-92. [PMID: 25609800 DOI: 10.1128/jvi.03419-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) glycoprotein B (gB)-specific CD8(+) T cells protect mice from herpes infection and disease. However, whether and which HSV-1 gB-specific CD8(+) T cells play a key role in the "natural" protection seen in HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who have never had clinical herpes disease) remain to be determined. In this study, we have dissected the phenotypes and the functions of HSV-1 gB-specific CD8(+) T cells from HLA-A*02:01 positive, HSV-1 seropositive ASYMP and symptomatic (SYMP) individuals (with a history of numerous episodes of recurrent ocular herpes disease). We found the following. (i) Healthy ASYMP individuals maintained a significantly higher proportion of differentiated HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)). In contrast, SYMP patients had frequent less-differentiated central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)). (ii) ASYMP individuals had significantly higher proportions of multifunctional effector CD8(+) T cells which responded mainly to gB342-350 and gB561-569 "ASYMP" epitopes, and simultaneously produced IFN-γ, CD107(a/b), granzyme B, and perforin. In contrast, effector CD8(+) T cells from SYMP individuals were mostly monofunctional and were directed mainly against nonoverlapping gB17-25 and gB183-191 "SYMP" epitopes. (iii) Immunization of an HLA-A*02:01 transgenic mouse model of ocular herpes with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong CD8(+) T cell-dependent protective immunity against ocular herpes infection and disease. Our findings provide insights into the role of HSV-specific CD8(+) TEM cells in protection against herpes and should be considered in the development of an effective vaccine. IMPORTANCE A significantly higher proportion of differentiated and multifunctional HSV-1 gB-specific effector memory CD8(+) T cells (TEM cells) (CD45RA(low) CCR7(low) CD44(high) CD62L(low)) were found in healthy ASYMP individuals who are seropositive for HSV-1 but never had any recurrent herpetic disease, while there were frequent less-differentiated and monofunctional central memory CD8(+) T cells (TCM cells) (CD45RA(low) CCR7(high) CD44(low) CD62L(high)) in SYMP patients. Immunization with "ASYMP" CD8(+) TEM cell epitopes, but not with "SYMP" CD8(+) TCM cell epitopes, induced a strong protective HSV-specific CD8(+) T cell response in HLA-A*02:01 transgenic mice. These findings are important for the development of a safe and effective T cell-based herpes vaccine.
Collapse
|
15
|
Ramirez PW, Famiglietti M, Sowrirajan B, DePaula-Silva AB, Rodesch C, Barker E, Bosque A, Planelles V. Downmodulation of CCR7 by HIV-1 Vpu results in impaired migration and chemotactic signaling within CD4⁺ T cells. Cell Rep 2014; 7:2019-30. [PMID: 24910430 DOI: 10.1016/j.celrep.2014.05.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/31/2013] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
Abstract
The chemokine receptor CCR7 plays a crucial role in the homing of central memory and naive T cells to peripheral lymphoid organs. Here, we show that the HIV-1 accessory protein Vpu downregulates CCR7 on the surface of CD4(+) T cells. Vpu and CCR7 were found to specifically interact and colocalize within the trans-Golgi network, where CCR7 is retained. Downmodulation of CCR7 did not involve degradation or endocytosis and was strictly dependent on Vpu expression. Stimulation of HIV-1-infected primary CD4(+) T cells with the CCR7 ligand CCL19 resulted in reduced mobilization of Ca(2+), reduced phosphorylation of Erk1/2, and impaired migration toward CCL19. Specific amino acid residues within the transmembrane domain of Vpu that were previously shown to be critical for BST-2 downmodulation (A14, A18, and W22) were also necessary for CCR7 downregulation. These results suggest that BST-2 and CCR7 may be downregulated via similar mechanisms.
Collapse
Affiliation(s)
- Peter W Ramirez
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Marylinda Famiglietti
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; School of Medicine, Università Vita-Salute San Raffaele, 20132 Milan, Italy; AIDS Immunopathogenesis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Bharatwaj Sowrirajan
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ana Beatriz DePaula-Silva
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Christopher Rodesch
- Department of Core Facilities, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Edward Barker
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Alberto Bosque
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
16
|
CXCR4 is dispensable for T cell egress from chronically inflamed skin via the afferent lymph. PLoS One 2014; 9:e95626. [PMID: 24752354 PMCID: PMC3994085 DOI: 10.1371/journal.pone.0095626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
T cell recirculation through extralymphoid tissues is essential to immune surveillance, host defense and inflammation. In this process, T cells enter the tissue from the blood and subsequently leave via the afferent lymph. In the absence of inflammation, T cells require CCR7 expression to egress from the skin or lung, which is consistent with the constitutive expression of the CCR7 ligand CCL21 on lymphatic endothelium. However, during chronic inflammation alternative chemoattractants come into play, allowing Ccr7-deficient (Ccr7−/−) T cells to egress efficiently from affected skin. As T cell egress from inflamed sites is a potential control point of the inflammatory response, we aimed to determine alternative T cell exit receptors using a mouse and a sheep model. We show that CCR7+ and CCR7– T cells exiting from the chronically inflamed skin were highly responsive to the CXCR4 ligand CXCL12, which was induced in the lymphatics in the inflamed site. Based on these findings, we hypothesized that CXCR4 mediates T cell egress from inflamed skin. However, pharmacological inhibition of CXCR4 did not affect the tissue egress of wildtype or Ccr7−/− CD4 and CD8 T cells after adoptive transfer into chronically inflamed skin. Similarly, adoptively transferred Cxcr4−/− Ccr7−/− and Ccr7−/− T cells egressed from the inflamed skin equally well. Based on these data, we conclude that, while CXCR4 might play an essential role for other cell types that enter the afferent lymphatics, it is dispensable for T cell egress from the chronically inflamed skin.
Collapse
|
17
|
Castro R, Bromage E, Abós B, Pignatelli J, González Granja A, Luque A, Tafalla C. CCR7 is mainly expressed in teleost gills, where it defines an IgD+IgM- B lymphocyte subset. THE JOURNAL OF IMMUNOLOGY 2013; 192:1257-66. [PMID: 24353268 DOI: 10.4049/jimmunol.1302471] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine receptor CCR7, the receptor for both CCL19 and CCL21 chemokines, regulates the recruitment and clustering of circulating leukocytes to secondary lymphoid tissues, such as lymph nodes and Peyer's patches. Even though teleost fish do not have either of these secondary lymphoid structures, we have recently reported a homolog to CCR7 in rainbow trout (Oncorhynchus mykiss). In the present work, we have studied the distribution of leukocytes bearing extracellular CCR7 in naive adult tissues by flow cytometry, observing that among the different leukocyte populations, the highest numbers of cells with membrane (mem)CCR7 were recorded in the gill (7.5 ± 2% CCR7(+) cells). In comparison, head kidney, spleen, thymus, intestine, and peripheral blood possessed <5% CCR7(+) cells. When CCR7 was studied at early developmental stages, we detected a progressive increase in gene expression and protein CCR7 levels in the gills throughout development. Surprisingly, the majority of the CCR7(+) cells in the gills were not myeloid cells and did not express membrane CD8, IgM, nor IgT, but expressed IgD on the cell surface. In fact, most IgD(+) cells in the gills expressed CCR7. Intriguingly, the IgD(+)CCR7(+) population did not coexpress memIgM. Finally, when trout were bath challenged with viral hemorrhagic septicemia virus, the number of CCR7(+) cells significantly decreased in the gills while significantly increased in head kidney. These results provide evidence of the presence of a novel memIgD(+)memIgM(-) B lymphocyte subset in trout that expresses memCCR7 and responds to viral infections. Similarities with IgD(+)IgM(-) subsets in mammals are discussed.
Collapse
Affiliation(s)
- Rosario Castro
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación Agraria y Alimentaria, Valdeolmos, Madrid 28130, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Comerford I, Harata-Lee Y, Bunting MD, Gregor C, Kara EE, McColl SR. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system. Cytokine Growth Factor Rev 2013; 24:269-83. [PMID: 23587803 DOI: 10.1016/j.cytogfr.2013.03.001] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/05/2013] [Indexed: 12/29/2022]
Abstract
The chemokine receptor CCR7 and its ligands CCL19 and CCL21 control a diverse array of migratory events in adaptive immune function. Most prominently, CCR7 promotes homing of T cells and DCs to T cell areas of lymphoid tissues where T cell priming occurs. However, CCR7 and its ligands also contribute to a multitude of adaptive immune functions including thymocyte development, secondary lymphoid organogenesis, high affinity antibody responses, regulatory and memory T cell function, and lymphocyte egress from tissues. In this survey, we summarise the role of CCR7 in adaptive immunity and describe recent progress in understanding how this axis is regulated. In particular we highlight CCX-CKR, which scavenges both CCR7 ligands, and discuss its emerging significance in the immune system.
Collapse
Affiliation(s)
- Iain Comerford
- The Chemokine Biology Laboratory, School of Molecular and Biomedical Science, University of Adelaide, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Guarding the perimeter: protection of the mucosa by tissue-resident memory T cells. Mucosal Immunol 2013; 6:14-23. [PMID: 23131785 PMCID: PMC4034055 DOI: 10.1038/mi.2012.96] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mucosal tissues are continually bombarded with infectious agents seeking to gain entry into the body. The absence of a tough physical exterior layer surrounding these tissues creates a unique challenge for the immune system, which manages to provide broad protection against a plethora of different organisms with the aid of special adaptations that augment immunity at these vulnerable sites. For example, specialized populations of memory T lymphocytes reside at initial sites of pathogen entry into the body, where they provide an important protective barrier. Similar anatomically-confined populations of pathogen-specific CD8 T cells can be found near the outer margins of the body following recovery from a variety of local infections, where they share very similar phenotypic characteristics. How these tissue-resident T cells are retained in a single anatomic location where they can promote immunity is beginning to be defined. Here, we will review current knowledge of the mechanisms that help establish and maintain these regional lymphocytes in the mucosal tissues and discuss relevant data that enhance our understanding of the contribution of these lymphocyte populations to protective immunity against infectious diseases.
Collapse
|
20
|
Burger JA. The CLL cell microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 792:25-45. [PMID: 24014291 DOI: 10.1007/978-1-4614-8051-8_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cross talk between CLL cells and accessory stromal cells in specialized tissue microenvironments, such as the secondary lymphoid organs, favors CLL progression by promoting malignant B cell growth and drug resistance. Disrupting the cross talk between CLL cells and their milieu is an attractive, novel strategy for treating CLL patients. This chapter summarizes current knowledge about cellular and molecular interactions between CLL cells and their supportive tissue microenvironment and the therapeutic targets that are emerging, focusing on the CXCR4-CXCL12 axis and small molecule inhibitors that are targeting the B cell receptor-associated kinases SYK, BTK, and PI3Kδ. Clinically relevant aspects of these new therapeutics will be discussed, along with an outlook into future biologically oriented therapeutic strategies. The rapid progress in dissecting the CLL microenvironment and the promising early results of these new targeted treatments in CLL indicate that CLL has become a role model for microenvironment-dependent cancers.
Collapse
Affiliation(s)
- Jan A Burger
- Unit 428, Department of Leukemia, The University of Texas MD Anderson Cancer Center, 301402, Houston, TX, 77230-1402, USA,
| |
Collapse
|
21
|
Benito-Miguel M, García-Carmona Y, Balsa A, Bautista-Caro MB, Arroyo-Villa I, Cobo-Ibáñez T, Bonilla-Hernán MG, de Ayala CP, Sánchez-Mateos P, Martín-Mola E, Miranda-Carús ME. IL-15 expression on RA synovial fibroblasts promotes B cell survival. PLoS One 2012; 7:e40620. [PMID: 22792388 PMCID: PMC3392224 DOI: 10.1371/journal.pone.0040620] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/11/2012] [Indexed: 02/03/2023] Open
Abstract
Introduction The purpose of this study was to examine the role of RA Synovial Fibroblast (RASFib) IL-15 expression on B cell survival. Methods Magnetically sorted peripheral blood memory B cells from 15 healthy subjects were cocultured with RASFib. Results RASFib constitutively expressed membrane IL-15. Survival of isolated B cells cultured for 6 days, below 5%, was extended in coculture with RASFib to 52+/−8% (p<0.001). IL-15 neutralizing agents but not isotype controls, reduced this rate to 31+/−6% (p<0.05). Interestingly, rhIL-15 had no effect on isolated B cells but significantly increased their survival in coculture with RASFib. In parallel, B cell IL-15R chains were upregulated in cocultures. BAFF and VCAM-1, that are expressed on RASFib, were tested as potential candidates involved in upregulating B cell IL-15R. Culture of B cells in the presence of rhBAFF or rhVCAM-1 resulted in significantly increased survival, together with upregulation of all three IL-15R chains; in parallel, rhIL-15 potentiated the anti-apoptotic effect of BAFF and VCAM-1. Both BAFF and VCAM-1 neutralizing agents downmodulated the effect of RASFib on B cell survival and IL-15R expression. In parallel, rhIL-15 had a lower effect on the survival of B cells cocultured with RASFib in the presence of BAFF or VCAM-1 neutralizing agents. Peripheral blood B cells from 15 early RA patients demonstrated an upregulated IL-15R and increased survival in cocultures. Conclusion IL-15 expression on RASFib significantly contributes to the anti-apoptotic effect of RASFib on B cells. IL-15 action is facilitated by BAFF and VCAM-1 expressed on RASFib, through an upregulation of IL-15R chains.
Collapse
Affiliation(s)
| | | | - Alejandro Balsa
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | | | - Irene Arroyo-Villa
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | - Paloma Sánchez-Mateos
- Laboratorio de Inmuno-oncología, Hospital General Universitario Gregorio Marañón Madrid, Spain
| | - Emilio Martín-Mola
- Department of Rheumatology, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
22
|
CCR7 deficiency causes diarrhea associated with altered ion transport in colonocytes in the absence of overt colitis. Mucosal Immunol 2012; 5:377-87. [PMID: 22395421 DOI: 10.1038/mi.2012.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The chemokine receptor CCR7 is a central regulator in the maintenance of cellular homeostasis of mucosal tissues. CCR7⁻/⁻ mice develop autoimmune gastritis and exocrinopathy accompanied by the formation of mucosal tertiary lymphoid follicles. Here we found that CCR7-deficient mice frequently suffered from chronic diarrhea linked with increased gastrointestinal motility and the development of severe anorectal prolapse. Enhanced formation of intestinal lymphoid follicles was associated with an elevated proportion of activated colonic T cells and increased production of the cytokine interleukin (IL)-1β. To uncover the pathomechanisms of diarrhea in CCR7⁻/⁻ mice, colonic epithelial barrier and ion channel activities were analyzed in Ussing chambers. Although overt acute colitis was absent, CCR7 deficiency resulted in reduced electrogenic sodium absorption and colonic chloride secretion. As it is known that IL-1β regulates epithelial sodium channel (ENaC) activity, these data imply a causal link between CCR7 expression, IL-1β level, and Na⁺ malabsorption owing to altered ENaC expression and diarrhea.
Collapse
|
23
|
Noor S, Wilson EH. Role of C-C chemokine receptor type 7 and its ligands during neuroinflammation. J Neuroinflammation 2012; 9:77. [PMID: 22533989 PMCID: PMC3413568 DOI: 10.1186/1742-2094-9-77] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/25/2012] [Indexed: 01/14/2023] Open
Abstract
For decades, chemokines and their receptors have received a great deal of attention for their multiple roles in controlling leukocyte functions during inflammation and immunity. The ability of chemokines to convey remarkably versatile but context-specific signals identifies them as powerful modulators of immune responses generated in response to diverse pathogenic or non-infectious insults. A number of recent studies have speculated that the C-C chemokine receptor type 7 (CCR7), plays important roles in immune-cell trafficking in various tissue compartments during inflammation and in immune surveillance. Using computational modeling and microfluidics-based approaches, recent studies have explored leukocyte migration behavior in response to CCR7 ligands in a complex chemokine environment existing with other coexisting chemokine fields. In this review, we summarize the current understanding of the effects of soluble versus immobilized ligands and of the downstream signaling pathways of CCR7 that control leukocyte motility, directionality, and speed. This review also integrates the current knowledge about the role of CCR7 in coordinating immune responses between secondary lymphoid organs and peripheral tissue microenvironments during primary or secondary antigen encounters. CCR7 seems to influence distinct immunological events during inflammatory responses in the central nervous system (CNS) including immune-cell entry and migration, and neuroglial interactions. The clinical and pathological outcome may vary depending on its contribution in the inflamed CNS microenvironment. Understanding these mechanisms has direct implications for therapeutic developments favoring more protective and efficient immune responses.
Collapse
Affiliation(s)
- Shahani Noor
- Division of Biomedical Sciences, Center for Glial-Neuronal Interactions, University of California Riverside, 900 University Ave, Riverside, CA 92521, USA
| | | |
Collapse
|
24
|
Correale P, Rotundo MS, Botta C, Del Vecchio MT, Ginanneschi C, Licchetta A, Conca R, Apollinari S, De Luca F, Tassone P, Tagliaferri P. Tumor infiltration by T lymphocytes expressing chemokine receptor 7 (CCR7) is predictive of favorable outcome in patients with advanced colorectal carcinoma. Clin Cancer Res 2012; 18:850-7. [PMID: 22142823 DOI: 10.1158/1078-0432.ccr-10-3186] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE An efficient adaptive immunity is critical for a longer survival in cancer. We investigated the prognostic value of tumor infiltration by CD8(+) T cells expressing the chemokine-receptor-7 (T(ccr7)) and the correlation between tumor infiltration by T(ccr7) and regulatory CD4(+)FoxP3(+) T cells (T(reg)) in 76 metastatic colorectal cancer (mCRC) patients enrolled in a phase III trial. EXPERIMENTAL DESIGN T(ccr7) and T(reg) cell infiltration in tumor samples was quantified by immunohistochemistry. The correlation among T(ccr7), T(reg) tumor infiltration, and patients' outcome was evaluated. RESULTS High T(ccr7) tumor infiltration was predictive of prolonged OS [high vs. low T(ccr7) score: median 38 months (95% CI: 24.5-51.4) vs. 20 months (95% CI: 11.4-28.5); HR = 0.48 (95% CI: 0.24-0.96); P = 0.03] and prolonged progression-free survival [PFS; high vs. low T(ccr7) score: median 12 months (95% CI: 7.7-16.2) vs. 7 months (95% CI: 5.2-8.7); HR = 0.54 (95% CI: 0.28-1.01); P = 0.01] after front-line chemotherapy. Regression analysis did not show correlation between T(ccr7) and T(reg) infiltration levels. However, the cluster of patients showing concomitant high infiltration by both T(ccr7) and T(reg) disclosed a favorable outcome [double high vs. double low tumor infiltration score: median OS = 35 months (95% CI: 20.8-49.1) vs. 17 months (95% CI: 4.6-29.3); HR = 0.32 (95% CI: 0.12-0.87); P = 0.02 and median PFS = 11 months (95% CI: 9.4-12.5) vs. 5 months (95% CI: 2.2-7.7); HR = 0.43 (95% CI: 0.17-1.06); P = 0.01]. CONCLUSIONS High T(ccr7) tumor infiltration score is a favorable prognostic factor for mCRC. Our findings underline the relevance of microenvironment-related immunologic events for patient outcome.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Medical Oncology Unit, Oncology Department, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Manifestation of spontaneous and early autoimmune gastritis in CCR7-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:754-65. [PMID: 21801869 DOI: 10.1016/j.ajpath.2011.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/16/2011] [Accepted: 04/12/2011] [Indexed: 11/20/2022]
Abstract
Autoimmune gastritis is a common autoimmune disorder characterized by chronic inflammatory cell infiltrates, atrophy of the corpus and fundus, and the occurrence of autoantibodies to parietal cell antigen. In CCR7-deficient mice, autoimmune gastritis developed spontaneously and was accompanied by metaplasia of the gastric mucosa and by the formation of tertiary lymphoid organs at gastric mucosal sites. T cells of CCR7-deficient mice showed an activated phenotype in the gastric mucosa, mesenteric lymph nodes, and peripheral blood. In addition, elevated serum IgG levels specific to gastric parietal cell antigen were detected. Because the role of organized lymphocytic aggregates at this inflammatory site is not completely understood, we first analyzed the cellular requirements for the formation of these structures. Autoreactive CD4(+) T cells were pivotal for tertiary lymphoid follicle formation, most likely in cooperation with dendritic cells, macrophages, and B cells. Second, we analyzed the necessity of secondary lymph nodes and tertiary lymphoid organs for the development of autoimmune gastritis using CCR7 single- and CCR7/lymphotoxin α double-deficient mice. Strikingly, manifestation of autoimmune gastritis was observed in the absence of secondary lymph nodes and preceded the development of tertiary lymphoid organs. Taken together, these findings identify an inflammatory process where gastric autoreactive T cells independent of organized tertiary lymphoid organs and classic lymph nodes can induce and maintain autoimmune gastritis.
Collapse
|
26
|
Mueller C, Schultze-Mosgau S. Histomorphometric analysis of the phenotypical differentiation of recruited macrophages following subcutaneous implantation of an allogenous acellular dermal matrix. Int J Oral Maxillofac Surg 2011; 40:401-7. [DOI: 10.1016/j.ijom.2010.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 08/16/2010] [Accepted: 10/27/2010] [Indexed: 12/12/2022]
|
27
|
Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice. Blood 2011; 117:5413-24. [PMID: 21450903 DOI: 10.1182/blood-2010-11-317115] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mouse innate-like B cells are a heterogeneous collection of multifunctional cells that control infection, play housekeeping roles, contribute to adaptive immunity, and suppress inflammation. We show that, among leukocytes, chemokine internalization by the D6 receptor is a unique and universal feature of all known innate-like B-cell populations and, to our knowledge, the most effective unifying marker of these cells. Moreover, we identify novel D6(active) B1-cell subsets, including those we term B1d, which lack CD5 and CD11b but exhibit typical B1-cell properties, including spontaneous ex vivo production of IgM, IL-10, and anti-phosphorylcholine antibody. The unprecedented opportunity to examine D6 on primary cells has allowed us to clarify its ligand specificity and show that, consistent with a scavenging role, D6 internalizes chemokines but cannot induce Ca(2+) fluxes or chemotaxis. Unexpectedly, however, D6 can also suppress the function of CXCR5, a critical chemokine receptor in innate-like B-cell biology. This is associated with a reduction in B1 cells and circulating class-switched anti-phosphorylcholine antibody in D6-deficient mice. Therefore, in the present study, we identify a unifying marker of innate-like B cells, describe novel B1-cell subsets, reveal a dual role for D6, and provide the first evidence of defects in resting D6-deficient mice.
Collapse
|
28
|
Burger JA. Chemokines and chemokine receptors in chronic lymphocytic leukemia (CLL): from understanding the basics towards therapeutic targeting. Semin Cancer Biol 2010; 20:424-30. [PMID: 20883788 DOI: 10.1016/j.semcancer.2010.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 09/16/2010] [Accepted: 09/21/2010] [Indexed: 02/03/2023]
Abstract
Chemokines and their receptors organize the recruitment and positioning of cells at each stage of the immune response, a system critically dependent upon coordination to get the right cells to the right place at the right time. Chemokine receptors expressed on CLL B cells are thought to function in a similar fashion, regulating the trafficking of the leukemia cells between blood, lymphoid organs, and the bone marrow, and within sub compartments within these tissues, in concert with adhesion molecules and other guidance cues. CLL cells not only respond to chemokines secreted in the microenvironment, the leukemia cells also secrete chemokines in response to external signals, such as B cell receptor engagement. These CLL cell-derived chemokines facilitate interactions between CLL cells, T cells, and other immune cells that shape the CLL microenvironment. CXCR4, the most prominent chemokine receptor in CLL, is now targeted in a first clinical trial, emphasizing that chemokines and their receptors have become a highly dynamic translational research field.
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77230, USA.
| |
Collapse
|