1
|
Niedźwiedź M, Skibińska M, Ciążyńska M, Noweta M, Czerwińska A, Krzyścin J, Narbutt J, Lesiak A. Psoriasis and Seasonality: Exploring the Genetic and Epigenetic Interactions. Int J Mol Sci 2024; 25:11670. [PMID: 39519223 PMCID: PMC11547062 DOI: 10.3390/ijms252111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Psoriasis is a multifactorial, chronic, and inflammatory disease that severely impacts patients' quality of life. The disease is caused by genetic irregularities affected by epigenetic and environmental factors. Some of these factors may include seasonal changes, such as solar radiation, air pollution, and humidity, and changes in circadian rhythm, especially in the temporal and polar zones. Thus, some psoriasis patients report seasonal variability of symptoms. Through a comprehensive review, we aim to delve deeper into the intricate interplay between seasonality, environmental factors, and the genetic and epigenetic landscape of psoriasis. By elucidating these complex relationships, we strive to provide insights that may inform targeted interventions and personalized management strategies for individuals living with psoriasis.
Collapse
Affiliation(s)
- Michał Niedźwiedź
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- International Doctoral School, Medical University of Lodz, 90-419 Lodz, Poland
| | - Małgorzata Skibińska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Magdalena Ciążyńska
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Marcin Noweta
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Agnieszka Czerwińska
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Janusz Krzyścin
- Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland; (A.C.); (J.K.)
| | - Joanna Narbutt
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
| | - Aleksandra Lesiak
- Department of Dermatology, Paediatric Dermatology and Oncology, Medical University of Lodz, 90-419 Lodz, Poland; (M.S.); (M.C.); (M.N.); (J.N.); (A.L.)
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders, Medical University of Lodz, 90-419 Lodz, Poland
| |
Collapse
|
2
|
Karatas O, Akcakavak G. An immunohistochemical study on the evaluation of mast cell, interleukin 17 and interleukin 1β profile in contagious caprine pleuropneumonia. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:515-521. [PMID: 39588464 PMCID: PMC11585848 DOI: 10.30466/vrf.2024.2023580.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/07/2024] [Indexed: 11/27/2024]
Abstract
Contagious caprine pleuropneumonia (CCPP) in goats is defined as a highly contagious and rapidly spreading mycoplasmal disease that is now among the leading causes of major economic losses on many continents (Asia, Africa and the Middle East). In this study, we aimed to evaluate immunohistochemically mast cells (MCs) profile and local interleukin (IL)-17 and IL-1β protein expressions in naturally infected CCPP according to the course of the inflammation (peracute-acute, subacute-chronic). The material of the study consisted of 40 naturally infected CCPP and 6 healthy control goat lung tissues. Appropriate samples were taken from the necropsied goats and subjected to histopathological and immunohistochemical examination. In the histopathological examination of the samples, it was determined that 29 samples had a peracute-acute course and 11 had a subacute-chronic course. In immuno-histochemical examination, MC profile and local IL-17 and IL-1β protein expressions were evaluated in the peracute-acute and subacute-chronic course. Immunohistochemically, significant increases in MC number, local IL-17 and IL-1β scores were detected in the peracute-acute course compared to the control group. There were significant decreases in the relevant scores in the subacute-chronic course compared to the peracute-acute course. Current findings indicated that MC, IL-17, and IL-1β expressions played important roles in the pathogenesis of infection in naturally infected CCPP, especially in the peracute-acute course. Additionally, MC profile was evaluated for the first time in naturally infected CCPP.
Collapse
Affiliation(s)
- Ozhan Karatas
- Department of Pathology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Türkiye;
| | - Gokhan Akcakavak
- Department of Pathology, Faculty of Veterinary Medicine, Aksaray University, Aksaray, Türkiye.
| |
Collapse
|
3
|
Ma Y, Li B, Zhao X, Lu Y, Li X, Zhang J, Wang Y, Zhang J, Wang L, Meng S, Hao J. Computational modeling of mast cell tryptase family informs selective inhibitor development. iScience 2024; 27:110739. [PMID: 39280611 PMCID: PMC11396024 DOI: 10.1016/j.isci.2024.110739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/13/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Mast cell tryptases, a family of serine proteases involved in inflammatory responses and cancer development, present challenges in structural characterization and inhibitor development. We employed state-of-the-art protein structure prediction algorithms to model the three-dimensional structures of tryptases α, β, δ, γ, and ε with high accuracy. Computational docking identified potential substrates and inhibitors, suggesting overlapping yet distinct activities. Tryptases β, δ, and ε were predicted to act on phenolic compounds, with β and ε additionally hydrolyzing cyanides. Tryptase δ may possess unique formyl-CoA dehydrogenase activity. Virtual screening revealed 63 compounds exhibiting strong binding to tryptase β (TPSB2), 12 exceeding the affinity of the known inhibitor. Notably, the top hit (3-chloro-4-methylbenzimidamide) displayed over 10-fold selectivity for tryptase β over other isoforms. Our integrative approach combining protein modeling, functional annotation, and molecular docking provides a framework for characterizing tryptase isoforms and developing selective inhibitors of therapeutic potential in inflammatory and cancer conditions.
Collapse
Affiliation(s)
- Ying Ma
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Bole Li
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiangqin Zhao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yi Lu
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Xuesong Li
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifei Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lulu Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Shuai Meng
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
4
|
Tse BCY, Ferguson AL, Koay YC, Grau GE, Don AS, Byrne SN. Exposure to solar ultraviolet radiation establishes a novel immune suppressive lipidome in skin-draining lymph nodes. Front Immunol 2023; 13:1045731. [PMID: 36741361 PMCID: PMC9895826 DOI: 10.3389/fimmu.2022.1045731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/22/2022] [Indexed: 01/21/2023] Open
Abstract
The ability of ultraviolet radiation to suppress the immune system is thought to be central to both its beneficial (protection from autoimmunity) and detrimental (carcinogenic) effects. Previous work revealed a key role for lipids particularly platelet-activating factor and sphingosine-1-phosphate in mediating UV-induced immune suppression. We therefore hypothesized that there may be other UV-induced lipids that have immune regulatory roles. To assess this, mice were exposed to an immune suppressive dose of solar-simulated UV (8 J/cm2). Lipidomic analysis identified 6 lipids (2 acylcarnitines, 2 neutral lipids, and 2 phospholipids) with significantly increased levels in the skin-draining lymph nodes of UV-irradiated mice. Imaging mass spectrometry of the lipids in combination with imaging mass cytometry identification of lymph node cell subsets indicated a preferential location of UV-induced lipids to T cell areas. In vitro co-culture of skin-draining lymph node lipids with lymphocytes showed that lipids derived from UV-exposed mice have no effect on T cell activation but significantly inhibited T cell proliferation, indicating that the lipids play an immune regulatory role. These studies are important first steps in identifying novel lipids that contribute to UV-mediated immune suppression.
Collapse
Affiliation(s)
- Benita C. Y. Tse
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Angela L. Ferguson
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Yen Chin Koay
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Georges E. Grau
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Anthony S. Don
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia
| | - Scott N. Byrne
- The University of Sydney, School of Medical Sciences, Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Sydney, NSW, Australia,*Correspondence: Scott N. Byrne,
| |
Collapse
|
5
|
Frommeyer TC, Gilbert MM, Brittain GV, Wu T, Nguyen TQ, Rohan CA, Travers JB. UVB-Induced Microvesicle Particle Release and Its Effects on the Cutaneous Microenvironment. Front Immunol 2022; 13:880850. [PMID: 35603177 PMCID: PMC9120817 DOI: 10.3389/fimmu.2022.880850] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Ultraviolet B radiation (UVB) has profound effects on human skin that results in a broad spectrum of immunological local and systemic responses and is the major cause of skin carcinogenesis. One important area of study in photobiology is how UVB is translated into effector signals. As the skin is exposed to UVB light, subcellular microvesicle particles (MVP), a subtype of bioactive extracellular vesicles, are released causing a variety of local and systemic immunological effects. In this review, we highlight keratinocyte MVP release in keratinocytes in response to UVB. Specifically, Platelet-activating factor receptor agonists generated by UVB result in MVP released from keratinocytes. The downstream effects of MVP release include the ability of these subcellular particles to transport agents including the glycerophosphocholine-derived lipid mediator Platelet-activating factor (PAF). Moreover, even though UVB is only absorbed in the epidermis, it appears that PAF release from MVPs also mediates systemic immunosuppression and enhances tumor growth and metastasis. Tumor cells expressing PAF receptors can use this mechanism to evade chemotherapy responses, leading to treatment resistance for advanced cancers such as melanoma. Furthermore, novel pharmacological agents provide greater insight into the UVB-induced immune response pathway and a potential target for pharmacological intervention. This review outlines the need to more clearly elucidate the mechanism linking UVB-irradiation with the cutaneous immune response and its pathological manifestations. An improved understanding of this process can result in new insights and treatment strategies for UVB-related disorders from carcinogenesis to photosensitivity.
Collapse
Affiliation(s)
- Timothy C. Frommeyer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Michael M. Gilbert
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Garrett V. Brittain
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Tongfan Wu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Trang Q. Nguyen
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Medicine, Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers,
| |
Collapse
|
6
|
Sener S, Ipek V. Investigation of brain mast cells in ovine encephalitic listeriosis. Biotech Histochem 2021; 97:247-253. [PMID: 34157924 DOI: 10.1080/10520295.2021.1941256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mast cells in the brain are associated with increased inflammation during the acute period following exposure to infection; these cells are important for destroying the infectious agents. We investigated the relation between histopathological lesions and mast cells in sheep brains infected with Listeria. Pons and medulla regions from 17 infected and eight normal sheep brains were examined. Microabscesses and perivascular infiltration were assessed for histopathology. Mast cells were identified using toluidine blue and Listeria monocytogenes were investigated immunohistochemically. We found a significant increase in mast cells in infected sheep brains that was related directly to the extent of brain lesions. A strong correlation was found between mast cells and microabscess formation. A correlation between bacteria level and brain lesions also was observed, but not between bacteria level and mast cells. Our findings indicate that mast cells are increased following Listeria infection in sheep in proportion to the severity of brain lesions; the increase may contribute to acute inflammatory reactions and also may destroy bacteria directly.
Collapse
Affiliation(s)
- Suleyman Sener
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Volkan Ipek
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
7
|
Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells 2021; 10:cells10050986. [PMID: 33922465 PMCID: PMC8146516 DOI: 10.3390/cells10050986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are important sentinel cells in host defense against infection and major effector cells in allergic disease. The role of these cells in cancer settings has been widely debated. The diverse range of mast cell functions in both immunity and tissue remodeling events, such as angiogenesis, provides multiple opportunities for mast cells to modify the tumor microenvironment. In this review, we consider both skin and breast cancer settings to address the controversy surrounding the importance of mast cells in the host response to tumors. We specifically address the key mediators produced by mast cells which impact tumor development. The role of environmental challenges in modifying mast cell responses and opportunities to modify mast cell responses to enhance anti-tumor immunity are also considered. While the mast cell's role in many cancer contexts is complicated and poorly understood, the activities of these tissue resident and radioresistant cells can provide important opportunities to enhance anti-cancer responses and limit cancer development.
Collapse
|
8
|
Travers JB, Rohan JG, Sahu RP. New Insights Into the Pathologic Roles of the Platelet-Activating Factor System. Front Endocrinol (Lausanne) 2021; 12:624132. [PMID: 33796070 PMCID: PMC8008455 DOI: 10.3389/fendo.2021.624132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-activating factor (PAF) has been implicated in many pathologic processes. Indeed, elevated levels of PAF can be measured in response to almost every type of pathology involving inflammation and cell damage/death. In this review, we provide evidence for PAF involvement in pathologic processes, with focus on cancer, the nervous system, and in photobiology. Importantly, recent insights into how PAF can generate and travel via bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What appears to be emerging from diverse pathologies in different organ systems is a common theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A downstream consequence of PAF receptor activation is the generation and release of MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The knowledge gaps which when addressed could result in novel therapeutic strategies are also discussed. Taken together, an enhanced understanding of the PAF family of lipid mediators is essential in our improved comprehension of the relationship amongst the diverse cutaneous, cancerous, neurologic and systemic pathologic processes.
Collapse
Affiliation(s)
- Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers, ; orcid.org/0000-0001-7232-1039
| | - Joyce G. Rohan
- Naval Medical Research Unit Dayton, Environmental Health Effects Directorate, Wright Patterson Air Force Base, OH, United States
| | - Ravi P. Sahu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| |
Collapse
|
9
|
Vieyra-Garcia PA, Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol Ther 2020; 222:107784. [PMID: 33316286 DOI: 10.1016/j.pharmthera.2020.107784] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
UV-based phototherapy (including psoralen plus UVA (PUVA), UVB and UVA1) has a long, successful history in the management of numerous cutaneous disorders. Photoresponsive diseases are etiologically diverse, but most involve disturbances in local (and occasionally systemic) inflammatory cells and/or abnormalities in keratinocytes that trigger inflammation. UV-based phototherapy works by regulating the inflammatory component and inducing apoptosis of pathogenic cells. This results in a fascinating and complex network of simultaneous events-immediate transcriptional changes in keratinocytes, immune cells, and pigment cells; the emergence of apoptotic bodies; and the trafficking of antigen-presenting cells in skin-that quickly transform the microenvironment of UV-exposed skin. Molecular elements in this system of UV recognition and response include chromophores, metabolic byproducts, innate immune receptors, neurotransmitters and mediators such as chemokines and cytokines, antimicrobial peptides, and platelet activating factor (PAF) and PAF-like molecules that simultaneously shape the immunomodulatory effects of UV and their interplay with the microbiota of the skin and beyond. Phototherapy's key effects-proapoptotic, immunomodulatory, antipruritic, antifibrotic, propigmentary, and pro-prebiotic-promote clinical improvement in various skin diseases such as psoriasis, atopic dermatitis (AD), graft-versus-host disease (GvHD), vitiligo, scleroderma, and cutaneous T-cell lymphoma (CTCL) as well as prevention of polymorphic light eruption (PLE). As understanding of phototherapy improves, new therapies (UV- and non-UV-based) are being developed that will modify regulatory T-cells (Treg), interact with (resident) memory T-cells and /or utilize agonists and antagonists as well as antibodies targeting soluble molecules such as cytokines and chemokines, transcription factors, and a variety of membrane-associated receptors.
Collapse
Affiliation(s)
- Pablo A Vieyra-Garcia
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Auenbruggerplatz 8, Graz A-8036, Austria.
| |
Collapse
|
10
|
Nastasi C, Mannarino L, D’Incalci M. DNA Damage Response and Immune Defense. Int J Mol Sci 2020; 21:E7504. [PMID: 33053746 PMCID: PMC7588887 DOI: 10.3390/ijms21207504] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
DNA damage is the cause of numerous human pathologies including cancer, premature aging, and chronic inflammatory conditions. The DNA damage response (DDR), in turn, coordinates DNA damage checkpoint activation and promotes the removal of DNA lesions. In recent years, several studies have shown how the DDR and the immune system are tightly connected, revealing an important crosstalk between the two of them. This interesting interplay has opened up new perspectives in clinical studies for immunological diseases as well as for cancer treatment. In this review, we provide an overview, from cellular to molecular pathways, on how DDR and the immune system communicate and share the crucial commitment of maintaining the genomic fitness.
Collapse
Affiliation(s)
- Claudia Nastasi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| | | | - Maurizio D’Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy;
| |
Collapse
|
11
|
Abstract
Environmental stressors exert a profound effect on humans. Many environmental stressors have in common the ability to induce reactive oxygen species. The goal of this chapter is to present evidence that the potent lipid mediator platelet-activating factor (PAF) is involved in the effects of many stressors ranging from cigarette smoke to ultraviolet B radiation. These environmental stressors can generate PAF enzymatically as well as PAF-like lipids produced by free radical-mediated attack of glycerophosphocholines. Inasmuch as PAF exerts both acute inflammation and delayed immunosuppressive effects, involvement of the PAF system can provide an explanation for many consequences of environmental stressor exposures.
Collapse
Affiliation(s)
- Jeffrey B Travers
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA.
- Dayton Veterans Administration Medical Center, Dayton, OH, USA.
| |
Collapse
|
12
|
Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol 2019; 19:688-701. [PMID: 31213673 DOI: 10.1038/s41577-019-0185-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Ultraviolet (UV) radiation is a ubiquitous component of the environment that has important effects on a wide range of cell functions. Short-wavelength UVB radiation induces sunburn and is a potent immunomodulator, yet longer-wavelength, lower-energy UVA radiation also has effects on mammalian immunity. This Review discusses current knowledge regarding the mechanisms by which UV radiation can modify innate and adaptive immune responses and how this immunomodulatory capacity can be both beneficial in the case of inflammatory and autoimmune diseases, and detrimental in the case of skin cancer and the response to several infectious agents.
Collapse
Affiliation(s)
- Jamie J Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA. .,Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI, USA.
| | - Richard L Gallo
- Department of Dermatology, University of California, San Diego, La Jolla, CA, USA
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
13
|
Lordan R, Tsoupras A, Zabetakis I. The Potential Role of Dietary Platelet-Activating Factor Inhibitors in Cancer Prevention and Treatment. Adv Nutr 2019; 10:148-164. [PMID: 30721934 PMCID: PMC6370273 DOI: 10.1093/advances/nmy090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/11/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer is the second leading cause of mortality worldwide. The role of unresolved inflammation in cancer progression and metastasis is well established. Platelet-activating factor (PAF) is a key proinflammatory mediator in the initiation and progression of cancer. Evidence suggests that PAF is integral to suppression of the immune system and promotion of metastasis and tumor growth by altering local angiogenic and cytokine networks. Interactions between PAF and its receptor may have a role in various digestive, skin, and hormone-dependent cancers. Diet plays a critical role in the prevention of cancer and its treatment. Research indicates that the Mediterranean diet may reduce the incidence of several cancers in which dietary PAF inhibitors have a role. Dietary PAF inhibitors such as polar lipids have demonstrated inhibitory effects against the physiological actions of PAF in cancer and other chronic inflammatory conditions in vitro and in vivo. In addition, experimental models of radiotherapy and chemotherapy demonstrate that inhibition of PAF as adjuvant therapy may lead to more favorable outcomes. Although promising, there is limited evidence on the potential benefits of dietary PAF inhibitors on cancer prevention or treatment. Therefore, further extensive research is required to assess the effects of various dietary factors and PAF inhibitors and to elucidate the mechanisms in prevention of cancer progression and metastasis at a molecular level.
Collapse
Affiliation(s)
- Ronan Lordan
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Alexandros Tsoupras
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
14
|
Romer E, Thyagarajan A, Krishnamurthy S, Rapp CM, Liu L, Fahy K, Awoyemi A, Sahu RP. Systemic Platelet-Activating Factor-Receptor Agonism Enhances Non-Melanoma Skin Cancer Growth. Int J Mol Sci 2018; 19:ijms19103109. [PMID: 30314274 PMCID: PMC6212876 DOI: 10.3390/ijms19103109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022] Open
Abstract
Platelet-activating factor-receptor (PAF-R) agonists are pleiotropic lipid factors that influence multiple biological processes, including the induction and resolution of inflammation as well as immunosuppression. PAF-R agonists have been shown to modulate tumorigenesis and/or tumor growth in various skin cancer models by suppressing either cutaneous inflammation and/or anti-tumoral adaptive immunity. We have previously shown that a chronic systemic PAF-R agonist administration of mice enhances the growth of subcutaneously implanted melanoma tumors. Conversely, chronic topical applications of a PAF-R agonist suppressed non-melanoma skin cancer (NMSC) in a topical chemical carcinogenesis model (dimethylbenz[a]anthracene/phorbol 12-myristate 13-acetate (DMBA/PMA)) in-part via anti-inflammatory effects. These results indicate that the context of PAF-R agonist exposure via either chronic cutaneous or systemic administration, result in seemingly disparate effects on tumor promotion. To further dissect the contextual role of PAF-R agonism on tumorigenesis, we chronically administered systemic PAF-R agonist, carbamoyl-PAF (CPAF) to mice under a cutaneous chemical carcinogenesis protocol, recently characterized to initiate both NMSC and melanocytic nevus formation that can progress to malignant melanoma. Our results showed that while systemic CPAF did not modulate melanocytic nevus formation, it enhanced the growth of NMSC tumors.
Collapse
Affiliation(s)
- Eric Romer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Smita Krishnamurthy
- Department of Pathology and Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA.
| | - Christine M Rapp
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Langni Liu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Katherine Fahy
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Azeezat Awoyemi
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University; Dayton, OH 45435, USA.
| |
Collapse
|
15
|
Vieyra-Garcia PA, Wolf P. From Early Immunomodulatory Triggers to Immunosuppressive Outcome: Therapeutic Implications of the Complex Interplay Between the Wavebands of Sunlight and the Skin. Front Med (Lausanne) 2018; 5:232. [PMID: 30250844 PMCID: PMC6139367 DOI: 10.3389/fmed.2018.00232] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Phototherapy is an efficient treatment for many cutaneous diseases that involve the activation of inflammatory pathways or the overgrowth of cells with aberrant phenotype. In this review, we discuss recent advances in photoimmunology, focusing on the effects of UV-based therapies currently used in dermatology. We describe the molecular responses to the main forms of photo(chemo)therapy such as UVB, UVA-1, and PUVA that include the triggering of apoptotic or immunosuppressive pathways and help to clear diseased skin. The early molecular response to UV involves DNA photoproducts, the isomerization of urocanic acid, the secretion of biophospholipids such as platelet activating factor (PAF), the activation of aryl hydrocarbon receptor and inflammasome, and vitamin D synthesis. The simultaneous and complex interaction of these events regulates the activity of the immune system both locally and systemically, resulting in apoptosis of neoplastic and/or benign cells, reduction of cellular infiltrate, and regulation of cytokines and chemokines. Regulatory T-cells and Langerhans cells, among other skin-resident cellular populations, are deeply affected by UV exposure and are therefore important players in the mechanisms of immunomodulation and the therapeutic value of UV in all its forms. We weigh the contribution of these cells to the therapeutic application of UV and how they may participate in transferring the direct impact of UV on the skin into local and systemic immunomodulation. Moreover, we review the therapeutic mechanisms revealed by clinical and laboratory animal investigations in the most common cutaneous diseases treated with phototherapy such as psoriasis, atopic dermatitis, vitiligo, and cutaneous T-cell lymphoma. Better understanding of phototherapeutic mechanisms in these diseases will help advance treatment in general and make future therapeutic strategies more precise, targeted, personalized, safe, and efficient.
Collapse
Affiliation(s)
| | - Peter Wolf
- Department of Dermatology, Medical University of Graz, Graz, Austria
| |
Collapse
|
16
|
Abhimanyu, Coussens AK. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem Photobiol Sci 2018; 16:314-338. [PMID: 28078341 DOI: 10.1039/c6pp00355a] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The seasonality of infectious disease outbreaks suggests that environmental conditions have a significant effect on disease risk. One of the major environmental factors that can affect this is solar radiation, primarily acting through ultraviolet radiation (UVR), and its subsequent control of vitamin D production. Here we show how UVR and vitamin D, which are modified by latitude and season, can affect host and pathogen fitness and relate them to the outcomes of bacterial, viral and vector-borne infections. We conducted a thorough comparison of the molecular and cellular mechanisms of action of UVR and vitamin D on pathogen fitness and host immunity and related these to the effects observed in animal models and clinical trials to understand their independent and complementary effects on infectious disease outcome. UVR and vitamin D share common pathways of innate immune activation primarily via antimicrobial peptide production, and adaptive immune suppression. Whilst UVR can induce vitamin D-independent effects in the skin, such as the generation of photoproducts activating interferon signaling, vitamin D has a larger systemic effect due to its autocrine and paracrine modulation of cellular responses in a range of tissues. However, the seasonal patterns in infectious disease prevalence are not solely driven by variation in UVR and vitamin D levels across latitudes. Vector-borne pathogens show a strong seasonality of infection correlated to climatic conditions favoring their replication. Conversely, pathogens, such as influenza A virus, Mycobacterium tuberculosis and human immunodeficiency virus type 1, have strong evidence to support their interaction with vitamin D. Thus, UVR has both vitamin D-dependent and independent effects on infectious diseases; these effects vary depending on the pathogen of interest and the effects can be complementary or antagonistic.
Collapse
Affiliation(s)
- Abhimanyu
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa.
| | - Anna K Coussens
- Clinical Infectious Diseases Research Initiative, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa. and Division of Medical Microbiology, Department of Pathology, University of Cape Town, Anzio Rd, Observatory, 7925, Western Cape, South Africa
| |
Collapse
|
17
|
Abstract
The Ultraviolet (UV) radiation contained in sunlight is a powerful mutagen and immune suppressant which partly explains why exposure to solar UV is the biggest risk factor for the development of cutaneous tumours. Evidence is building that sunlight may be protective against some internal malignancies. Because patients with these tumours are often vitamin D deficient, this has led some to propose that vitamin D supplementation will be beneficial in the treatment of these cancers. However, the results from already completed trials have been disappointing which has given weight to the argument that there must be something else about sunlight that explains its cancer-protecting properties.
Collapse
Affiliation(s)
- Jacqueline E Marshall
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia.
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School at the Charles Perkins Centre, University of Sydney, Australia.
| |
Collapse
|
18
|
Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, Rodríguez-López GM, Soria-Castro R, García-Pérez BE, Puebla-Osorio N, Ullrich SE, Luna-Herrera J, Flores-Romo L, Sumano-López H, Pérez-Tapia SM, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Mycobacterium tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular Traps. Front Immunol 2018; 9:1161. [PMID: 29892297 PMCID: PMC5985745 DOI: 10.3389/fimmu.2018.01161] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 05/09/2018] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis is one of the leading causes of human morbidity and mortality. Mycobacterium tuberculosis (Mtb) employs different strategies to evade and counterattack immune responses persisting for years. Mast cells are crucial during innate immune responses and help clear infections via inflammation or by direct antibacterial activity through extracellular traps (MCETs). Whether Mtb induce MCETs production is unknown. In this study, we report that viable Mtb did not induce DNA release by mast cells, but heat-killed Mtb (HK-Mtb) did. DNA released by mast cells after stimulation with HK-Mtb was complexed with histone and tryptase. MCETs induced with PMA and HK-Mtb were unable to kill live Mtb bacilli. Mast cells stimulated with HK-Mtb induced hydrogen peroxide production, whereas cells stimulated with viable Mtb did not. Moreover, MCETs induction by HK-Mtb was dependent of NADPH oxidase activity, because its blockade resulted in a diminished DNA release by mast cells. Interestingly, catalase-deficient Mtb induced a significant production of hydrogen peroxide and DNA release by mast cells, indicating that catalase produced by Mtb prevents MCETs release by degrading hydrogen peroxide. Our findings show a new strategy employed by Mtb to overcome the immune response through inhibiting MCETs formation, which could be relevant during early stages of infection.
Collapse
Affiliation(s)
- Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, UNAM, México City, Mexico
| | - Kahiry Leyva-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Luis Donis-Maturano
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, México City, Mexico
| | - Gloria M Rodríguez-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Blanca Estela García-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Stephen E Ullrich
- Department of Immunology, The Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,The University of Texas Graduate School of Biological Sciences at Houston, Houston, TX, United States
| | - Julieta Luna-Herrera
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Leopoldo Flores-Romo
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, México City, Mexico
| | - Héctor Sumano-López
- Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, UNAM, México City, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México City, Mexico
| |
Collapse
|
19
|
Ocana JA, Romer E, Sahu R, Pawelzik SC, FitzGerald GA, Kaplan MH, Travers JB. Platelet-Activating Factor-Induced Reduction in Contact Hypersensitivity Responses Is Mediated by Mast Cells via Cyclooxygenase-2-Dependent Mechanisms. THE JOURNAL OF IMMUNOLOGY 2018; 200:4004-4011. [PMID: 29695417 DOI: 10.4049/jimmunol.1701145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Platelet-activating factor (PAF) stimulates numerous cell types via activation of the G protein-coupled PAF receptor (PAFR). PAFR activation not only induces acute proinflammatory responses, but it also induces delayed systemic immunosuppressive effects by modulating host immunity. Although enzymatic synthesis and degradation of PAF are tightly regulated, oxidative stressors, such as UVB, chemotherapy, and cigarette smoke, can generate PAF and PAF-like molecules in an unregulated fashion via the oxidation of membrane phospholipids. Recent studies have demonstrated the relevance of the mast cell (MC) PAFR in PAFR-induced systemic immunosuppression. The current study was designed to determine the exact mechanisms and mediators involved in MC PAFR-mediated systemic immunosuppression. By using a contact hypersensitivity model, the MC PAFR was not only found to be necessary, but also sufficient to mediate the immunosuppressive effects of systemic PAF. Furthermore, activation of the MC PAFR induces MC-derived histamine and PGE2 release. Importantly, PAFR-mediated systemic immunosuppression was defective in mice that lacked MCs, or in MC-deficient mice transplanted with histidine decarboxylase- or cyclooxygenase-2-deficient MCs. Lastly, it was found that PGs could modulate MC migration to draining lymph nodes. These results support the hypothesis that MC PAFR activation promotes the immunosuppressive effects of PAF in part through histamine- and PGE2-dependent mechanisms.
Collapse
Affiliation(s)
- Jesus A Ocana
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Eric Romer
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Ravi Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435
| | - Sven-Christian Pawelzik
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104
| | - Mark H Kaplan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435; .,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435; and.,Dayton Veterans Affairs Medical Center, Dayton, OH 45428
| |
Collapse
|
20
|
Sahu RP, Harrison KA, Weyerbacher J, Murphy RC, Konger RL, Garrett JE, Chin-Sinex HJ, Johnston ME, Dynlacht JR, Mendonca M, McMullen K, Li G, Spandau DF, Travers JB. Radiation therapy generates platelet-activating factor agonists. Oncotarget 2018; 7:20788-800. [PMID: 26959112 PMCID: PMC4991492 DOI: 10.18632/oncotarget.7878] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/06/2016] [Indexed: 01/22/2023] Open
Abstract
Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens.
Collapse
Affiliation(s)
- Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Kathleen A Harrison
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Jonathan Weyerbacher
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Raymond L Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joy Elizabeth Garrett
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Helen Jan Chin-Sinex
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Joseph R Dynlacht
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Marc Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin McMullen
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gengxin Li
- Department of Biostatistics, Wright State University, Dayton, OH, USA
| | - Dan F Spandau
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey B Travers
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA.,Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.,The Dayton V.A. Medical Center, Dayton, OH, USA
| |
Collapse
|
21
|
Lei D, Wu W, Yang L, Li Y, Feng J, Lyu L, He L. Insight into immunocytes infiltrations in polymorphous light eruption. Biotechnol Adv 2017; 35:751-757. [PMID: 28729211 DOI: 10.1016/j.biotechadv.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
Abstract
Polymorphous light eruption (PLE) which is one of the most common photodermatoses has been demonstrated to be immune-mediated disorder. Resistance to UV-induced immunosuppression resulting from differential immune cells infiltration and cytokines secretion has been highlighted in the pathogenesis of PLE. In this study, we reviewed differential patterns of immune cells infiltrations and cytokines secretion that may contribute to PLE occurrence and development.
Collapse
Affiliation(s)
- Dongyun Lei
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, Yunnan, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, Yunnan, China
| | - Li Yang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, Yunnan, China
| | - Yan Li
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, Yunnan, China
| | - Jiaqi Feng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, Yunnan, China
| | - Lechun Lyu
- Department of Physiology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Institute of Dermatology & Venereology of Yunnan Province, Kunming, Yunnan, China.
| |
Collapse
|
22
|
Siiskonen H, Smorodchenko A, Krause K, Maurer M. Ultraviolet radiation and skin mast cells: Effects, mechanisms and relevance for skin diseases. Exp Dermatol 2017; 27:3-8. [PMID: 28677275 DOI: 10.1111/exd.13402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
Mast cells (MCs) are well known as versatile effector cells in allergic reactions and several other immune responses. Skin MCs and cutaneous MC responses are subject to the effects of environmental factors including ultraviolet radiation (UVR). Numerous studies have assessed the effects of UVR on MCs, in vitro and in vivo. Interestingly, UVR seems to have variable effects on non-activated and activated mast cells. In general, UV therapy is beneficial in the treatment of urticaria and mastocytosis, but the effects are variable depending on treatment regimen and type of UVR. Here, we review and summarise key reports from the older and current literature on the crosstalk of UVR and skin MCs. Specifically, we present the literature and discuss published reports on the effects of UVR on skin MCs in rodents and humans. In addition, we review the role of MCs in UVR-driven skin diseases and the influence of UV light on MC-mediated skin diseases. This summary of our current understanding of the interplay of skin MCs and UVR may help to improve the management of patients with urticaria and other MC disorders, to identify current gaps of knowledge, and to guide further research.
Collapse
Affiliation(s)
- Hanna Siiskonen
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany.,Department of Dermatology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anna Smorodchenko
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Karoline Krause
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
23
|
Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Marone G, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol 2017; 8:424. [PMID: 28446910 PMCID: PMC5388770 DOI: 10.3389/fimmu.2017.00424] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Monaldi Hospital Pharmacy, Naples, Italy
| | - Raffaella Iannone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Fahy K, Liu L, Rapp CM, Borchers C, Bihl JC, Chen Y, Simman R, Travers JB. UVB-generated Microvesicle Particles: A Novel Pathway by Which a Skin-specific Stimulus Could Exert Systemic Effects. Photochem Photobiol 2017; 93:937-942. [PMID: 28039861 DOI: 10.1111/php.12703] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
Abstract
Ultraviolet B radiation (UVB) exerts profound effects on human skin. Much is known regarding the ability of UVB to generate a plethora of bioactive agents ranging from cytokines and other bioactive proteins, lipid mediators and microRNAs. It is presumed that these agents are in large part responsible for the effects of UVB, which is only absorbed appreciably in the epidermis. However, the exact mechanism by which these bioactive agents can leave the epidermis are as yet unclear. This review addresses the potential role of microvesicle particles (MVP) as UVB signaling agents through transmitting biologic mediators. New data are provided that UVB treatment of human skin explants also generates MVP production. We hypothesize that UVB production of MVPs (UVB-MVP) could serve this important function of transmitting keratinocyte-derived bioactive agents. Moreover, we propose that UVB-MVP formation involves the lipid mediator platelet-activating factor. This novel pathway has the potential to be exploited pharmacologically to modulate UVB effects.
Collapse
Affiliation(s)
- Katherine Fahy
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Langni Liu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Christine M Rapp
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Christina Borchers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Ji C Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Yanfang Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Richard Simman
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH.,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH
| | - Jeffrey B Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH.,Department of Dermatology, Boonshoft School of Medicine, Wright State University, Dayton, OH.,Dayton V.A. Medical Center, Dayton, OH
| |
Collapse
|
25
|
Damiani E, Puebla-Osorio N, Lege BM, Liu J, Neelapu SS, Ullrich SE. Platelet activating factor-induced expression of p21 is correlated with histone acetylation. Sci Rep 2017; 7:41959. [PMID: 28157211 PMCID: PMC5291204 DOI: 10.1038/srep41959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/30/2016] [Indexed: 02/07/2023] Open
Abstract
Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze della Vita e dell'Ambiente, Universita' Politecnica delle Marche, Ancona, Italy
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Bree M Lege
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Jingwei Liu
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas Graduate School for Biomedical Sciences at Houston, The University of Texas, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
26
|
Chen W, Zhang J. Potential molecular characteristics in situ in response to repetitive UVB irradiation. Diagn Pathol 2016; 11:129. [PMID: 27829444 PMCID: PMC5103495 DOI: 10.1186/s13000-016-0579-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 10/21/2016] [Indexed: 02/04/2023] Open
Abstract
Background To identify molecular characteristics in situ in response to repetitive UVB (ultraviolet-B) irradiation. Methods Microarray data from the Gene Expression Omnibus were re-analyzed to identify DEGs (differentially expressed genes) between UVB-irradiated and non-irradiated skin biopsies. Enrichment and annotation analyses were performed respectively using DAVID, and TSGene and TAG databases. PPIs (protein-protein interactions) were analyzed using STRING, and miRNAs (microRNAs) and TFs (transcription factors) were predicted separately by miRNA-related databases and ENCODE. Accordingly, the PPI network and regulatory networks were visualized using Cytoscape, and they were merged together to obtain an integrated network for mining densely connected modules. Results Altogether, 151 up- and 64 down-regulated genes were identified between UVB-irradiated and non-irradiated skin biopsies, among which down-regulated DNAJB4 and SLIT2 were annotated as tumor-suppressors and up-regulated KIT was annotated as an oncogene. The up-regulated DEGs were significantly enriched in biological processes related to pigmentation (DCT, SOX10, TYRP1, TYR, MLPH, KIT and GPR143), while the down-regulated DEGs were dramatically related to haemopoiesis and the immune system (GPR183, INHBA, PTPRC, PLEK, CD8A and IKZF1). Furthermore, many miRNAs were screened for the DEGs, including miR-206 and miR-496 targeting KIT, miR-184 targeting DCT, and highly significant miR-337-5p, miR-21 and miR-16. Additionally, TFs were identified for the DEGs, among which PAX5 and HNF4A targeted MLPH and GPR143, respectively, while BATF, SPI1 and EP300 jointly target GPR183, PTPRC and PLEK. Conclusions The pigmentation and immune system implicated by DEGs, miRNAs and TFs might be important molecular mechanisms in response to UVB irradiation.
Collapse
Affiliation(s)
- Wenqi Chen
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, Jiangsu, 210006, China.
| | - Jinhai Zhang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, China
| |
Collapse
|
27
|
Campillo-Navarro M, Leyva-Paredes K, Donis-Maturano L, González-Jiménez M, Paredes-Vivas Y, Cerbulo-Vázquez A, Serafín-López J, García-Pérez B, Ullrich SE, Flores-Romo L, Pérez-Tapia SM, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Listeria monocytogenes induces mast cell extracellular traps. Immunobiology 2016; 222:432-439. [PMID: 27520114 DOI: 10.1016/j.imbio.2016.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/04/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
Mast cells play an essential role in different immunological phenomena including allergy and infectious diseases. Several bacteria induce mast cell activation leading to degranulation and the production of several cytokines and chemokines. However, mast cells also have different microbicidal activities such as phagocytosis and the release of DNA with embedded granular proteins known as Mast Cell Extracellular Traps (MCETs). Although previous reports indicate that extracellular bacteria are able to induce MCETs little is known if intracellular bacteria can induce these structures. In this work, we evaluated MCETs induction by the intracellular bacteria Listeria monocytogenes. We found that mast cells released DNA after stimulation with L. monocytogenes, and this DNA was complexed to histone and tryptase. Before extracellular DNA release, L. monocytogenes induced modifications to the mast cell nuclear envelope and DNA was detected outside the nucleus. L. monocytogenes stimulated mast cells to produce significant amounts of reactive oxygen species (ROS) and blocking NADPH oxidase diminished DNA release by mast cells. Finally, MCETs showed antimicrobial activity against L. monocytogenes that was partially blocked when β-hexosaminidase activity was inhibited. These results show that L. monocytogenes induces mast cells to produce microbicidal MCETs, suggesting a role for mast cells in containing infection beyond the induction of inflammation.
Collapse
Affiliation(s)
- Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Kahiry Leyva-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Luis Donis-Maturano
- Department of Cell Biology, Cinvestav, Instituto Politécnico Nacional, Mexico
| | | | | | | | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Blanca García-Pérez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, USA; The University of Texas Graduate School of Biological Sciences at Houston, TX, USA
| | | | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Iris Estrada-García
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico.
| |
Collapse
|
28
|
Damiani E, Ullrich SE. Understanding the connection between platelet-activating factor, a UV-induced lipid mediator of inflammation, immune suppression and skin cancer. Prog Lipid Res 2016; 63:14-27. [PMID: 27073146 DOI: 10.1016/j.plipres.2016.03.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/31/2016] [Indexed: 01/08/2023]
Abstract
Lipid mediators of inflammation play important roles in several diseases including skin cancer, the most prevalent type of cancer found in the industrialized world. Ultraviolet (UV) radiation is a complete carcinogen and is the primary cause of skin cancer. UV radiation is also a potent immunosuppressive agent, and UV-induced immunosuppression is a well-known risk factor for skin cancer induction. An essential mediator in this process is the glyercophosphocholine 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine commonly referred to as platelet-activating factor (PAF). PAF is produced by keratinocytes in response to diverse stimuli and exerts its biological effects by binding to a single specific G-protein-coupled receptor (PAF-R) expressed on a variety of cells. This review will attempt to describe how this lipid mediator is involved in transmitting the immunosuppressive signal from the skin to the immune system, starting from its production by keratinocytes, to its role in activating mast cell migration in vivo, and to the mechanisms involved that ultimately lead to immune suppression. Recent findings related to its role in regulating DNA repair and activating epigenetic mechanisms, further pinpoint the importance of this bioactive lipid, which may serve as a critical molecular mediator that links the environment (UVB radiation) to the immune system and the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze della Vita e dell'Ambiente, Universita' Politecnica delle Marche, Ancona, Italy
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas Graduate School for Biomedical Sciences at Houston, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Chromatin Modifications and Mast Cell Migration in UV-Induced Immunosuppression, an Epigenetic Piece of The Puzzle. J Invest Dermatol 2015; 135:2911-2913. [PMID: 26569583 DOI: 10.1038/jid.2015.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The migration of dermal mast cells to skin-draining lymph nodes is a key step in UV-induced immunosuppression. Examining the effects of platelet-activating factor (PAF), a phospholipid mediator secreted by keratinocytes following UV exposure, on mast cells, Damiani et al. demonstrate that increased expression of CXCR4 is associated with increased histone acetylation at the promoter of this chemokine receptor gene.
Collapse
|
30
|
Lucas RM, Byrne SN, Correale J, Ilschner S, Hart PH. Ultraviolet radiation, vitamin D and multiple sclerosis. Neurodegener Dis Manag 2015; 5:413-24. [PMID: 26477548 DOI: 10.2217/nmt.15.33] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is compelling epidemiological evidence that the risk of developing multiple sclerosis is increased in association with low levels of sun exposure, possibly because this is associated with low vitamin D status. Recent work highlights both vitamin D and non-vitamin D effects on cellular immunity that suggests that higher levels of sun exposure and/or vitamin D status are beneficial for both MS risk and in ameliorating disease progression. Here we review this recent evidence, focusing on regulatory cells, dendritic cells, and chemokines and cytokines released from the skin following exposure to ultraviolet radiation.
Collapse
Affiliation(s)
- Robyn M Lucas
- National Centre for Epidemiology & Population Health, Research School of Population Health, The Australian National University, Canberra, Australia.,Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Scott N Byrne
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Jorge Correale
- Department of Neurology, Raul Carrea Institute for Neurological Research, FLENI, Buenos Aires, Argentina
| | | | - Prue H Hart
- Telethon Kids Institute, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
31
|
Nieto-Patlán A, Campillo-Navarro M, Rodríguez-Cortés O, Muñoz-Cruz S, Wong-Baeza I, Estrada-Parra S, Estrada-García I, Serafín-López J, Chacón-Salinas R. Recognition of Candida albicans by Dectin-1 induces mast cell activation. Immunobiology 2015; 220:1093-100. [DOI: 10.1016/j.imbio.2015.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/10/2015] [Accepted: 05/01/2015] [Indexed: 01/13/2023]
|
32
|
Damiani E, Puebla-Osorio N, Gorbea E, Ullrich SE. Platelet-Activating Factor Induces Epigenetic Modifications in Human Mast Cells. J Invest Dermatol 2015; 135:3034-3040. [PMID: 26316070 PMCID: PMC4648694 DOI: 10.1038/jid.2015.336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 07/27/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022]
Abstract
Ultraviolet (UV) radiation-induced systemic immune suppression is a major risk factor for skin cancer induction. The migration of dermal mast cells from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced keratinocyte-derived platelet-activating factor (PAF) activates mast cell migration, in part by up regulating the expression of CXCR4 on the surface of mast cells. Others have indicated that epigenetic mechanisms regulate CXCR4 expression, so we asked whether PAF activates epigenetic mechanisms in mast cells. Human mast cells were treated with PAF and the effect on DNA methylation and/or acetylation was measured. PAF suppressed the expression of DNA methyltransferase (DNMT) 1 and 3b. On the other hand, PAF increased p300 histone acetyltransferase expression, and the acetylation of histone H3, which coincided with a decreased expression of the histone deacetylase HDAC2. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the CXCR4 promoter. Finally, inhibiting histone acetylation blocked p300 up-regulation and suppressed PAF-induced surface expression of CXCR4. Our findings suggest a novel molecular mechanism for PAF, activation of epigenetic modifications. We suggest that PAF may serve as an endogenous molecular mediator that links the environment (UV radiation) with the epigenome.
Collapse
Affiliation(s)
- Elisabetta Damiani
- Dipartimento di Scienze delle Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy.,Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Nahum Puebla-Osorio
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Enrique Gorbea
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA
| | - Stephen E Ullrich
- Department of Immunology and The Center for Cancer Immunology Research, The University of Texas, MD Anderson Cancer Center, Houston, Texas, 77030, USA.,The Graduate School for Biomedical Sciences, Houston, Texas, 77030, USA
| |
Collapse
|
33
|
Platelet-activating factor induces cell cycle arrest and disrupts the DNA damage response in mast cells. Cell Death Dis 2015; 6:e1745. [PMID: 25950475 PMCID: PMC4669695 DOI: 10.1038/cddis.2015.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/17/2022]
Abstract
Platelet-activating factor (PAF) is a potent phospholipid modulator of inflammation that has diverse physiological and pathological functions. Previously, we demonstrated that PAF has an essential role in ultraviolet (UV)-induced immunosuppression and reduces the repair of damaged DNA, suggesting that UV-induced PAF is contributing to skin cancer initiation by inducing immune suppression and also affecting a proper DNA damage response. The exact role of PAF in modulating cell proliferation, differentiation or transformation is unclear. Here, we investigated the mechanism(s) by which PAF affects the cell cycle and impairs early DNA damage response. PAF arrests proliferation in transformed and nontransformed human mast cells by reducing the expression of cyclin-B1 and promoting the expression of p21. PAF-treated cells show a dose-dependent cell cycle arrest mainly at G2–M, and a decrease in the DNA damage response elements MCPH1/BRIT-1 and ataxia telangiectasia and rad related (ATR). In addition, PAF disrupts the localization of p-ataxia telangiectasia mutated (p-ATM), and phosphorylated-ataxia telangiectasia and rad related (p-ATR) at the site of DNA damage. Whereas the potent effect on cell cycle arrest may imply a tumor suppressor activity for PAF, the impairment of proper DNA damage response might implicate PAF as a tumor promoter. The outcome of these diverse effects may be dependent on specific cues in the microenvironment.
Collapse
|
34
|
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is best known for its ability to cause skin cancer, it is also associated with protection against a range of autoimmune diseases, particularly multiple sclerosis (MS). Although the precise mechanism by which sunlight affords protection from MS remains to be determined, some have hypothesised that UV immunosuppression explains the "latitude-gradient effect" associated with MS. By stimulating the release of soluble factors in exposed skin, UV activates immune suppressive pathways that culminate in the induction of regulatory cells in distant tissues. Each and every one of the immune suppressive cells and molecules activated by UV exposure are potential targets for treating and preventing MS. A thorough understanding of the mechanisms involved is therefore required if we are to realise the therapeutic potential of photoimmunology.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia. .,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Infectious Diseases and Immunology, Level 5 (East), The Charles Perkins Centre Hub (D17), University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
35
|
Campillo-Navarro M, Chávez-Blanco AD, Wong-Baeza I, Serafín-López J, Flores-Mejía R, Estrada-Parra S, Estrada-García I, Chacón-Salinas R. Mast Cells in Lung Homeostasis: Beyond Type I Hypersensitivity. CURRENT RESPIRATORY MEDICINE REVIEWS 2014; 10:115-123. [PMID: 25484639 PMCID: PMC4255078 DOI: 10.2174/1573398x10666141024220151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/07/2014] [Accepted: 10/23/2014] [Indexed: 12/29/2022]
Abstract
Lungs are indispensable organs for the respiratory process, and maintaining their homeostasis is essential for human health and survival. However, during the lifetime of an individual, the lungs suffer countless insults that put at risk their delicate organization and function. Many cells of the immune system participate to maintain this equilibrium and to keep functional lungs. Among these cells, mast cells have recently attracted attention because of their ability to rapidly secrete many chemical and biological mediators that modulate different processes like inflammation, angiogenesis, cell proliferation, etc. In this review, we focus on recent advances in the understanding of the role that mast cells play in lung protection during infections, and of the relation of mast cell responses to type I hypersensitivity-associated pathologies. Furthermore, we discuss the potential role of mast cells during wound healing in the lung and its association with lung cancer, and how mast cells could be exploited as therapeutic targets in some diseases
Collapse
Affiliation(s)
- Marcia Campillo-Navarro
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | | | - Isabel Wong-Baeza
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Jeanet Serafín-López
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Raúl Flores-Mejía
- Department of Immunology, Superior School of Medicine, National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Iris Estrada-García
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| |
Collapse
|
36
|
Sahu RP, Rezania S, Ocana JA, DaSilva-Arnold SC, Bradish JR, Richey JD, Warren SJ, Rashid B, Travers JB, Konger RL. Topical application of a platelet activating factor receptor agonist suppresses phorbol ester-induced acute and chronic inflammation and has cancer chemopreventive activity in mouse skin. PLoS One 2014; 9:e111608. [PMID: 25375862 PMCID: PMC4222871 DOI: 10.1371/journal.pone.0111608] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022] Open
Abstract
Platelet activating factor (PAF) has long been associated with acute edema and inflammatory responses. PAF acts by binding to a specific G-protein coupled receptor (PAF-R, Ptafr). However, the role of chronic PAF-R activation on sustained inflammatory responses has been largely ignored. We recently demonstrated that mice lacking the PAF-R (Ptafr-/- mice) exhibit increased cutaneous tumorigenesis in response to a two-stage chemical carcinogenesis protocol. Ptafr-/- mice also exhibited increased chronic inflammation in response to phorbol ester application. In this present study, we demonstrate that topical application of the non-hydrolysable PAF mimetic (carbamoyl-PAF (CPAF)), exerts a potent, dose-dependent, and short-lived edema response in WT mice, but not Ptafr -/- mice or mice deficient in c-Kit (c-KitW-sh/W-sh mice). Using an ear inflammation model, co-administration of topical CPAF treatment resulted in a paradoxical decrease in both acute ear thickness changes associated with a single PMA application, as well as the sustained inflammation associated with chronic repetitive PMA applications. Moreover, mice treated topically with CPAF also exhibited a significant reduction in chemical carcinogenesis. The ability of CPAF to suppress acute and chronic inflammatory changes in response to PMA application(s) was PAF-R dependent, as CPAF had no effect on basal or PMA-induced inflammation in Ptafr-/- mice. Moreover, c-Kit appears to be necessary for the anti-inflammatory effects of CPAF, as CPAF had no observable effect in c-KitW-sh/W-sh mice. These data provide additional evidence that PAF-R activation exerts complex immunomodulatory effects in a model of chronic inflammation that is relevant to neoplastic development.
Collapse
Affiliation(s)
- Ravi P. Sahu
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Samin Rezania
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Jesus A. Ocana
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Sonia C. DaSilva-Arnold
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Joshua R. Bradish
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Justin D. Richey
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Simon J. Warren
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Badri Rashid
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Jeffrey B. Travers
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Richard L. Roudebush Veterans Administration Medical Center, Indianapolis, IN, 46202, United States of America
| | - Raymond L. Konger
- Departments of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail:
| |
Collapse
|
37
|
Abstract
Living on a sun-drenched planet has necessitated adaption to and protection from the harmful effects of solar ultraviolet (UV) radiation, particularly skin cancer. However, convincing epidemiological and recent empirical evidence also supports a protective effect of UV against a range of diseases including multiple sclerosis, asthma and cardiovascular disease. Despite years of research attention into the biological effects of sunlight exposure, we are still far from being able to fully answer the question: How much sunlight is enough? This is probably because the answer is dependent on many complex and interacting variables. Many talented researchers are focused on exploring whether UV-induced vitamin D explains some of these effects. This perspectives article proposes an alternative hypothesis, namely that targeting UV-induced immune suppression by affecting the activation of regulatory cells and molecules will be of therapeutic benefit.
Collapse
Affiliation(s)
- Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Australia.
| |
Collapse
|