1
|
De Fenza M, Locri F, Plastino F, Chino M, Maglio O, Leone L, Gazzaroli G, Belleri M, Giacomini A, Kvanta A, André H, Pavone V, D’Alonzo D. Turn-Adopting Peptidomimetic as a Formyl Peptide Receptor-1 Antagonist. ACS Pharmacol Transl Sci 2024; 7:3476-3487. [PMID: 39539264 PMCID: PMC11555506 DOI: 10.1021/acsptsci.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The design, synthesis, and characterization of a new peptidomimetic acting as a formyl peptide receptor (FPR1) antagonist (N-19004) are herein reported. The molecule has been identified with docking studies of the highly potent FPR1 antagonist UPARANT on human receptor. N-19004 recapitulates all pharmacophoric groups necessary for recognition into a minimal structure, with a crucial role of the 2,6-diamino-thiophenyl scaffold mimicking the positions of Cα atoms of Arg residues in the turned Arg-Aib-Arg segment of UPARANT. N-19004 demonstrated to interfere with the biological properties of FPR1 both in vitro and in vivo. In a mouse model of choroidal neovascularization, N-19004 markedly reduced the size of laser-induced choroidal lesions, with reabsorption of the edema regions by a systemic administration route.
Collapse
Affiliation(s)
- Maria De Fenza
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Filippo Locri
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Flavia Plastino
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Marco Chino
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Ornella Maglio
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
- Institute
of Biostructures and Bioimaging (IBB), National
Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Linda Leone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Giorgia Gazzaroli
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mirella Belleri
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Arianna Giacomini
- Unit
of Experimental Oncology and Immunology, Department of Molecular and
Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Anders Kvanta
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Helder André
- Department
of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye
Hospital, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vincenzo Pavone
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| | - Daniele D’Alonzo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
21, 80126 Naples, Italy
| |
Collapse
|
2
|
Pajonczyk D, Sternschulte MF, Soehnlein O, Bermudez M, Raabe CA, Rescher U. Comparative analysis of formyl peptide receptor 1 and formyl peptide receptor 2 reveals shared and preserved signalling profiles. Br J Pharmacol 2024. [PMID: 39294930 DOI: 10.1111/bph.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/03/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE The pattern recognition receptors, formyl peptide receptors, FPR1 and FPR2, are G protein-coupled receptors that recognize many different pathogen- and host-derived ligands. While FPR1 conveys pro-inflammatory signals, FPR2 is linked with pro-resolving outcomes. To analyse how the two very similar FPRs exert opposite effects in modulating inflammatory responses despite their high homology, a shared expression profile on immune cells and an overlapping ligand repertoire, we questioned whether the signalling profile differs between these two receptors. EXPERIMENTAL APPROACH We deduced EC50 and Emax values for synthetic, pathogen-derived and host-derived peptide agonists for both FPR1 and FPR2 and analysed them within the framework of biased signalling. We furthermore investigated whether FPR isoform-specific agonists affect the ex vivo lifespan of human neutrophils. KEY RESULTS The FPRs share a core signature across signalling pathways. Whereas the synthetic WKYMVm and formylated peptides acted as potent agonists at FPR1, and at FPR2, only WKYMVm was a full agonist. Natural FPR2 agonists, irrespective of N-terminal formylation, displayed lower activity ratios, suggesting an underutilized signalling potential of this receptor. FPR2 agonism did not counteract LPS-induced neutrophil survival, indicating that FPR2 activation per se is not linked with a pro-resolving function. CONCLUSION AND IMPLICATIONS Activation of FPR1 and FPR2 by a representative agonist panel revealed a lack of a receptor-specific signalling texture, challenging assumptions about distinct inflammatory profiles linked to specific receptor isoforms, signalling patterns or agonist classes. These conclusions are restricted to the specific agonists and signalling pathways examined.
Collapse
Affiliation(s)
- Denise Pajonczyk
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Merle F Sternschulte
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Oliver Soehnlein
- Institute of Experimental Pathology, Center of Molecular Biology of Inflammation, University of Muenster, Muenster, Germany
| | - Marcel Bermudez
- Institute of Pharmaceutical and Medicinal Chemistry, University of Muenster, Muenster, Germany
| | - Carsten A Raabe
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Ursula Rescher
- Research Group Cellular Biochemistry - Regulatory Mechanisms of Inflammation, Institute of Molecular Virology, Center of Molecular Biology of Inflammation and "Cells in Motion" Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
3
|
Sekar S, Schwarzbach S, Nega M, Bloes DA, Smeds E, Kretschmer D, Foster TJ, Heilbronner S. SLUSH peptides of the PSMβ family enable Staphylococcus lugdunensis to use erythrocytes as a sole source of nutrient iron. FASEB J 2024; 38:e23881. [PMID: 39166718 DOI: 10.1096/fj.202400335r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
During infection, the host employs nutritional immunity to restrict access to iron. Staphylococcus lugdunensis has been recognized for its ability to utilize host-derived heme to overcome iron restriction. However, the mechanism behind this process involves the release of hemoglobin from erythrocytes, and the hemolytic factors of S. lugdunensis remain poorly understood. S. lugdunensis encodes four phenol-soluble modulins (PSMs), short peptides with hemolytic activity. The peptides SLUSH A, SLUSH B, and SLUSH C are β-type PSMs, and OrfX is an α-type PSM. Our study shows the SLUSH locus to be essential for the hemolytic phenotype of S. lugdunensis. All four peptides individually exhibited hemolytic activity against human and sheep erythrocytes, but synergism with sphingomyelinase was observed exclusively against sheep erythrocytes. Furthermore, our findings demonstrate that SLUSH is crucial for allowing the utilization of erythrocytes as the sole source of nutritional iron and confirm the transcriptional regulation of SLUSH by Agr. Additionally, our study reveals that SLUSH peptides stimulate the human immune system. Our analysis identifies SLUSH as a pivotal hemolytic factor of S. lugdunensis and demonstrates its concerted action with heme acquisition systems to overcome iron limitation in the presence of host erythrocytes.
Collapse
Affiliation(s)
- Sharmila Sekar
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Selina Schwarzbach
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Mulugeta Nega
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Dominik Alexander Bloes
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Emanuel Smeds
- Lund Protein Production Platform, Department of Biology, Lund University, Lund, Sweden
| | - Dorothee Kretschmer
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
| | - Timothy J Foster
- Trinity College Dublin, The Moyne Institute of Preventive Medicine, Dublin, Ireland
| | - Simon Heilbronner
- Department of Infection Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
- Interfaculty Institute of Microbiology and Infection Medicine, Institute for Medical Microbiology and Hygiene, UKT Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Tübingen, Germany
- Faculty of Biology, Microbiology, Ludwig Maximilians Universität München, Martinsried, Germany
| |
Collapse
|
4
|
Francavilla F, Sarcina F, Schepetkin IA, Kirpotina LN, Contino M, Schirizzi A, De Leonardis G, Khlebnikov AI, D'Alessandro R, Quinn MT, Lacivita E, Leopoldo M. Development of potent isoflavone-based formyl peptide receptor 1 (FPR1) antagonists and their effects in gastric cancer cell models. Eur J Med Chem 2023; 261:115854. [PMID: 37839346 PMCID: PMC10822168 DOI: 10.1016/j.ejmech.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Formyl peptide receptor-1 (FPR1) is a G protein-coupled chemoattractant receptor that plays a crucial role in the trafficking of leukocytes into the sites of bacterial infection and inflammation. Recently, FPR1 was shown to be expressed in different types of tumor cells and could play a significant role in tumor growth and invasiveness. Starting from the previously reported FPR1 antagonist 4, we have designed a new series of 4H-chromen-2-one derivatives that exhibited a substantial increase in FPR1 antagonist potency. Docking studies identified the key interactions for antagonist activity. The most potent compounds in this series (24a and 25b) were selected to study the effects of the pharmacological blockade of FPR1 in NCl-N87 and AGS gastric cancer cells. Both compounds potently inhibited cell growth through a combined effect on cell proliferation and apoptosis and reduced cell migration, while inducing an increase in angiogenesis, thus suggesting that FPR1 could play a dual role as oncogene and onco-suppressor.
Collapse
Affiliation(s)
- Fabio Francavilla
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Federica Sarcina
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Lilya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Marialessandra Contino
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| | - Annalisa Schirizzi
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Giampiero De Leonardis
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Andrei I Khlebnikov
- Kizhner Research Center, Tomsk Polytechnic University, Tomsk, 634050, Russia
| | - Rosalba D'Alessandro
- Laboratory of Experimental Oncology, National Institute of Gastroenterology - IRCCS "Saverio de Bellis", Research Hospital, 70013, Castellana Grotte (BA), Italy
| | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy.
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
5
|
Paterson NM, Al-Zubieri H, Ragona J, Kohler KM, Tirado J, Geisbrecht BV, Barber MF. Dynamic Evolution of Bacterial Ligand Recognition by Formyl Peptide Receptors. Genome Biol Evol 2023; 15:evad175. [PMID: 37776517 PMCID: PMC10566242 DOI: 10.1093/gbe/evad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
The detection of invasive pathogens is critical for host immune defense. Cell surface receptors play a key role in the recognition of diverse microbe-associated molecules, triggering leukocyte recruitment, phagocytosis, release of antimicrobial compounds, and cytokine production. The intense evolutionary forces acting on innate immune receptor genes have contributed to their rapid diversification across plants and animals. However, the functional consequences of immune receptor divergence are often unclear. Formyl peptide receptors (FPRs) comprise a family of animal G protein-coupled receptors which are activated in response to a variety of ligands including formylated bacterial peptides, pathogen virulence factors, and host-derived antimicrobial peptides. FPR activation in turn promotes inflammatory signaling and leukocyte migration to sites of infection. Here we investigate patterns of gene loss, diversification, and ligand recognition among FPRs in primates and carnivores. We find that FPR1, which plays a critical role in innate immune defense in humans, has been lost in New World primates. Amino acid variation in FPR1 and FPR2 among primates and carnivores is consistent with a history of repeated positive selection acting on extracellular domains involved in ligand recognition. To assess the consequences of FPR divergence on bacterial ligand interactions, we measured binding between primate FPRs and the FPR agonist Staphylococcus aureus enterotoxin B, as well as S. aureus FLIPr-like, an FPR inhibitor. We found that few rapidly evolving sites in primate FPRs are sufficient to modulate recognition of bacterial proteins, demonstrating how natural selection may serve to tune FPR activation in response to diverse microbial ligands.
Collapse
Affiliation(s)
- Nicole M Paterson
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hussein Al-Zubieri
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Joseph Ragona
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Kristin M Kohler
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Juan Tirado
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Department of Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
6
|
Jiang T, Tang XY, Mao Y, Zhou YQ, Wang JJ, Li RM, Xie XR, Zhang HM, Fang B, Ouyang NJ, Tang GH. Matrix mechanics regulate the polarization state of bone marrow-derived neutrophils through the JAK1/STAT3 signaling pathway. Acta Biomater 2023; 168:159-173. [PMID: 37467837 DOI: 10.1016/j.actbio.2023.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Matrix mechanics regulate essential cell behaviors through mechanotransduction, and as one of its most important elements, substrate stiffness was reported to regulate cell functions such as viability, communication, migration, and differentiation. Neutrophils (Neus) predominate the early inflammatory response and initiate regeneration. The activation of Neus can be regulated by physical cues; however, the functional alterations of Neus by substrate stiffness remain unknown, which is critical in determining the outcomes of engineered tissue mimics. Herein, a three-dimensional (3D) culture system made of hydrogels was developed to explore the effects of varying stiffnesses (1.5, 2.6, and 5.7 kPa) on the states of Neus. Neus showed better cell integrity and viability in the 3D system. Moreover, it was shown that the stiffer matrix tended to induce Neus toward an anti-inflammatory phenotype (N2) with less adhesion molecule expression, less reactive oxygen species (ROS) production, and more anti-inflammatory cytokine secretion. Additionally, the aortic ring assay indicated that Neus cultured in a stiffer matrix significantly increased vascular sprouting. RNA sequencing showed that a stiffer matrix could significantly activate JAK1/STAT3 signaling in Neus and the inhibition of JAK1 ablated the stiffness-dependent increase in the expression of CD182 (an N2 marker). Taken together, these results demonstrate that a stiffer matrix promotes Neus to shift to the N2 phenotype, which was regulated by JAK1/STAT3 pathway. This study lays the groundwork for further research on fabricating engineered tissue mimics, which may provide more treatment options for ischemic diseases and bone defects. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Yue Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yi Mao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Yu-Qi Zhou
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Jia-Jia Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Ruo-Mei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Xin-Ru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Hong-Ming Zhang
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Ning-Juan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| | - Guo-Hua Tang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology, Shanghai 200011, PR China; Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, PR China.
| |
Collapse
|
7
|
Forsman H, Wu Y, Mårtensson J, Björkman L, Granberg KL, Dahlgren C, Sundqvist M. AZ2158 is a more potent formyl peptide receptor 1 inhibitor than the commonly used peptide antagonists in abolishing neutrophil chemotaxis. Biochem Pharmacol 2023; 211:115529. [PMID: 37004778 DOI: 10.1016/j.bcp.2023.115529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Formyl peptide receptor 1 (FPR1), a G protein-coupled receptor expressed in phagocytes, recognizes short N-formylated peptides originating from proteins synthesized by bacteria and mitochondria. Such FPR1 agonists are important regulators of neutrophil functions and by that, determinants of inflammatory reactions. As FPR1 is implicated in promoting both pro-inflammatory and pro-resolving responses associated with inflammatory diseases, characterization of ligands that potently and selectively modulate FPR1 induced functions might be of high relevance. Accordingly, a number of FPR1 specific antagonists have been identified and shown to inhibit agonist binding or receptor down-stream signaling as well as neutrophil functions such as granule secretion and NADPH oxidase activity. The inhibitory effect on neutrophil chemotaxis induced by FPR1 agonists has generally not been part of basic antagonist characterization. In this study we show that the inhibitory effects on neutrophil chemotaxis of established FPR1 antagonists (i.e., cyclosporin H, BOC1 and BOC2) are limited. Our data demonstrate that the recently described small molecule AZ2158 is a potent and selective FPR1 antagonist in human neutrophils. In contrast to the already established FPR1 antagonists, AZ2158 also potently inhibits chemotaxis. Whereas the cyclosporin H inhibition was agonist selective, AZ2158 inhibited the FPR1 response induced by both a balanced and a biased FPR1 agonist equally well. In accordance with the species specificity described for many FPR1 ligands, AZ2158 was not recognized by the mouse orthologue of FPR1. Our data demonstrate that AZ2158 may serve as an excellent tool compound for further mechanistic studies of human FPR1 mediated activities.
Collapse
Affiliation(s)
- Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kenneth L Granberg
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Trojan E, Tylek K, Schröder N, Kahl I, Brandenburg LO, Mastromarino M, Leopoldo M, Basta-Kaim A, Lacivita E. The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 Improves Ex Vivo and In Vivo Amyloid Beta (1-42)-Induced Neuroinflammation in Mouse Models of Alzheimer's Disease. Mol Neurobiol 2021; 58:6203-6221. [PMID: 34468933 PMCID: PMC8639560 DOI: 10.1007/s12035-021-02543-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023]
Abstract
The major histopathological hallmarks of Alzheimer's disease (AD) include β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Aβ 1-42 (Aβ1-42) has been shown to induce neurotoxicity and secretion of proinflammatory mediators that potentiate neurotoxicity. Proinflammatory and neurotoxic activities of Aβ1-42 were shown to be mediated by interactions with several cell surface receptors, including the chemotactic G protein-coupled N-formyl peptide receptor 2 (FPR2). The present study investigated the impact of a new FPR2 agonist, MR-39, on the neuroinflammatory response in ex vivo and in vivo models of AD. To address this question, organotypic hippocampal cultures from wild-type (WT) and FPR2-deficient mice (knockout, KO, FPR2-/-) were treated with fibrillary Aβ1-42, and the effect of the new FPR2 agonist MR-39 on the release of pro- and anti-inflammatory cytokines was assessed. Similarly, APP/PS1 double-transgenic AD mice were treated for 20 weeks with MR-39, and immunohistological staining was performed to assess neuronal loss, gliosis, and Aβ load in the hippocampus and cortex. The data indicated that MR-39 was able to reduce the Aβ1-42-induced release of proinflammatory cytokines and to improve the release of anti-inflammatory cytokines in mouse hippocampal organotypic cultures. The observed effect was apparently related to the inhibition of the MyD88/TRAF6/NFкB signaling pathway and a decrease in NLRP3 inflammasome activation. Administration of MR-39 to APP/PS1 mice improved neuronal survival and decreased microglial cell density and plaque load.These results suggest that FPR2 may be a promising target for alleviating the inflammatory process associated with AD and that MR-39 may be a useful therapeutic agent for AD.
Collapse
Affiliation(s)
- Ewa Trojan
- Department of Experimental Neuroendocrinology, Immunoendocrinology Laboratory, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Str, 31-343, Kraków, Poland
| | - Kinga Tylek
- Department of Experimental Neuroendocrinology, Immunoendocrinology Laboratory, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Str, 31-343, Kraków, Poland
| | - Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Iris Kahl
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | | | - Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari, via Orabona 4, 70125, Bari, Italy
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Immunoendocrinology Laboratory, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Str, 31-343, Kraków, Poland.
| | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari, via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
9
|
Hommes JW, Kratofil RM, Wahlen S, de Haas CJC, Hildebrand RB, Hovingh GK, Otto M, van Eck M, Hoekstra M, Korporaal SJA, Surewaard BGJ. High density lipoproteins mediate in vivo protection against staphylococcal phenol-soluble modulins. Sci Rep 2021; 11:15357. [PMID: 34321507 PMCID: PMC8319287 DOI: 10.1038/s41598-021-94651-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
Staphylococcus aureus virulence has been associated with the production of phenol-soluble modulins (PSMs). These PSMs have distinct virulence functions and are known to activate, attract and lyse neutrophils. These PSM-associated biological functions are inhibited by lipoproteins in vitro. We set out to address whether lipoproteins neutralize staphylococcal PSM-associated virulence in experimental animal models. Serum from both LCAT an ABCA1 knockout mice strains which are characterised by near absence of high-density lipoprotein (HDL) levels, was shown to fail to protect against PSM-induced neutrophil activation and lysis in vitro. Importantly, PSM-induced peritonitis in LCAT-/- mice resulted in increased lysis of resident peritoneal macrophages and enhanced neutrophil recruitment into the peritoneal cavity. Notably, LCAT-/- mice were more likely to succumb to staphylococcal bloodstream infections in a PSM-dependent manner. Plasma from homozygous carriers of ABCA1 variants characterized by very low HDL-cholesterol levels, was found to be less protective against PSM-mediated biological functions compared to healthy humans. Therefore, we conclude that lipoproteins present in blood can protect against staphylococcal PSMs, the key virulence factor of community-associated methicillin resistant S. aureus.
Collapse
Affiliation(s)
- Josefien W Hommes
- Department of Microbiology, Immunology, and Infectious Disease. Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Rachel M Kratofil
- Department of Microbiology, Immunology, and Infectious Disease. Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Sigrid Wahlen
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Diagnostic Sciences, Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Reeni B Hildebrand
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Micheal Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Miranda van Eck
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Menno Hoekstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands
| | - Suzanne J A Korporaal
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, Leiden, The Netherlands.,Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas G J Surewaard
- Department of Microbiology, Immunology, and Infectious Disease. Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada. .,Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Mastromarino M, Lacivita E, Colabufo NA, Leopoldo M. G-Protein Coupled Receptors Involved in the Resolution of Inflammation: Ligands and Therapeutic Perspectives. Mini Rev Med Chem 2021; 20:2090-2103. [PMID: 32682373 DOI: 10.2174/1389557520666200719014433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/13/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
Dysregulated inflammation is a central pathological process in diverse disease states, including neurodegenerative disorders. The recent concept of "resolution of inflammation" is offering a conceptual change for the diagnosis and the development of new therapeutic approaches for chronic inflammatory diseases. Resolution of inflammation terminates the inflammatory response promoting the return to tissue homeostasis through the action of several classes of mediators, termed specialized pro-resolving lipid mediators (SPMs), that include lipoxins, resolvins, protectins, and maresins. SPMs provide "stop signals" that reduce the number of immune cells at the site of insult and increase the clearance of apoptotic cells through phagocytosis. SPMs elicit their effects through the interaction with specific G-protein coupled receptors (GPCRs). The elucidation of the pathways downstream of the GPCRs involved in the resolution of chronic inflammation is opening novel opportunities to generate novel anti-inflammatory agents. This review focuses on the SPMs and the receptors through which their effects are mediated. The medicinal chemistry of the modulators of the GPCRs involved in the resolution of inflammation will be illustrated, by highlighting the potential for developing new antiinflammatory drugs.
Collapse
Affiliation(s)
- Margherita Mastromarino
- Dipartimento di Farmacia - Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Enza Lacivita
- Dipartimento di Farmacia - Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Nicola A Colabufo
- Dipartimento di Farmacia - Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia - Scienze del Farmaco, Universita degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
11
|
Duvvuri B, Baddour AA, Deane KD, Feser ML, Nelson JL, Demoruelle MK, Lood C. Mitochondrial N-formyl methionine peptides associate with disease activity as well as contribute to neutrophil activation in patients with rheumatoid arthritis. J Autoimmun 2021; 119:102630. [PMID: 33713887 DOI: 10.1016/j.jaut.2021.102630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Literature suggests that neutrophils of patients with rheumatoid arthritis (RA) are primed to respond to N-formyl methionine group (formylated peptides). Animal models indicate that formylated peptides contribute to joint damage via neutrophil recruitment and inflammation in joints. Non-steroidal anti-inflammatory drugs are also known to inhibit formyl peptide-induced neutrophil activation. The predominant source of formylated peptides in sterile inflammatory conditions like RA is mitochondria, organelles with prokaryotic molecular signatures. However, there is no direct evidence of mitochondrial formyl peptides (mtNFPs) in the circulation of patients with RA and their potential role in neutrophil-mediated inflammation in RA, including their clinical significance. METHODS Levels of mtNFPs (total fMet, MT-ND6) were analyzed using ELISA in plasma and serum obtained from patients in 3 cross-sectional RA cohorts (n = 275), a longitudinal inception cohort (n = 192) followed for a median of 8 years, and age/gender-matched healthy controls (total n = 134). Neutrophil activation assays were done in the absence or presence of formyl peptide receptor 1 (FPR1) inhibitor cyclosporine H. RESULTS Elevated levels of total fMet were observed in the circulation of patients with RA as compared to healthy controls (p < 0.0001) associating with disease activity and could distinguish patients with the active disease from patients with inactive disease or patients in remission. Baseline levels of total fMet correlated with current and future joint involvement, respectively and predicted the development of rheumatoid nodules (OR = 1.2, p = 0.04). Further, total fMet levels improved the prognostic ability of ACPA in predicting erosive disease (OR of 7.9, p = 0.001). Total fMet levels correlated with markers of inflammation and neutrophil activation. Circulating mtNFPs induced neutrophil activation in vitro through FPR1-dependent mechanisms. CONCLUSIONS Circulating mtNFPs could be novel biomarkers of disease monitoring and prognosis for RA and in investigating neutrophil-mediated inflammation in RA. We propose, FPR1 as a novel therapeutic target for RA.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Al Anoud Baddour
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - Marie L Feser
- Division of Rheumatology, University of Colorado-Denver, Aurora, CO, USA
| | - J Lee Nelson
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog 2020; 148:104431. [PMID: 32801004 DOI: 10.1016/j.micpath.2020.104431] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis, a significant infection of bone tissue, gives rise to two main groups of infection: acute and chronic. These groups are further categorized in terms of the duration of infection. Usually, children and adults are more susceptible to acute and chronic infections, respectively. The aforementioned groups of osteomyelitis share almost 80% of the corresponding bacterial pathogens. Among all bacteria, Staphylococcus aureus (S. aureus) is a significant pathogen and is associated with a high range of osteomyelitis symptoms. S. aureus has many strategies for interacting with host cells including Small Colony Variant (SCV), biofilm formation, and toxin secretion. In addition, it induces an inflammatory response and causes host cell death by apoptosis and necrosis. However, any possible step to take in this respect is dependent on the conditions and host responses. In the absence of any immune responses and antibiotics, bacteria actively duplicate themselves; however, in the presence of phagocytic cell and harassing conditions, they turn into a SCV, remaining sustainable for a long time. SCV is characterized by notable advantages such as (a) intracellular life that mediates a dam against immune cells and (b) low ATP production that mediates resistance against antibiotics.
Collapse
|
13
|
Dahlgren C, Holdfeldt A, Lind S, Mårtensson J, Gabl M, Björkman L, Sundqvist M, Forsman H. Neutrophil Signaling That Challenges Dogmata of G Protein-Coupled Receptor Regulated Functions. ACS Pharmacol Transl Sci 2020; 3:203-220. [PMID: 32296763 DOI: 10.1021/acsptsci.0c00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/24/2022]
Abstract
Activation as well as recruitment of neutrophils, the most abundant leukocyte in human blood, to sites of infection/inflammation largely rely on surface-exposed chemoattractant receptors. These receptors belong to the family of 7-transmembrane domain receptors also known as G protein-coupled receptors (GPCRs) due to the fact that part of the downstream signaling relies on an activation of heterotrimeric G proteins. The neutrophil GPCRs share significant sequence homologies but bind many structurally diverse activating (agonistic) and inhibiting (antagonistic) ligands, ranging from fatty acids to purines, peptides, and lipopeptides. Recent structural and functional studies of neutrophil receptors have generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization mechanisms and reactivation, and communication (cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on neutrophil GPCRs. In addition, unmet challenges are dealt with, including recognition by the receptors of diverse ligands and how biased signaling mediates different biological effects.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Göteborg, Göteborg 405 30, Sweden
| |
Collapse
|
14
|
Dahlgren C, Björnsdottir H, Sundqvist M, Christenson K, Bylund J. Measurement of Respiratory Burst Products, Released or Retained, During Activation of Professional Phagocytes. Methods Mol Biol 2020; 2087:301-324. [PMID: 31729000 DOI: 10.1007/978-1-0716-0154-9_22] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Activation of professional phagocytes, potent microbial killers of our innate immune system, is associated with an increased cellular consumption of molecular oxygen (O2). The O2 molecules consumed are reduced by electrons delivered by a membrane localized NADPH-oxidase that initially generate one- and two electron reduced superoxide anions (O2-) and hydrogen peroxide (H2O2), respectively. These oxidants can then be processed into other highly reactive oxygen species (ROS) that can kill microbes, but that may also cause tissue destruction and drive other immune cells into apoptosis. The development of basic techniques to measure and quantify ROS generation by phagocytes is of great importance, and a large number of methods have been used for this purpose. A selection of methods (including chemiluminescence amplified by luminol or isoluminol, absorbance change following reduction of cytochrome c, and fluorescence increase upon oxidation of PHPA) are described in detail in this chapter with special emphasis on how to distinguish between ROS that are released extracellularly, and those that are retained within intracellular organelles. These techniques can be valuable tools in research spanning from basic phagocyte biology to diagnosis of diseases linked to the NADPH-oxidase and more clinically oriented research on innate immune mechanisms and inflammation.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Abstract
Amplified innate leukocytes (neutrophils and monocytes/macrophages) are associated with advanced ischemic and non-ischemic heart failure (HF). Intensified neutrophilic leukocytosis (neutrophilia) and sustained activation of neutrophils is the predominant factor that determines over activated inflammation in acute HF and the outcome of long-term chronic HF. After heart attack, the first wave of innate responsive and short-lived neutrophils is essential for the initiation of inflammation, resolution of inflammation, and cardiac repair, however uncontrolled and long-term activation of neutrophils leads to collateral damage of myocardium. In the presented review, we highlighted the interactive and integrative role of neutrophil phenotypes in cellular and molecular events of ischemic HF. In addition, we discussed the current, nonimmune, immune, and novel paradigms of neutrophils in HF associated with differential factors with a specific interest in non-resolving inflammation and resolution physiology.
Collapse
Affiliation(s)
- Vasundhara Kain
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, AL, USA
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, AL, USA.
| |
Collapse
|
16
|
Zhao Y, van Kessel KPM, de Haas CJC, Rogers MRC, van Strijp JAG, Haas PA. Staphylococcal superantigen-like protein 13 activates neutrophils via formyl peptide receptor 2. Cell Microbiol 2018; 20:e12941. [PMID: 30098280 PMCID: PMC6220968 DOI: 10.1111/cmi.12941] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/06/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
Staphylococcal superantigen-like (SSL) proteins, one of the major virulence factor families produced by Staphylococcus aureus, were previously demonstrated to be immune evasion molecules that interfere with a variety of innate immune defences. However, in contrast to characterised SSLs, which inhibit immune functions, we show that SSL13 is a strong activator of neutrophils via the formyl peptide receptor 2 (FPR2). Moreover, our data show that SSL13 acts as a chemoattractant and induces degranulation and oxidative burst in neutrophils. As with many other staphylococcal immune evasion proteins, SSL13 shows a high degree of human specificity. SSL13 is not able to efficiently activate mouse neutrophils, hampering in vivo experiments. In conclusion, SSL13 is a neutrophil chemoattractant and activator that acts via FPR2. Therefore, SSL13 is a unique SSL member that does not belong to the immune evasion class but is a pathogen alarming molecule. Our study provides a new concept of SSLs; SSLs not only inhibit host immune processes but also recruit human neutrophils to the site of infection. This new insight allows us to better understand complex interactions between host and S. aureus pathological processes.
Collapse
Affiliation(s)
- Yuxi Zhao
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Kok P. M. van Kessel
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carla J. C. de Haas
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Malbert R. C. Rogers
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jos A. G. van Strijp
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Pieter‐Jan A. Haas
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
17
|
Reshetnikov V, Hahn J, Maueröder C, Czegley C, Munoz LE, Herrmann M, Hoffmann MH, Mokhir A. Chemical Tools for Targeted Amplification of Reactive Oxygen Species in Neutrophils. Front Immunol 2018; 9:1827. [PMID: 30150984 PMCID: PMC6099268 DOI: 10.3389/fimmu.2018.01827] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/24/2018] [Indexed: 12/12/2022] Open
Abstract
A number of chemical compounds are known, which amplify the availability of reactive oxygen species (ROS) in neutrophils both in vitro and in vivo. They can be roughly classified into NADPH oxidase 2 (NOX2)-dependent and NOX2-independent reagents. NOX2 activation is triggered by protein kinase C agonists (e.g., phorbol esters, transition metal ions), redox mediators (e.g., paraquat) or formyl peptide receptor (FPR) agonists (e.g., aromatic hydrazine derivatives). NOX2-independent mechanisms are realized by reagents affecting glutathione homeostasis (e.g., l-buthionine sulfoximine), modulators of the mitochondrial respiratory chain (e.g., ionophores, inositol mimics, and agonists of peroxisome proliferator-activated receptor γ) and chemical ROS amplifiers [e.g., aminoferrocene-based prodrugs (ABPs)]. Since a number of inflammatory and autoimmune diseases, as well as cancer and bacterial infections, are triggered or enhanced by aberrant ROS production in neutrophils, it is tempting to use ROS amplifiers as drugs for the treatment of these diseases. However, since the known reagents are not cell specific, their application for treatment likely causes systemic enhancement of oxidative stress, leading to severe side effects. Cell-targeted ROS enhancement can be achieved either by using conjugates of ROS amplifiers with ligands binding to receptors expressed on neutrophils (e.g., the GPI-anchored myeloid differentiation marker Ly6G or FPR) or by designing reagents activated by neutrophil function [e.g., phagocytic activity or enzymatic activity of neutrophil elastase (NE)]. Since binding of an artificial ligand to a receptor may trigger or inhibit priming of neutrophils the latter approach has a smaller potential for severe side effects and is probably better suitable for therapy. Here, we review current approaches for the use of ROS amplifiers and discuss their applicability for treatment. As an example, we suggest a possible design of neutrophil-specific ROS amplifiers, which are based on NE-activated ABPs.
Collapse
Affiliation(s)
- Viktor Reshetnikov
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jonas Hahn
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent university, Ghent, Belgium
| | - Christine Czegley
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luis Enrique Munoz
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus H Hoffmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andriy Mokhir
- Department of Chemistry and Pharmacy, Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Chlamydia trachomatis paralyses neutrophils to evade the host innate immune response. Nat Microbiol 2018; 3:824-835. [PMID: 29946164 DOI: 10.1038/s41564-018-0182-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/18/2018] [Indexed: 11/08/2022]
Abstract
Chlamydia trachomatis, an obligate intracellular human pathogen, is a major cause of sexually transmitted diseases. Infections often occur without symptoms, a feature that has been attributed to the ability of the pathogen to evade the host immune response. We show here that C. trachomatis paralyses the host immune system by preventing the activation of polymorphic nuclear leukocytes (PMNs). PMNs infected with Chlamydia fail to produce neutrophil extracellular traps and the bacteria are able to survive in PMNs for extended periods of time. We have identified the secreted chlamydial protease-like activating factor (CPAF) as an effector mediating the evasion of the innate immune response since CPAF-deficient Chlamydia activate PMNs and are subsequently efficiently killed. CPAF suppresses the oxidative burst and interferes with chemical-mediated activation of neutrophils. We identified formyl peptide receptor 2 (FPR2) as a target of CPAF. FPR2 is cleaved by CPAF and released from the surface of PMNs. In contrast to previously described subversion mechanisms that mainly act on already activated PMNs, we describe here details of how Chlamydia actively paralyses PMNs, including the formation of neutrophil extracellular traps, to evade the host's innate immune response.
Collapse
|
19
|
Gabl M, Sundqvist M, Holdfeldt A, Lind S, Mårtensson J, Christenson K, Marutani T, Dahlgren C, Mukai H, Forsman H. Mitocryptides from Human Mitochondrial DNA-Encoded Proteins Activate Neutrophil Formyl Peptide Receptors: Receptor Preference and Signaling Properties. THE JOURNAL OF IMMUNOLOGY 2018; 200:3269-3282. [PMID: 29602776 DOI: 10.4049/jimmunol.1701719] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
Phagocytic neutrophils express formyl peptide receptors (FPRs; FPR1 and FPR2) that distinctly recognize peptides starting with an N-formylated methionine (fMet). This is a hallmark of bacterial metabolism; similar to prokaryotes, the starting amino acid in synthesis of mitochondrial DNA-encoded proteins is an fMet. Mitochondrial cryptic peptides (mitocryptides; MCTs) with an N-terminal fMet could be identified by our innate immune system; however, in contrast to our knowledge about bacterial metabolites, very little is known about the recognition profiles of MCTs. In this study, we determined the neutrophil-recognition profiles and functional output of putative MCTs originating from the N termini of the 13 human mitochondrial DNA-encoded proteins. Six of the thirteen MCTs potently activated neutrophils with distinct FPR-recognition profiles: MCTs from ND3 and ND6 have a receptor preference for FPR1; MCTs from the proteins ND4, ND5, and cytochrome b prefer FPR2; and MCT-COX1 is a dual FPR1/FPR2 agonist. MCTs derived from ND2 and ND4L are very weak neutrophil activators, whereas MCTs from ND1, ATP6, ATP8, COX2, and COX3, do not exert agonistic or antagonistic FPR effects. In addition, the activating MCTs heterologously desensitized IL-8R but primed the response to the platelet-activating factor receptor agonist. More importantly, our data suggest that MCTs have biased signaling properties in favor of activation of the superoxide-generating NADPH oxidase or recruitment of β-arrestin. In summary, we identify several novel FPR-activating peptides with sequences present in the N termini of mitochondrial DNA-encoded proteins, and our data elucidate the molecular basis of neutrophil activation by MCTs.
Collapse
Affiliation(s)
- Michael Gabl
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Andre Holdfeldt
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden; and
| | - Takayuki Marutani
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 526-0829 Nagahama, Japan
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Hidehito Mukai
- Laboratory of Peptide Science, Graduate School of Bio-Science, Nagahama Institute of Bio-Science and Technology, 526-0829 Nagahama, Japan
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, University of Gothenburg, 41390 Gothenburg, Sweden;
| |
Collapse
|
20
|
Phenol-Soluble Modulin Peptides Contribute to Influenza A Virus-Associated Staphylococcus aureus Pneumonia. Infect Immun 2017; 85:IAI.00620-17. [PMID: 28893917 DOI: 10.1128/iai.00620-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Abstract
Influenza A virus (IAV) infection is often followed by secondary bacterial lung infection, which is a major reason for severe, often fatal pneumonia. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains such as USA300 cause particularly severe and difficult-to-treat cases of IAV-associated pneumonia. CA-MRSA strains are known to produce extraordinarily large amounts of phenol-soluble modulin (PSM) peptides, which are important cytotoxins and proinflammatory molecules that contribute to several types of S. aureus infection. However, their potential role in pneumonia has remained elusive. We determined the impact of PSMs on human lung epithelial cells and found that PSMs are cytotoxic and induce the secretion of the proinflammatory cytokine interleukin-8 (IL-8) in these cells. Both effects were boosted by previous infection with the 2009 swine flu pandemic IAV H1N1 strain, suggesting that PSMs may contribute to lung inflammation and damage in IAV-associated S. aureus pneumonia. Notably, the PSM-producing USA300 strain caused a higher mortality rate than did an isogenic PSM-deficient mutant in a mouse IAV-S. aureus pneumonia coinfection model, indicating that PSMs are major virulence factors in IAV-associated S. aureus pneumonia and may represent important targets for future anti-infective therapies.
Collapse
|
21
|
Winther M, Holdfeldt A, Sundqvist M, Rajabkhani Z, Gabl M, Bylund J, Dahlgren C, Forsman H. Formyl peptide derived lipopeptides disclose differences between the receptors in mouse and men and call the pepducin concept in question. PLoS One 2017; 12:e0185132. [PMID: 28934373 PMCID: PMC5608352 DOI: 10.1371/journal.pone.0185132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
A pepducin is a lipopeptide containing a peptide sequence that is identical to one of the intracellular domains of the G-protein coupled receptor (GPCR) assumed to be the target. Neutrophils express two closely related formyl peptide receptors belonging to the family of GPCRs; FPR1 and FPR2 in human and their respective orthologue Fpr1 and Fpr2 in mouse. By applying the pepducin concept, we have earlier identified FPR2 activating pepducins generated from the third intracellular loop of FPR2. The third intracellular loop of FPR2 differs in two amino acids from that of FPR1, seven from Fpr2 and three from Fpr1. Despite this, we found that pepducins generated from FPR1, FPR2, Fpr1 and Fpr2 all targeted FPR2 in human neutrophils and Fpr2 in mouse, but with different modulating outcomes. Whereas the FPR1/Fpr1 derived pepducins inhibited the FPR2 function in human neutrophils, they activated Fpr2 in mouse. The FPR2 derived pepducin activated FPR2/Fpr2, whereas the pepducin generated from Fpr2 inhibited both FPR2 and Fpr2. In summary, our data demonstrate that pepducins generated from the third intracellular loop of human FPR1/2 and mouse Fpr1/2, all targeted FPR2 in human and Fpr2 in mouse. With respect to the modulating outcomes, pepducin inhibitors identified for FPR2 are in fact activators for Fpr2 in mouse neutrophils. Our data thus questions the validity of pepducin concept regarding their receptor selectivity but supports the notion that FPR2/Fpr2 may recognize a lipopeptide molecular pattern, and highlight the differences in ligand recognition profile between FPR2 and its mouse orthologue Fpr2.
Collapse
Affiliation(s)
- Malene Winther
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - André Holdfeldt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zahra Rajabkhani
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
22
|
Honokiol suppresses formyl peptide-induced human neutrophil activation by blocking formyl peptide receptor 1. Sci Rep 2017; 7:6718. [PMID: 28751674 PMCID: PMC5532207 DOI: 10.1038/s41598-017-07131-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 06/23/2017] [Indexed: 11/24/2022] Open
Abstract
Formyl peptide receptor 1 (FPR1) mediates bacterial and mitochondrial N-formyl peptides-induced neutrophil activation. Therefore, FPR1 is an important therapeutic target for drugs to treat septic or sterile inflammatory diseases. Honokiol, a major bioactive compound of Magnoliaceae plants, possesses several anti-inflammatory activities. Here, we show that honokiol exhibits an inhibitory effect on FPR1 binding in human neutrophils. Honokiol inhibited superoxide anion generation, reactive oxygen species formation, and elastase release in bacterial or mitochondrial N-formyl peptides (FPR1 agonists)-activated human neutrophils. Adhesion of FPR1-induced human neutrophils to cerebral endothelial cells was also reduced by honokiol. The receptor-binding results revealed that honokiol repressed FPR1-specific ligand N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys-fluorescein binding to FPR1 in human neutrophils, neutrophil-like THP-1 cells, and hFPR1-transfected HEK293 cells. However, honokiol did not inhibit FPR2-specific ligand binding to FPR2 in human neutrophils. Furthermore, honokiol inhibited FPR1 agonist-induced calcium mobilization as well as phosphorylation of p38 MAPK, ERK, and JNK in human neutrophils. In conclusion, our data demonstrate that honokiol may have therapeutic potential for treating FPR1-mediated inflammatory diseases.
Collapse
|
23
|
Deshpande SA, Pawar AB, Dighe A, Athale CA, Sengupta D. Role of spatial inhomogenity in GPCR dimerisation predicted by receptor association–diffusion models. Phys Biol 2017; 14:036002. [DOI: 10.1088/1478-3975/aa6b68] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Formyl peptide receptors promotes neural differentiation in mouse neural stem cells by ROS generation and regulation of PI3K-AKT signaling. Sci Rep 2017; 7:206. [PMID: 28303030 PMCID: PMC5428260 DOI: 10.1038/s41598-017-00314-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/20/2017] [Indexed: 01/12/2023] Open
Abstract
This study aimed to determine whether formyl peptide receptors (FPRs) regulated the differentiation of neural stem cells (NSCs). FPRs promote the migration of NSCs both in vitro and in vivo. However, the role of FPRs during differentiation of NSCs is unknown. Analysis by Western blot showed significantly increased expression of FPR1 and FPR2 during differentiation of NSCs. The activation of FPRs promotes NSCs to differentiate into neurons with more primary neurites and branch points and longer neurites per cell. Meanwhile, this activation also inhibits the differentiation of NSC into astrocytes. This bidirectional effect can be inhibited by the FPRs-specific inhibitor. Moreover, it was found that the activation of FPRs increased the generation of reactive oxygen species (ROS) and phosphorylation of AKT in the NSCs, while N-acetylcysteine and LY294002 inhibited the FPRs-stimulated increase in ROS generation and AKT phosphorylation, and blocked the FPRs-stimulated neural differentiation into neurons. Therefore, FPRs-stimulated neural differentiation was mediated via ROS and PI3K-AKT signaling pathways. Collectively, the present findings provided a novel insight into the functional role of FPRs in neurogenesis, with important implications for its potential use as a candidate for treating brain or spinal cord injury.
Collapse
|
25
|
Bufe B, Zufall F. The sensing of bacteria: emerging principles for the detection of signal sequences by formyl peptide receptors. Biomol Concepts 2017; 7:205-14. [PMID: 27305707 DOI: 10.1515/bmc-2016-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/29/2016] [Indexed: 01/12/2023] Open
Abstract
The ability to detect specific chemical signatures released by bacteria and other microorganisms is a fundamental feature of immune defense against pathogens. There is increasing evidence that chemodetection of such microorganism-associated molecular patterns (MAMPs) occurs at many places in the body including specific sets of chemosensory neurons in the mammalian nose. Formyl peptide receptors (FPRs) are a unique family of G protein-coupled receptors (GPCRs) that can detect the presence of bacteria and function as chemotactic receptors. Here, we highlight the recent discovery of a vast family of natural FPR agonists, the bacterial signal peptides (or signal sequences), thus providing new insight into the molecular mechanisms of bacterial sensing by human and mouse FPRs. Signal peptides in bacteria are formylated, N-terminal protein signatures required for directing the transfer of proteins through the plasma membrane. After their cleavage and release, signal peptides are available for FPR detection and thus provide a previously unrecognized MAMP. With over 170 000 predicted sequences, bacterial signal peptides represent one of the largest families of GPCR ligands and one of the most complex classes of natural activators of the innate immune system. By recognizing a conserved three-dimensional peptide motif, FPRs employ an unusual detection mechanism that combines structural promiscuity with high specificity and sensitivity, thus solving the problem of detecting thousands of distinct sequences yet maintaining selectivity. How signal peptides are released by bacteria and sensed by GPCRs and how these processes shape the responses of other cells and whole organisms represents an important topic for future research.
Collapse
|
26
|
Park YJ, Lee SK, Jung YS, Lee M, Lee HY, Kim SD, Park JS, Koo J, Hwang JS, Bae YS. Promotion of formyl peptide receptor 1-mediated neutrophil chemotactic migration by antimicrobial peptides isolated from the centipede Scolopendra subspinipes mutilans. BMB Rep 2017; 49:520-5. [PMID: 27502013 PMCID: PMC5227146 DOI: 10.5483/bmbrep.2016.49.9.098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
We investigated the effects of two antimicrobial peptides (AMPs) isolated from Scolopendra subspinipes mutilans on neutrophil activity. Stimulation of mouse neutrophils with the two AMPs elicited chemotactic migration of the cells in a pertussis toxin-sensitive manner. The two AMPs also stimulated activation of ERK and Akt, which contribute to chemotactic migration of neutrophils. We found that AMP-stimulated neutrophil chemotaxis was blocked by a formyl peptide receptor (FPR) 1 antagonist (cyclosporin H); moreover the two AMPs stimulated the chemotactic migration of FPR1-expressing RBL-2H3 cells but not of vector-expressing RBL-2H3 cells. We also found that the two AMPs stimulate neutrophil migration in vivo, and that this effect is blocked in FPR1-deficient mice. Taken together, our results suggest that the two AMPs stimulate neutrophils, leading to chemotactic migration through FPR1, and the two AMPs will be useful for the study of FPR1 signaling and neutrophil activation. [BMB Reports 2016; 49(9): 520-525]
Collapse
Affiliation(s)
- Yoo Jung Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sung Kyun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Young Su Jung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingyu Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| | - Ha Young Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Sang Doo Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Wanju 55365, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
27
|
Raeven RHM, Brummelman J, Pennings JLA, van der Maas L, Tilstra W, Helm K, van Riet E, Jiskoot W, van Els CACM, Han WGH, Kersten GFA, Metz B. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Sci Rep 2016; 6:38240. [PMID: 27905535 PMCID: PMC5131296 DOI: 10.1038/srep38240] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
The demand for improved pertussis vaccines is urgent due to the resurgence of whooping cough. A deeper understanding of the mode of action of pertussis vaccines is required to achieve this improvement. The vaccine-induced effects of a candidate outer membrane vesicle vaccine (omvPV) and a classical protective but reactogenic whole cell vaccine (wPV) were comprehensively compared in mice. The comparison revealed essential qualitative and quantitative differences with respect to immunogenicity and adverse effects for these vaccines. Both vaccines stimulated a mixed systemic Th1/Th2/Th17 response. Remarkably, omvPV evoked higher IgG levels, lower systemic pro-inflammatory cytokine responses and enhanced splenic gene expression than wPV. The omvPV-induced transcriptome revealed gene signatures of the IFN-signaling pathway, anti-inflammatory signatures that attenuate LPS responses, anti-inflammatory metabolic signatures, and IgG responses. Upon intranasal challenge, both immunized groups were equally efficient in clearing Bordetella pertussis from the lungs. This study importantly shows that immunization with omvPV provides a milder inflammatory responses but with equal protection to bacterial colonization and induction of protective antibody and Th1/Th17 type immune responses compared to wPV. These results emphasize the potential of omvPV as a safe and effective next-generation pertussis vaccine.
Collapse
Affiliation(s)
- René H M Raeven
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Wichard Tilstra
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elly van Riet
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Bernard Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| |
Collapse
|
28
|
Formylated MHC Class Ib Binding Peptides Activate Both Human and Mouse Neutrophils Primarily through Formyl Peptide Receptor 1. PLoS One 2016; 11:e0167529. [PMID: 27907124 PMCID: PMC5132201 DOI: 10.1371/journal.pone.0167529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Two different immune recognition systems have evolved in parallel to recognize peptides starting with an N-formylated methionine, and recognition similarities/differences between these two systems have been investigated. A number of peptides earlier characterized in relation to the H2-M3 complex that presents N-formylated peptides to cytotoxic T cells, have been characterized in relation to the formyl peptide receptors expressed by phagocytic neutrophils in both men (FPRs) and mice (Fprs). FPR1/Fpr1 was identified as the preferred receptor for all fMet-containing peptides examined, but there was no direct correlation between H2-M3 binding and the neutrophil activation potencies. Similarly, there was no direct correlation between the activities induced by the different peptides in human and mouse neutrophils, respectively. The formyl group was important in both H2-M3 binding and FPR activation, but FPR2 was the preferred receptor for the non-formylated peptide. The structural requirements differed between the H2-M3 and FPR/Fpr recognition systems and these data suggest that the two recognition systems have different evolutionary traits.
Collapse
|
29
|
García-Quiroz J, García-Becerra R, Santos-Martínez N, Avila E, Larrea F, Díaz L. Calcitriol stimulates gene expression of cathelicidin antimicrobial peptide in breast cancer cells with different phenotype. J Biomed Sci 2016; 23:78. [PMID: 27832772 PMCID: PMC5103596 DOI: 10.1186/s12929-016-0298-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Background In normal and neoplastic cells, growth-promoting, proangiogenic, cytotoxic and pro-apoptotic effects have all been attributed to cathelicidin antimicrobial peptide (CAMP). Nevertheless, little is known about the factors regulating this peptide expression in breast cancer. Herein we asked if the well-known antineoplastic hormone calcitriol could differentially modulate CAMP gene expression in human breast cancer cells depending on the cell phenotype in terms of efficacy and potency. Methods The established breast cancer cell lines MCF7, BT-474, HCC1806, HCC1937, SUM-229PE and a primary cell culture generated from invasive ductal breast carcinoma were used in this study. Calcitriol regulation of cathelicidin gene expression in vitro and in human breast cancer xenografts was studied by real time PCR. Tumorigenicity was evaluated for each cell line in athymic mice. Results Estrogen receptor (ER)α + breast cancer cells showed the highest basal CAMP gene expression. When incubated with calcitriol, CAMP gene expression was stimulated in a dose-dependent and cell phenotype-independent manner. Efficacy of calcitriol was lower in ERα + cells when compared to ERα- cells (<10 vs. >70 folds over control, respectively). Conversely, calcitriol lowest potency upon CAMP gene expression was observed in the ERα-/EGFR+ SUM-229PE cell line (EC50 = 70.8 nM), while the highest was in the basal-type/triple-negative cells HCC1806 (EC50 = 2.13 nM) followed by ERα + cells MCF7 and BT-474 (EC50 = 4.42 nM and 14.6 nM, respectively). In vivo, lower basal CAMP gene expression was related to increased tumorigenicity and lack of ERα expression. Xenografted triple-negative breast tumors of calcitriol-treated mice showed increased CAMP gene expression compared to vehicle-treated animals. Conclusions Independently of the cell phenotype, calcitriol provoked a concentration-dependent stimulation on CAMP gene expression, showing greater potency in the triple negative HCC1806 cell line. Efficacy of calcitriol was lower in ERα + cells when compared to ERα- cells in terms of stimulating CAMP gene expression. Lower basal CAMP and lack of ERα gene expression was related to increased tumorigenicity. Our results suggest that calcitriol anti-cancer therapy is more likely to induce higher levels of CAMP in ERα- breast cancer cells, when compared to ERα + breast cancer cells.
Collapse
Affiliation(s)
- Janice García-Quiroz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P., 14080, Ciudad de México, México
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P., 14080, Ciudad de México, México
| | - Nancy Santos-Martínez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P., 14080, Ciudad de México, México
| | - Euclides Avila
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P., 14080, Ciudad de México, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P., 14080, Ciudad de México, México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P., 14080, Ciudad de México, México.
| |
Collapse
|
30
|
The Neutrophil Response Induced by an Agonist for Free Fatty Acid Receptor 2 (GPR43) Is Primed by Tumor Necrosis Factor Alpha and by Receptor Uncoupling from the Cytoskeleton but Attenuated by Tissue Recruitment. Mol Cell Biol 2016; 36:2583-95. [PMID: 27503855 DOI: 10.1128/mcb.00161-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/28/2016] [Indexed: 01/22/2023] Open
Abstract
Ligands with improved potency and selectivity for free fatty acid receptor 2 (FFA2R) have become available, and we here characterize the neutrophil responses induced by one such agonist (Cmp1) and one antagonist (CATPB). Cmp1 triggered an increase in the cytosolic concentration of Ca(2+), and the neutrophils were then desensitized to Cmp1 and to acetate, a naturally occurring FFA2R agonist. The antagonist CATPB selectively inhibited responses induced by Cmp1 or acetate. The activated FFA2R induced superoxide anion secretion at a low level in naive blood neutrophils. This response was largely increased by tumor necrosis factor alpha (TNF-α) in a process associated with a recruitment of easily mobilizable granules, but neutrophils recruited to an aseptic inflammation in vivo were nonresponding. Superoxide production induced by Cmp1 was increased in latrunculin A-treated neutrophils, but no reactivation of desensitized FFA2R was induced by this drug, suggesting that the cytoskeleton is not directly involved in terminating the response. The functional and regulatory differences between the receptors that recognize short-chain fatty acids and formylated peptides, respectively, imply different roles of these receptors in the orchestration of inflammation and confirm the usefulness of a selective FFA2R agonist and antagonist as tools for the exploration of the precise role of the FFA2R.
Collapse
|
31
|
The peptidomimetic Lau-(Lys-βNSpe) 6-NH 2 antagonizes formyl peptide receptor 2 expressed in mouse neutrophils. Biochem Pharmacol 2016; 119:56-65. [PMID: 27614010 DOI: 10.1016/j.bcp.2016.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
The formyl peptide receptor (FPR) gene family has a complex evolutionary history and comprises eight murine members but only three human representatives. To enable translation of results obtained in mouse models of human diseases, more comprehensive knowledge of the pharmacological similarities/differences between the human and murine FPR family members is required. Compared to FPR1 and FPR2 expressed by human neutrophils, very little is known about agonist/antagonist recognition patterns for their murine orthologues, but now we have identified two potent and selective formylated peptide agonists (fMIFL and PSMα2) for Fpr1 and Fpr2, respectively. These peptides were used to determine the inhibition profile of a set of antagonists with known specificities for the two FPRs in relation to the corresponding murine receptors. Some of the most potent and selective antagonists for the human receptors proved to be devoid of effect on their murine orthologues as determined by their inability to inhibit superoxide release from murine neutrophils upon stimulation with receptor-specific agonists. The Boc-FLFLF peptide was found to be a selective antagonist for Fpr1, whereas the lipidated peptidomimetic Lau-(Lys-βNSpe)6-NH2 and the hexapeptide WRW4 were identified as Fpr2-selective antagonists.
Collapse
|
32
|
Tsai YF, Yang SC, Hwang TL. Formyl peptide receptor modulators: a patent review and potential applications for inflammatory diseases (2012-2015). Expert Opin Ther Pat 2016; 26:1139-1156. [PMID: 27454150 DOI: 10.1080/13543776.2016.1216546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The activation of leukocytes and the subsequent immune cascade play an essential role in sterile and infectious inflammation. Dysregulation of these immune responses or excess leukocyte activation can induce tissue damage, organ dysfunction and mortality. Formyl peptide receptors (FPRs) are functionally diverse pattern recognition receptors responsible for recognizing different endogenous damage-associated molecular patterns or exogenous pathogen-associated molecular patterns. FPRs mediate leukocyte activation during inflammation. FPR1 antagonists and FPR2 agonists have demonstrated significant anti-inflammatory effects based on in vitro and in vivo studies. An increasing number of synthesized compounds targeting FPRs, especially potential FPR1 antagonists and FPR2 agonists, have been disclosed in patents. Areas covered: This article summarizes the current pharmacology patents related to FPR family modulators and their therapeutic indications based on a review of patent applications disclosed between 2012 and 2015. Expert opinion: In this review, FPR1 modulators comprise β-1,3-glucan synthase inhibitors containing an FPR ligand moiety, template-fixed peptidomimetics, cyclosporin H, and dipeptide derivatives. FPR2 modulators include phenylurea, bridged spiro[2.4]heptane ester, naphthalene, aminotriazole, polycyclic pyrrolidine-2,5-dione, imidazolidine-2,4-dione, (2-ureidoacetamido)alkyl, amide, oxazolyl-methylether, oxazole, thiazole, and crystalline potassium salt derivatives. These compounds have potential applications for human conditions such as inflammatory lung diseases, ischemia-reperfusion injury, sepsis, inflammatory bowel disease, and wound healing. FPRs are emerging as important targets for treating leukocyte-dominant inflammation.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- a Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,b Graduate Institute of Clinical Medical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Department of Anesthesiology , Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Shun-Chin Yang
- d Department of Anesthesiology , Taipei Veterans General Hospital and National Yang-Ming University , Taipei , Taiwan.,e Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan
| | - Tsong-Long Hwang
- a Graduate Institute of Natural Products, School of Traditional Medicine, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,c Department of Anesthesiology , Chang Gung Memorial Hospital , Taoyuan , Taiwan.,e Division of Natural Products, Graduate Institute of Biomedical Sciences, College of Medicine , Chang Gung University , Taoyuan , Taiwan.,f Chinese Herbal Medicine Research Team, Healthy Aging Research Centre , Chang Gung University , Taoyuan , Taiwan.,g Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology , Chang Gung University of Science and Technology , Taoyuan , Taiwan
| |
Collapse
|
33
|
Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 2016; 114:22-39. [DOI: 10.1016/j.bcp.2016.04.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
|
34
|
The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. Immunobiology 2016; 221:1091-101. [PMID: 27424796 DOI: 10.1016/j.imbio.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen that is decorated by glycopolymers, including wall teichoic acid (WTA), peptidoglycan, lipoteichoic acid, and capsular polysaccharides. These bacterial surface glycopolymers are recognized by serum antibodies and a variety of pattern recognition molecules, including mannose-binding lectin (MBL). Recently, we demonstrated that human serum MBL senses staphylococcal WTA. Whereas MBL in infants who have not yet fully developed adaptive immunity binds to S. aureus WTA and activates complement serum, MBL in adults who have fully developed adaptive immunity cannot bind to WTA because of an inhibitory effect of serum anti-WTA IgG. Furthermore, we showed that human anti-WTA IgGs purified from pooled adult serum IgGs triggered activation of classical complement-dependent opsonophagocytosis against S. aureus. Because the epitopes of WTA that are recognized by anti-WTA IgG and MBL have not been determined, we constructed several S. aureus mutants with altered WTA glycosylation. Our intensive biochemical studies provide evidence that the β-GlcNAc residues of WTA are required for the induction of anti-WTA IgG-mediated opsonophagocytosis and that both β- and α-GlcNAc residues are required for MBL-mediated complement activation. The molecular interactions of other S. aureus cell wall components and host recognition proteins are also discussed. In summary, in this review, we discuss the biological importance of S. aureus cell surface glycopolymers in complement activation and host defense responses.
Collapse
|
35
|
Abstract
Annexin A1 (ANXA1) is a Ca(2+)-regulated phospholipid-binding protein involved in various cell processes. ANXA1 was initially widely studied in inflammation resolution, but its overexpression was later reported in a large number of cancers. Further in-depth investigations have revealed that this protein could have many roles in cancer progression and act at different levels (from cancer initiation to metastasis). This is partly due to the location of ANXA1 in different cell compartments. ANXA1 can be nuclear, cytoplasmic and/or membrane associated. This last location allows ANXA1 to be proteolytically cleaved and/or to become accessible to its cognate partners, the formyl-peptide receptors. Indeed, in some cancers, ANXA1 is found at the cell surface, where it stimulates formyl-peptide receptors to trigger oncogenic pathways. In the present review, we look at the different locations of ANXA1 and their association with the deregulated pathways often observed in cancers. We have specifically detailed the non-classic pathways of ANXA1 externalization, the significance of its cleavage and the role of the ANXA1-formyl-peptide receptor complex in cancer progression.
Collapse
|
36
|
Zheng S, Doucette AA. Preventing N- and O-formylation of proteins when incubated in concentrated formic acid. Proteomics 2016; 16:1059-68. [PMID: 26840995 DOI: 10.1002/pmic.201500366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/11/2015] [Accepted: 01/26/2016] [Indexed: 12/28/2022]
Abstract
Concentrated formic acid is among the most effective solvents for protein solubilization. Unfortunately, this acid also presents a risk of inducing chemical modifications thereby limiting its use in proteomics. Previous reports have supported the esterification of serine and threonine residues (O-formylation) for peptides incubated in formic acid. However as shown here, exposure of histone H4 to 80% formic (1 h, 20(o) C) induces N-formylation of two independent lysine residues. Furthermore, incubating a mixture of Escherichia coli proteins in formic acid demonstrates a clear preference toward lysine modification over reactions at serine/threonine. N-formylation accounts for 84% of the 225 uniquely identified formylation sites. To prevent formylation, we provide a detailed investigation of reaction conditions (temperature, time, acid concentration) that define the parameters permitting the use of concentrated formic acid in a proteomics workflow for MS characterization. Proteins can be maintained in 80% formic acid for extended periods (24 h) without inducing modification, so long as the temperature is maintained at or below -20(o) C.
Collapse
Affiliation(s)
- Shi Zheng
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada.,Key Laboratory of Pesticides and Chemical Biology, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
37
|
Luo X, Bai R, Liu S, Shan C, Chen C, Lan Y. Mechanism of Rhodium-Catalyzed Formyl Activation: A Computational Study. J Org Chem 2016; 81:2320-6. [DOI: 10.1021/acs.joc.5b02828] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoling Luo
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Ruopeng Bai
- College
of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People’s Republic of China
| | - Song Liu
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Chunhui Shan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Changguo Chen
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| | - Yu Lan
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, People’s Republic of China
| |
Collapse
|
38
|
Stempel H, Jung M, Pérez-Gómez A, Leinders-Zufall T, Zufall F, Bufe B. Strain-specific Loss of Formyl Peptide Receptor 3 in the Murine Vomeronasal and Immune Systems. J Biol Chem 2016; 291:9762-75. [PMID: 26957543 DOI: 10.1074/jbc.m116.714493] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Indexed: 12/30/2022] Open
Abstract
Formyl peptide receptor 3 (Fpr3, also known as Fpr-rs1) is a G protein-coupled receptor expressed in subsets of sensory neurons of the mouse vomeronasal organ, an olfactory substructure essential for social recognition. Fpr3 has been implicated in the sensing of infection-associated olfactory cues, but its expression pattern and function are incompletely understood. To facilitate visualization of Fpr3-expressing cells, we generated and validated two new anti-Fpr3 antibodies enabling us to analyze acute Fpr3 protein expression. Fpr3 is not only expressed in murine vomeronasal sensory neurons but also in bone marrow cells, the primary source for immune cell renewal, and in mature neutrophils. Consistent with the notion that Fpr3 functions as a pathogen sensor, Fpr3 expression in the immune system is up-regulated after stimulation with a bacterial endotoxin (lipopolysaccharide). These results strongly support a dual role for Fpr3 in both vomeronasal sensory neurons and immune cells. We also identify a large panel of mouse strains with severely altered expression and function of Fpr3, thus establishing the existence of natural Fpr3 knock-out strains. We attribute distinct Fpr3 expression in these strains to the presence or absence of a 12-nucleotide in-frame deletion (Fpr3Δ424-435). In vitro calcium imaging and immunofluorescence analyses demonstrate that the lack of four amino acids leads to an unstable, truncated, and non-functional receptor protein. The genome of at least 19 strains encodes a non-functional Fpr3 variant, whereas at least 13 other strains express an intact receptor. These results provide a foundation for understanding the in vivo function of Fpr3.
Collapse
Affiliation(s)
- Hendrik Stempel
- From the Center for Integrative Physiology and Molecular Medicine and
| | - Martin Jung
- the Department of Biochemistry, Saarland University School of Medicine, 66421 Homburg, Germany
| | | | | | - Frank Zufall
- From the Center for Integrative Physiology and Molecular Medicine and
| | - Bernd Bufe
- From the Center for Integrative Physiology and Molecular Medicine and
| |
Collapse
|
39
|
do Vale A, Cabanes D, Sousa S. Bacterial Toxins as Pathogen Weapons Against Phagocytes. Front Microbiol 2016; 7:42. [PMID: 26870008 PMCID: PMC4734073 DOI: 10.3389/fmicb.2016.00042] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.
Collapse
Affiliation(s)
- Ana do Vale
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Fish Immunology and Vaccinology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Didier Cabanes
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| | - Sandra Sousa
- Host Interaction and Response, Instituto de Investigação e Inovação em Saúde, Universidade do PortoPorto, Portugal; Group of Molecular Microbiology, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal
| |
Collapse
|
40
|
Zhang L, Wang H, Yang T, Su Z, Fang D, Wang Y, Fang J, Hou X, Le Y, Chen K, Wang JM, Su SB, Lin Q, Zhou Q. Formylpeptide receptor 1 mediates the tumorigenicity of human hepatocellular carcinoma cells. Oncoimmunology 2015; 5:e1078055. [PMID: 27057451 DOI: 10.1080/2162402x.2015.1078055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled chemoattractant receptors (GPCRs) have been implicated in cancer progression. Formylpeptide receptor 1 (FPR1) was originally identified as a GPCR mediating anti-microbial host defense. However, the role of FPR1 in tumorigenesis remains poorly understood. The current study aims to investigate the potential of FPR1 to regulate human hepatoma growth and invasion. We found the FPR1 gene and protein expression in human intratumoral and peritumoral tissues of hepatocellular carcinoma (HCC) specimens and in human hepatoma cell lines. FPR1 activation mediated the migration, calcium mobilization and ERK-dependent IL-8 production by hepatic cancer cells. FPR1 knockdown substantially reduced the tumorigenicity of hepatoma cells in nude mice. Necrotic hepatic tumor cells released factor(s) that activated FPR1 in live tumor cells. Our results indicate a critical role of FPR1 in the progression of malignant human hepatic cancer. FPR1 thus may represent a molecular target for the development of novel anti-hepatoma therapeutics.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Image Guided Therapy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou, China
| | - Huanyu Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
| | - Tianshu Yang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Zhifeng Su
- School of Materials and Engineering, South China University of Technology , Guangzhou, China
| | - Dan Fang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Yafeng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
| | - Jiazhu Fang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Xinwei Hou
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yingying Le
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Keqiang Chen
- Laboratory of Molecular Immunoregulation, National Cancer Institute , Frederick, MD, USA
| | - Ji Ming Wang
- Laboratory of Molecular Immunoregulation, National Cancer Institute , Frederick, MD, USA
| | - Shao Bo Su
- Shanghai Tenth People's Hospital, Tongji University School of Medicine , Shanghai, China
| | - Qing Lin
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University , Guangzhou, China
| |
Collapse
|
41
|
Hultqvist M, Olofsson P, Wallner FK, Holmdahl R. Pharmacological Potential of NOX2 Agonists in Inflammatory Conditions. Antioxid Redox Signal 2015; 23:446-59. [PMID: 24359237 DOI: 10.1089/ars.2013.5788] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE New insights into the role of reactive oxygen species (ROS) show that activators of the phagocyte NADPH oxidase 2 (NOX2) complex have the potential to be therapeutic in autoimmune and inflammatory conditions. It is, however, essential to elucidate the consequence of targeting the NOX2 complex, as it might lead to different outcomes depending on disease context and specificity, dose, and timing of ROS production. RECENT ADVANCES Increasing evidence is suggesting that the role of the NOX2 complex is far more complex than previously anticipated. In addition to the well-described antimicrobial response, ROS also have immune and inflammatory regulatory effects. Compounds increasing NOX2-dependent ROS production have been shown to be effective both in preventing and in treating inflammatory manifestations in animal models of autoimmune diseases. Altogether, these results suggest the possibility of activating the NOX2 complex for the treatment of autoimmune inflammatory diseases while restoring and maintaining a balanced ROS regulation. CRITICAL ISSUES The complexity of the NOX system and the derived ROS is important and must be considered when designing the programs for the development of NOX2-activating drugs, as well as for validation of selected hits, to successfully identify substances effective in treating inflammatory and autoimmune conditions. In addition, it is important to consider the complex downstream immunological effects and safety for drugs that increase the production of ROS. FUTURE DIRECTIONS There is a strong potential for the development of ROS-inducing drugs, targeting the NOX2 complex, which are effective and safe, for the treatment of inflammatory autoimmune disorders. In such drug development, one must carefully investigate the pharmaceutical properties, including both efficacy and safety of the drugs. In addition, the immunological pathways of this new treatment strategy need careful examination.
Collapse
Affiliation(s)
| | | | | | - Rikard Holmdahl
- 2 Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
42
|
Winther M, Gabl M, Welin A, Dahlgren C, Forsman H. A neutrophil inhibitory pepducin derived from FPR1 expected to target FPR1 signaling hijacks the closely related FPR2 instead. FEBS Lett 2015; 589:1832-9. [PMID: 26071379 DOI: 10.1016/j.febslet.2015.05.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 05/06/2015] [Accepted: 05/26/2015] [Indexed: 12/16/2022]
Abstract
Pepducins constitute a unique class of G-protein coupled receptor (GPCR) modulating lipopeptides. Pepducins with inhibitory effects on neutrophils could potentially be developed into anti-inflammatory pharmaceuticals. A pepducin with a peptide sequence identical to the third intracellular loop of FPR1 was found to inhibit neutrophil functions including granule mobilization and superoxide production. This FPR1-derived pepducin selectively inhibited signaling and cellular responses through FPR2, but not FPR1 as expected. Binding to the neutrophil surface of a conventional FPR2 agonist is also inhibited. The fatty acid is essential for inhibition and pepducins with shorter peptides lose in potency. In summary, a pepducin designed to target FPR1 was found to hijack FPR2 and potently inhibit neutrophil functions.
Collapse
Affiliation(s)
- Malene Winther
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Michael Gabl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Amanda Welin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claes Dahlgren
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
43
|
New aspects of the structure and mode of action of the human cathelicidin LL-37 revealed by the intrinsic probe p-cyanophenylalanine. Biochem J 2015; 465:443-57. [PMID: 25378136 DOI: 10.1042/bj20141016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The human cathelicidin peptide LL-37 is an important effector of our innate immune system and contributes to host defence with direct antimicrobial activity and immunomodulatory properties, and by stimulating wound healing. Its sequence has evolved to confer specific structural characteristics that strongly affect these biological activities, and differentiate it from orthologues of other primate species. In the present paper we report a detailed study of the folding and self-assembly of this peptide in comparison with rhesus monkey peptide RL-37, taking into account the different stages of its trajectory from bulk solution to contact with, and insertion into, biological membranes. Phenylalanine residues in different positions throughout the native sequences of LL-37 and RL-37 were systematically replaced with the non-invasive fluorescent and IR probe p-cyanophenylalanine. Steady-state and time-resolved fluorescence studies showed that LL-37, in contrast to RL-37, forms oligomers with a loose hydrophobic core in physiological solutions, which persist in the presence of biological membranes. Fourier transform IR and surface plasmon resonance studies also indicated different modes of interaction for LL-37 and RL-37 with anionic and neutral membranes. This correlated with a distinctly different mode of bacterial membrane permeabilization, as determined using a flow cytometric method involving impermeant fluorescent dyes linked to polymers of defined sizes.
Collapse
|
44
|
Kretschmer D, Rautenberg M, Linke D, Peschel A. Peptide length and folding state govern the capacity of staphylococcal β-type phenol-soluble modulins to activate human formyl-peptide receptors 1 or 2. J Leukoc Biol 2015; 97:689-97. [PMID: 25724390 DOI: 10.1189/jlb.2a0514-275r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most staphylococci produce short α-type PSMs and about twice as long β-type PSMs that are potent leukocyte attractants and toxins. PSMs are usually secreted with the N-terminal formyl group but are only weak agonists for the leukocyte FPR1. Instead, the FPR1-related FPR2 senses PSMs efficiently and is crucial for leukocyte recruitment in infection. Which structural features distinguish FPR1 from FPR2 ligands has remained elusive. To analyze which peptide properties may govern the capacities of β-type PSMs to activate FPRs, full-length and truncated variants of such peptides from Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus lugdunensis were synthesized. FPR2 activation was observed even for short N- or C-terminal β-type PSM variants once they were longer than 18 aa, and this activity increased with length. In contrast, the shortest tested peptides were potent FPR1 agonists, and this property declined with increasing peptide length. Whereas full-length β-type PSMs formed α-helices and exhibited no FPR1-specific activity, the truncated peptides had less-stable secondary structures, were weak agonists for FPR1, and required N-terminal formyl-methionine residues to be FPR2 agonists. Together, these data suggest that FPR1 and FPR2 have opposed ligand preferences. Short, flexible PSM structures may favor FPR1 but not FPR2 activation, whereas longer peptides with α-helical, amphipathic properties are strong FPR2 but only weak FPR1 agonists. These findings should help to unravel the ligand specificities of 2 critical human PRRs, and they may be important for new, anti-infective and anti-inflammatory strategies.
Collapse
Affiliation(s)
- Dorothee Kretschmer
- *Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Division, University of Tübingen, Germany; and Max Planck Institute for Developmental Biology, Department I, Tübingen, Germany
| | - Maren Rautenberg
- *Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Division, University of Tübingen, Germany; and Max Planck Institute for Developmental Biology, Department I, Tübingen, Germany
| | - Dirk Linke
- *Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Division, University of Tübingen, Germany; and Max Planck Institute for Developmental Biology, Department I, Tübingen, Germany
| | - Andreas Peschel
- *Interfaculty Institute of Microbiology and Infection Medicine, Cellular and Molecular Microbiology Division, University of Tübingen, Germany; and Max Planck Institute for Developmental Biology, Department I, Tübingen, Germany
| |
Collapse
|
45
|
Bufe B, Schumann T, Kappl R, Bogeski I, Kummerow C, Podgórska M, Smola S, Hoth M, Zufall F. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: a new mechanism for sensing pathogens. J Biol Chem 2015; 290:7369-87. [PMID: 25605714 DOI: 10.1074/jbc.m114.626747] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Formyl peptide receptors (FPRs) are G-protein-coupled receptors that function as chemoattractant receptors in innate immune responses. Here we perform systematic structure-function analyses of FPRs from six mammalian species using structurally diverse FPR peptide agonists and identify a common set of conserved agonist properties with typical features of pathogen-associated molecular patterns. Guided by these results, we discover that bacterial signal peptides, normally used to translocate proteins across cytoplasmic membranes, are a vast family of natural FPR agonists. N-terminally formylated signal peptide fragments with variable sequence and length activate human and mouse FPR1 and FPR2 at low nanomolar concentrations, thus establishing FPR1 and FPR2 as sensitive and broad signal peptide receptors. The vomeronasal receptor mFpr-rs1 and its sequence orthologue hFPR3 also react to signal peptides but are much more narrowly tuned in signal peptide recognition. Furthermore, all signal peptides examined here function as potent activators of the innate immune system. They elicit robust, FPR-dependent calcium mobilization in human and mouse leukocytes and trigger a range of classical innate defense mechanisms, such as the production of reactive oxygen species, metalloprotease release, and chemotaxis. Thus, bacterial signal peptides constitute a novel class of immune activators that are likely to contribute to mammalian immune defense against bacteria. This evolutionarily conserved detection mechanism combines structural promiscuity with high specificity and enables discrimination between bacterial and eukaryotic signal sequences. With at least 175,542 predicted sequences, bacterial signal peptides represent the largest and structurally most heterogeneous class of G-protein-coupled receptor agonists currently known for the innate immune system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marta Podgórska
- Virology, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Sigrun Smola
- Virology, University of Saarland School of Medicine, 66421 Homburg, Germany
| | | | | |
Collapse
|
46
|
Abstract
Lipopeptides based on the intracellular loops of cell-surface receptors, known as "Pepducins," represent a promising new class of compounds used for the study of membrane proteins and as potential therapeutics in a variety of diseases. Detailed knowledge of the three-dimensional structure of G-protein-coupled receptors (GPCRs) and delineation of the mechanisms of pepducin activation and biased G-protein signaling has facilitated the development of even more potent pepducin allosteric modulators.
Collapse
|
47
|
Forsman H, Winther M, Gabl M, Skovbakke SL, Boulay F, Rabiet MJ, Dahlgren C. Structural changes of the ligand and of the receptor alters the receptor preference for neutrophil activating peptides starting with a formylmethionyl group. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:192-200. [DOI: 10.1016/j.bbamcr.2014.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 10/01/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
|
48
|
Bloes DA, Kretschmer D, Peschel A. Enemy attraction: bacterial agonists for leukocyte chemotaxis receptors. Nat Rev Microbiol 2014; 13:95-104. [PMID: 25534805 DOI: 10.1038/nrmicro3390] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The innate immune system recognizes conserved microorganism-associated molecular patterns (MAMPs), some of which are sensed by G protein-coupled receptors (GPCRs), and this leads to chemotactic leukocyte influx. Recent studies have indicated that these processes are crucial for host defence and rely on a larger set of chemotactic MAMPs and corresponding GPCRs than was previously thought. Agonists, such as bacterial formyl peptides, enterococcal pheromone peptides, staphylococcal peptide toxins, bacterial fermentation products and the Helicobacter pylori peptide HP(2-20), stimulate specific GPCRs. The importance of leukocyte chemotaxis in host defence is highlighted by the fact that some bacterial pathogens produce chemotaxis inhibitors. How the various chemoattractants, receptors and antagonists shape antibacterial host defence represents an important topic for future research.
Collapse
Affiliation(s)
- Dominik Alexander Bloes
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Dorothee Kretschmer
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| | - Andreas Peschel
- Cellular and Molecular Microbiology Division, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
49
|
Abstract
The resolution of inflammation (RoI), once believed to be a passive process, has lately been shown to be an active and delicately orchestrated process. During the resolution phase of acute inflammation, novel mediators, including lipoxins and resolvins, which are members of the specialized pro-resolving mediators of inflammation, are produced. FPR2/ALXR, a receptor modulated by some of these lipids as well as by peptides (e.g., annexin A1), has been shown to be one of the receptors involved in the RoI. The aim of this perspective is to present the concept of the RoI from a medicinal chemistry point of view and to highlight the effort of the research community to discover and develop anti-inflammatory/pro-resolution small molecules to orchestrate inflammation by activation of FPR2/ALXR.
Collapse
Affiliation(s)
- Olivier Corminboeuf
- Actelion Pharmaceuticals Ltd. , Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
| | | |
Collapse
|
50
|
Characterization of pro-invasive mechanisms and N-terminal cleavage of ANXA1 in melanoma. Arch Dermatol Res 2014; 306:903-14. [PMID: 25362540 DOI: 10.1007/s00403-014-1517-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/03/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
Annexin A1 deregulation is often associated with cancer. Indeed we have shown that annexin A1 is overexpressed in melanoma and promotes metastases by formyl peptide receptor stimulation and MMP2 expression. Here, we demonstrated in different melanoma cell lines that annexin A1-MMP2 induction is mediated by MAPK and STAT3 pathways. To decipher endogenous annexin A1 action mode, we showed that annexin A1 is externalized in A375 cells and cleaved by a membrane-associated serine protease, allowing the release of a pro-invasive annexin A1 peptide in the extra cellular environment. Finally, a biochemical and proteomic approach allowed to enrich eight out of 12 members of the annexin family and to identify an original annexin A1 cleavage site localized between Ser(28) and Lys(29). Altogether, these data identify signaling pathways involved in annexin A1 pro-invasive role and suggest that externalized full-length annexin A1 interacts with formyl peptide receptors in a juxtacrine manner while ANXA 2-28 release allows autocrine and paracrine interaction.
Collapse
|