1
|
Villain E, Chanson A, Mainka M, Kampschulte N, Le Faouder P, Bertrand-Michel J, Brandolini-Bulon M, Charbit B, Musvosvi M, Bilek N, Scriba TJ, Quintana-Murci L, Schebb NH, Duffy D, Gladine C. Integrated analysis of whole blood oxylipin and cytokine responses after bacterial, viral, and T cell stimulation reveals new immune networks. iScience 2023; 26:107422. [PMID: 37575177 PMCID: PMC10415927 DOI: 10.1016/j.isci.2023.107422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Oxylipins are major immunomodulating mediators, yet studies of inflammation focus mainly on cytokines. Here, using a standardized whole-blood stimulation system, we characterized the oxylipin-driven inflammatory responses to various stimuli and their relationships with cytokine responses. We performed a pilot study in 25 healthy individuals using 6 different stimuli: 2 bacterial stimuli (LPS and live BCG), 2 viral stimuli (vaccine-grade poly I:C and live H1N1 attenuated influenza), an enterotoxin superantigen and a Null control. All stimuli induced a strong production of oxylipins but most importantly, bacterial, viral, and T cell immune responses show distinct oxylipin signatures. Integration of the oxylipin and cytokine responses for each condition revealed new immune networks improving our understanding of inflammation regulation. Finally, the oxylipin responses and oxylipin-cytokine networks were compared in patients with active tuberculosis or with latent infection. This revealed different responses to BCG but not LPS stimulation highlighting new regulatory pathways for further investigations.
Collapse
Affiliation(s)
- Etienne Villain
- Institut Pasteur, Université Paris Cité, Translational Immunology Unit, Paris, France
| | - Aurélie Chanson
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Malwina Mainka
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Pauline Le Faouder
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Justine Bertrand-Michel
- MetaToul, MetaboHUB, Inserm/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, 31400 Toulouse, France
| | - Marion Brandolini-Bulon
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
- Université Clermont Auvergne, INRAE, UNH, Plateforme D’Exploration Du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Bruno Charbit
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Munyaradzi Musvosvi
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nicole Bilek
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI), Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lluis Quintana-Murci
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
- Collège de France, 75005 Paris, France
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Darragh Duffy
- Institut Pasteur, Université Paris Cité, Translational Immunology Unit, Paris, France
- Institut Pasteur, Université Paris Cité, CBUTechS, Paris, France
| | - Cécile Gladine
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| |
Collapse
|
2
|
Miek L, Jordan PM, Günther K, Pace S, Beyer T, Kowalak D, Hoerr V, Löffler B, Tuchscherr L, Serhan CN, Gerstmeier J, Werz O. Staphylococcus aureus controls eicosanoid and specialized pro-resolving mediator production via lipoteichoic acid. Immunology 2022; 166:47-67. [PMID: 35143048 PMCID: PMC9426618 DOI: 10.1111/imm.13449] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus causes severe infections associated with inflammation, such as sepsis or osteomyelitis. Inflammatory processes are regulated by distinct lipid mediators (LMs) but how their biosynthetic pathways are orchestrated in S. aureus infections is elusive. We show that S. aureus strikingly not only modulates pro-inflammatory, but also inflammation-resolving LM pathways in murine osteomyelitis and osteoclasts as well as in human monocyte-derived macrophages (MDMs) with different phenotype. Targeted LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed massive generation of LM with distinct LM signature profiles in acute and chronic phases of S. aureus-induced murine osteomyelitis in vivo. In human MDM, S. aureus elevated cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1), but impaired the levels of 15-lipoxygenase-1 (15-LOX-1), with respective changes in LM signature profiles initiated by these enzymes, that is, elevated PGE2 and impaired specialized pro-resolving mediators, along with reduced M2-like phenotypic macrophage markers. The cell wall component, lipoteichoic acid (LTA), mimicked the impact of S. aureus elevating COX-2/mPGES-1 expression via NF-κB and p38 MAPK signalling in MDM, while the impairment of 15-LOX-1 correlates with reduced expression of Lamtor1. In conclusion, S. aureus dictates LM pathways via LTA resulting in a shift from anti-inflammatory M2-like towards pro-inflammatory M1-like LM signature profiles.
Collapse
Affiliation(s)
- Laura Miek
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Kerstin Günther
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Timo Beyer
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - David Kowalak
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Verena Hoerr
- Institute of Medical MicrobiologyJena University HospitalJenaGermany
| | - Bettina Löffler
- Institute of Medical MicrobiologyJena University HospitalJenaGermany
| | - Lorena Tuchscherr
- Institute of Medical MicrobiologyJena University HospitalJenaGermany
| | - Charles N. Serhan
- Department of Anesthesiology, Perioperative and Pain MedicineHarvard Medical SchoolCenter for Experimental Therapeutics and Reperfusion InjuryBrigham and Women’s HospitalBostonMassachusettsUSA
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal ChemistryInstitute of PharmacyFriedrich‐Schiller‐University JenaJenaGermany
| |
Collapse
|
3
|
López-Vicario C, Checa A, Urdangarin A, Aguilar F, Alcaraz-Quiles J, Caraceni P, Amorós A, Pavesi M, Gómez-Cabrero D, Trebicka J, Oettl K, Moreau R, Planell N, Arroyo V, Wheelock CE, Clària J. Targeted lipidomics reveals extensive changes in circulating lipid mediators in patients with acutely decompensated cirrhosis. J Hepatol 2020; 73:817-828. [PMID: 32294533 DOI: 10.1016/j.jhep.2020.03.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Acute-on-chronic liver failure (ACLF) is a newly described syndrome, which develops in patients with acute decompensation of cirrhosis, and is characterized by intense systemic inflammation, multiple organ failures and high short-term mortality. The profile of circulating lipid mediators, which are endogenous signaling molecules that play a major role in inflammation and immunity, is poorly characterized in ACLF. METHODS In the current study, we assessed the profile of lipid mediators by liquid chromatography coupled to tandem mass spectrometry in plasma from patients with acute decompensation of cirrhosis, with (n = 119) and without (n = 127) ACLF, and from healthy controls (n = 18). Measurements were prospectively repeated in 191 patients with acute decompensation of cirrhosis during a 28-day follow-up period. RESULTS Fifty-nine lipid mediators (out of 100) were detected in plasma from cirrhotic patients, of which 16 were significantly associated with disease status. Among these, 11 lipid mediators distinguished patients at any stage from healthy controls, whereas 2 lipid mediators (LTE4 and 12-HHT, both derived from arachidonic acid) shaped a minimal plasma fingerprint that discriminated patients with ACLF from those without. Levels of LTE4 distinguished ACLF grade 3 from ACLF grades 1 and 2, followed the clinical course of the disease (increased with worsening and decreased with improvement) and positively correlated with markers of inflammation and non-apoptotic cell death. Moreover, LTE4 together with LXA5 (derived from eicosapentaenoic acid) and EKODE (derived from linoleic acid) were associated with short-term mortality. LXA5 and EKODE formed a signature associated with coagulation and liver failures. CONCLUSION Taken together, these findings uncover specific lipid mediator profiles associated with disease severity and prognosis in patients with acute decompensation of cirrhosis. LAY SUMMARY Acute-on-chronic liver failure (ACLF) is characterized by intense systemic inflammation, multiple organ failures and high short-term mortality. In the current study, we assessed the plasma lipid profile of 100 bioactive lipid mediators in healthy controls, patients with decompensated cirrhosis, and those who had developed ACLF. We identified lipid mediator signatures associated with inflammation and non-apoptotic cell death that discriminate disease severity and evolution, short-term mortality and organ failures.
Collapse
Affiliation(s)
- Cristina López-Vicario
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain
| | - Antonio Checa
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Ferran Aguilar
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - José Alcaraz-Quiles
- Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain
| | - Paolo Caraceni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alex Amorós
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Marco Pavesi
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | | | - Jonel Trebicka
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain; J.W. Goethe University Hospital, Frankfurt, Germany
| | - Karl Oettl
- Institute of Physiological Chemistry, Center of Physiological Medicine, Medical University of Graz, Graz, Austria
| | - Richard Moreau
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain; Inserm, U1149, Centre de Recherche sur l'Inflammation (CRI), UMRS1149; Université Paris Diderot-Paris 7, Paris, France
| | - Núria Planell
- Translational Bioinformatics Unit, NavarraBiomed, Pamplona, Spain
| | - Vicente Arroyo
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Joan Clària
- European Foundation for the Study of Chronic Liver Failure (EF-Clif) and Grifols Chair, Barcelona, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic-IDIBAPS and CIBERehd, Barcelona, Spain; Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Long-term stimulation of toll-like receptor-2 and -4 upregulates 5-LO and 15-LO-2 expression thereby inducing a lipid mediator shift in human monocyte-derived macrophages. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158702. [PMID: 32222425 DOI: 10.1016/j.bbalip.2020.158702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/24/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022]
Abstract
Macrophage polarization switches during the course of inflammation along with the lipid mediators released. We investigated the lipid mediator formation in human monocyte-derived macrophages during in vitro differentiation and pathogen stimulation. For this, peripheral blood monocytes were differentiated into M1 (CSF-2/IFNγ) or M2 (CSF-1/IL-4) macrophages followed by stimulation with the toll-like receptor (TLR) ligands zymosan (TLR-2), Poly(I:C) (TLR-3) or bacterial lipopolysaccharides (TLR-4) mimicking fungal, viral and bacterial infection, respectively. Expression of enzymes involved in lipid mediator formation such as 5- and 15-lipoxygenases (LO), the 5-LO activating protein and cyclooxygenase-2 (COX-2) was monitored on mRNA and protein level and lipid mediator formation was assessed. In addition, cytokine release was measured. In vitro differentiation of human peripheral blood monocytes to M1 and M2 macrophages considerably attenuated 5-LO activity. Furthermore, while TLR-2 and -4 stimulation of M1 macrophages primarily triggered pro-inflammatory cytokines and lipid mediators, persistent stimulation (16 h) of human M2 macrophages induced a coordinated upregulation of 5- and 15-LO-2 expression. This was accompanied by a marked increase in IL-10 and monohydroxylated 15-LO products in the conditioned media of the cells. After additional stimulation with Ca2+ ionophore combined with supplementation of arachidonic, eicosapentaenoic and docosahexaenoic acid these cells also released small amounts of SPM such as lipoxins and resolvins. From this we conclude that activation of TLR-2 or -4 triggers the biosynthesis of pro-inflammatory 5-LO and COX-2 derived lipid mediators in human monocyte-derived M1 macrophages while persistent stimulation of M2 macrophages induces a shift towards pro-resolving 15-LO derived oxylipins.
Collapse
|
5
|
Kumar NG, Contaifer D, Madurantakam P, Carbone S, Price ET, Van Tassell B, Brophy DF, Wijesinghe DS. Dietary Bioactive Fatty Acids as Modulators of Immune Function: Implications on Human Health. Nutrients 2019; 11:E2974. [PMID: 31817430 PMCID: PMC6950193 DOI: 10.3390/nu11122974] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/05/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Diet is major modifiable risk factor for cardiovascular disease that can influence the immune status of the individual and contribute to persistent low-grade inflammation. In recent years, there has been an increased appreciation of the role of polyunsaturated fatty acids (PUFA) in improving immune function and reduction of systemic inflammation via the modulation of pattern recognition receptors (PRR) on immune cells. Extensive research on the use of bioactive lipids such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and their metabolites have illustrated the importance of these pro-resolving lipid mediators in modulating signaling through PRRs. While their mechanism of action, bioavailability in the blood, and their efficacy for clinical use forms an active area of research, they are found widely administered as marine animal-based supplements like fish oil and krill oil to promote health. The focus of this review will be to discuss the effect of these bioactive fatty acids and their metabolites on immune cells and the resulting inflammatory response, with a brief discussion about modern methods for their analysis using mass spectrometry-based methods.
Collapse
Affiliation(s)
- Naren Gajenthra Kumar
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Parthasarathy Madurantakam
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Salvatore Carbone
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, VA 23220, USA;
- VCU Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elvin T. Price
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Benjamin Van Tassell
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Donald F. Brophy
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
| | - Dayanjan S. Wijesinghe
- Department of Pharmacotherapy and Outcomes Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA; (D.C.); (E.T.P.); (B.V.T.); (D.F.B.)
- da Vinci Center, Virginia Commonwealth University, Richmond, VA 23220, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University School of Pharmacy, Richmond, VA 23298, USA
| |
Collapse
|
6
|
Rosas-Martínez M, Gutiérrez-Venegas G. Myricetin Inhibition of Peptidoglycan-Induced COX-2 Expression in H9c2 Cardiomyocytes. Prev Nutr Food Sci 2019; 24:202-209. [PMID: 31328126 PMCID: PMC6615347 DOI: 10.3746/pnf.2019.24.2.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/23/2019] [Indexed: 11/06/2022] Open
Abstract
Peptidoglycan (PGN) is a cell wall constituent in dental plaque bacteria that triggers inflammatory responses. PGN binds Toll-like receptors, leading to increases in prostaglandin E2 and interleukin-1β, which play crucial roles in the inflammatory response and tissue destruction. Dental surgery can give plaque bacteria access to blood circulation, thereby creating a risk of septic inflammation of the endocardium. Plant-derived flavonoids have been reported to reduce inflammatory cytokine secretion by host cells. In the present study, we investigated the effects of flavonoid myricetin on expression of cyclooxygenase 2 (COX-2) in the H9c2 cells treated with PGN from Streptococcus sanguinis, a bacterial constituent of dental plaque associated with infective endocarditis. Myricetin exposure resulted in dose-dependent suppression of PGN-induced COX-2 expression, diminished phosphorylation of p38, extracellular signal regulated kinase 1/2, and c-Jun N-terminal kinase, and reduced IκB-α degradation, consistent with decreased COX-2 activity. In conclusion, the aforementioned results suggest that myricetin is useful for moderating the inflammatory response in infective endocarditis.
Collapse
Affiliation(s)
- Marisol Rosas-Martínez
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico 04510, Mexico
| | - Gloria Gutiérrez-Venegas
- Biochemistry Laboratory of the Division of Graduate Studies and Research, Faculty of Dentistry, National Autonomous University of Mexico, Mexico 04510, Mexico
| |
Collapse
|
7
|
Xiang Y, Wei X, Du P, Zhao H, Liu A, Chen Y. β-Arrestin-2-ERK1/2 cPLA 2α axis mediates TLR4 signaling to influence eicosanoid induction in ischemic brain. FASEB J 2019; 33:6584-6595. [PMID: 30794438 DOI: 10.1096/fj.201802020r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
LPS has been shown to elicit neuroinflammation associated with the up-regulation of the eicosanoid pathway in animal models; however, the regulatory mechanisms of TLR4 in brain neuroinflammatory conditions remain elusive. β-Arrestins are key regulators of the GPCR signaling pathway and are involved in the leukotriene B4-induced leukocyte migration to initiate inflammatory response. However, the roles of β-arrestins in eicosanoid regulation and related diseases are not clear. To address this issue, we conducted a study to investigate the effect of TLR4 on the eicosanoid pathway in ischemic stroke brain and to explore the underlying molecular regulation mechanism. Cerebral ischemia was produced by occlusion of the middle cerebral artery, followed by reperfusion for 24 h. We demonstrated that knockout of TLR4 improves ischemic stroke brain associated with eicosanoid down-regulation. Interestingly, genetic disruption of β-arrestin-2 failed to decrease neuroinflammation in the damaged brain of TLR4-/- mice, which indicates the requirement of β-arrestin-2 for TLR4 knockdown protection. Further study showed that the negative regulation of phosphorylated (phospho-)ERK1/2 and phospho-cytosolic phospholipase A2 α (cPLA2α) by TLR4 deficiency was eliminated by genetic disruption of β-arrestin-2. In addition, β-arrestin-2 deficiency reversed the reduction of colocalization of phospho-ERK1/2 with phospho-cPLA2α in TLR4-/- mice following ischemic stroke. Mechanistic studies indicated that β-arrestin-2 specifically colocalized and associated with ERK1/2 to prevent ERK1/2-dependent cPLA2α activation following ischemic injury, and β-arrestin-2 deficiency blocked the negative regulation of phospho-ERK1/2, revived the association of phospho-ERK1/2 with phospho-cPLA2α, and subsequently increased the prostaglandin E2 and thromboxane A2 production remarkably. Our findings may provide novel insights that β-arrestin-2 is responsible for ischemic brain improvement in TLR4-/- mice via negative regulation of eicosanoid production.-Xiang, Y., Wei, X., Du, P., Zhao, H., Liu, A., Chen, Y. β-Arrestin-2-ERK1/2 cPLA2α axis mediates TLR4 signaling to influence eicosanoid induction in ischemic brain.
Collapse
Affiliation(s)
- Yanxiao Xiang
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China.,Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
| | - Xinbing Wei
- Department of Pharmacology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Pengchao Du
- College of Basic Medical, Binzhou Medical University, Yantai, Shandong, China
| | - Hua Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China.,Clinical Research Center for Emergency and Critical Care Medicine of Shandng Province, Institute of Emergency and Critical Care Medicine of Shandong University.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation of Shandong Province, Qilu Hospital, Shandong University, Jinan, China; and.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health-Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Huang C, Niethammer P. Tissue Damage Signaling Is a Prerequisite for Protective Neutrophil Recruitment to Microbial Infection in Zebrafish. Immunity 2019; 48:1006-1013.e6. [PMID: 29768163 DOI: 10.1016/j.immuni.2018.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 12/28/2022]
Abstract
Tissue damage and infection are deemed likewise triggers of innate immune responses. But whereas neutrophil responses to microbes are generally protective, neutrophil recruitment into damaged tissues without infection is deleterious. Why neutrophils respond to tissue damage and not just to microbes is unknown. Is it a flaw of the innate immune system that persists because evolution did not select against it, or does it provide a selective advantage? Here we dissect the contribution of tissue damage signaling to antimicrobial immune responses in a live vertebrate. By intravital imaging of zebrafish larvae, a powerful model for innate immunity, we show that prevention of tissue damage signaling upon microbial ear infection abrogates leukocyte chemotaxis and reduces animal survival, at least in part, through suppression of cytosolic phospholipase A2 (cPla2), which integrates tissue damage- and microbe-derived cues. Thus, microbial cues are insufficient, and damage signaling is essential for antimicrobial neutrophil responses in zebrafish.
Collapse
Affiliation(s)
- Cong Huang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Philipp Niethammer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
9
|
Abstract
Bioactive lipids regulate most physiological processes, from digestion to blood flow and from hemostasis to labor. Lipid mediators are also involved in multiple pathologies including cancer, autoimmunity or asthma. The pathological roles of lipid mediators are based on their intricate involvement in the immune system, which comprises source and target cells of these mediators. Based on their biosynthetic origin, bioactive lipids can be grouped into different classes [e.g. sphingolipids, formed from sphingosine or eicosanoids, formed from arachidonic acid (AA)]. Owing to the complexity of different mediator classes and the prominent immunological roles of eicosanoids, this review will focus solely on the immune-regulation of eicosanoids. Eicosanoids do not only control key immune responses (e.g. chemotaxis, antigen presentation, phagocytosis), but they are also subject to reciprocal control by the immune system. Particularly, key immunoregulatory cytokines such as IL-4 and IFN-γ shape the cellular eicosanoid profile, thus providing efficient feedback regulation between cytokine and eicosanoid networks. For the purpose of this review, I will first provide a short overview of the most important immunological functions of eicosanoids with a focus on prostaglandins (PGs) and leukotrienes (LTs). Second, I will summarize the current knowledge on immunological factors that regulate eicosanoid production during infection and inflammation.
Collapse
|
10
|
Nemati R, Dietz C, Anstadt EJ, Cervantes J, Liu Y, Dewhirst FE, Clark RB, Finegold S, Gallagher JJ, Smith MB, Yao X, Nichols FC. Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J Lipid Res 2017; 58:1999-2007. [PMID: 28814639 DOI: 10.1194/jlr.m077792] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
Multiple reaction monitoring-MS analysis of lipid extracts from human carotid endarterectomy and carotid artery samples from young individuals consistently demonstrated the presence of bacterial serine dipeptide lipid classes, including Lipid 654, an agonist for human and mouse Toll-like receptor (TLR)2, and Lipid 430, the deacylated product of Lipid 654. The relative levels of Lipid 654 and Lipid 430 were also determined in common oral and intestinal bacteria from the phylum Bacteroidetes and human serum and brain samples from healthy adults. The median Lipid 430/Lipid 654 ratio observed in carotid endarterectomy samples was significantly higher than the median ratio in lipid extracts of common oral and intestinal Bacteroidetes bacteria, and serum and brain samples from healthy subjects. More importantly, the median Lipid 430/Lipid 654 ratio was significantly elevated in carotid endarterectomies when compared with control artery samples. Our results indicate that deacylation of Lipid 654 to Lipid 430 likely occurs in diseased artery walls due to phospholipase A2 enzyme activity. These results suggest that commensal Bacteriodetes bacteria of the gut and the oral cavity may contribute to the pathogenesis of TLR2-dependent atherosclerosis through serine dipeptide lipid deposition and metabolism in artery walls.
Collapse
Affiliation(s)
- Reza Nemati
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | | | - Emily J Anstadt
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Yaling Liu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 and Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Robert B Clark
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Sydney Finegold
- Infectious Disease Division, Veterans Affairs Medical Center, Los Angeles, CA 90073 and Departments of Medicine and Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024
| | | | - Michael B Smith
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | - Xudong Yao
- Department of Chemistry University of Connecticut, Storrs, CT 06269.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Frank C Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| |
Collapse
|
11
|
Leishmania donovani-Induced Prostaglandin E2 Generation Is Critically Dependent on Host Toll-Like Receptor 2-Cytosolic Phospholipase A2 Signaling. Infect Immun 2016; 84:2963-73. [PMID: 27481248 DOI: 10.1128/iai.00528-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 07/24/2016] [Indexed: 12/21/2022] Open
Abstract
Visceral leishmaniasis (VL) is the second-largest parasitic killer disease after malaria. During VL, the protozoan Leishmania donovani induces prostaglandin E2 (PGE2) generation within host macrophages to aid parasite survival. PGE2 significantly influences leishmanial pathogenesis, as L. donovani proliferation is known to be attenuated in PGE2-inhibited macrophages. Here, we report for the first time that signaling via macrophage Toll-like receptor 2 (TLR2) plays an instrumental role in inducing PGE2 release from L. donovani-infected macrophages. This signaling cascade, mediated via the TLR2-phosphatidylinositol 3-kinase (PI3K)-phospholipase C (PLC) signaling pathway, was found to be indispensable for activation of two major enzymes required for PGE2 generation: cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (Cox2). Inhibition of cPLA2, but not secreted phospholipase A2 (sPLA2) or calcium-independent phospholipase A2 (iPLA2), arrested L. donovani infection. During infection, cPLA2 activity increased >7-fold in a calcium-dependent and extracellular signal-regulated kinase (ERK)-dependent manner, indicating that elevation of intracellular calcium and ERK-mediated phosphorylation was necessary for L. donovani-induced cPLA2 activation. For transcriptional upregulation of cyclooxygenase 2, activation of the calcium-calcineurin-nuclear factor of activated T cells (NFAT) signaling was required in addition to the TLR2-PI3K-PLC pathway. Detailed studies by site-directed mutagenesis of potential NFAT binding sites and chromatin immunoprecipitation (ChIP) analysis revealed that the binding of macrophage NFATc2, at the -73/-77 site on the cox2 promoter, induced L. donovani-driven cox2 transcriptional activation. Collectively, these findings highlight the contribution of TLR2 downstream signaling toward activation of cPLA2 and Cox2 and illustrate how the TLR2-PI3K-PLC pathway acts in a concerted manner with calcium-calcineurin-NFATc2 signaling to modulate PGE2 release from L. donovani-infected macrophages.
Collapse
|
12
|
Cytosolic phospholipase A2 modulates TLR2 signaling in synoviocytes. PLoS One 2015; 10:e0119088. [PMID: 25893499 PMCID: PMC4404349 DOI: 10.1371/journal.pone.0119088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis leading to destruction of cartilage and bone. PLA2 enzymes are key players in inflammation regulating the release of unsaturated fatty acids such as arachidonic acid (AA), a precursor of pro-inflammatory eicosanoids. Several lines of evidence point to toll-like receptors (TLRs) as drivers of synovitis and joint destruction in RA. However, few studies have addressed the implication of PLA2 activity downstream TLR activation in the synovium. Here, we aimed to characterize PLA2 enzyme involvement in TLR2-induced signaling in synovial fibroblast-like cells. TLRs1-7 and a range of sPLA2, iPLA2 and cPLA2 enzymes were found to be transcriptionally expressed in cultured synoviocytes. Activation of TLR2/1 and TLR2/6 led to phosphorylation of cPLA2α at Ser505, and induced AA release and PGE2 production; effects that were attenuated by cPLA2α inhibitors. In contrast, sPLA2 inhibitors did not affect AA or PGE2 release. cPLA2α inhibitors furthermore attenuated TLR-induced expression of IL-6, IL-8 and COX2. COX1/2 inhibitors attenuated TLR2/6-induced IL-6 transcription and protein production comparable to cPLA2α inhibition. Moreover, exogenously PGE2 added alone induced IL-6 production and completely rescued IL-6 transcription when added simultaneously with FSL-1 in the presence of a cPLA2α inhibitor. Our results demonstrate for the first time that cPLA2α is involved in TLR2/1- and TLR2/6-induced AA release, PGE2 production and pro-inflammatory cytokine expression in synoviocytes, possibly through COX/PGE2-dependent pathways. These findings expand our understanding of cPLA2α as a modulator of inflammatory molecular mechanisms in chronic diseases such as RA.
Collapse
|
13
|
Yu C, Fan L, Gao J, Wang M, Wu Q, Tang J, Li Y, Chen J. The platelet-activating factor acetylhydrolase gene derived from Trichoderma harzianum induces maize resistance to Curvularia lunata through the jasmonic acid signaling pathway. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:708-17. [PMID: 26273755 DOI: 10.1080/03601234.2015.1048104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum was upregulated by the interaction of T. harzianum with maize roots or the foliar pathogen Curvularia lunata. PAF-AH was associated with chitinase and cellulase expressions, but especially with chitinase, because its activity in the KO40 transformant (PAF-AH disruption transformant) was lower, compared with the wild-type strain T28. The result demonstrated that the colonization of maize roots by T. harzianum induced systemic protection of leaves inoculated with C. lunata. Such protection was associated with the expression of inducible jasmonic acid pathway-related genes. Moreover, the data from liquid chromatography-mass spectrometry confirmed that the concentration of jasmonic acid in maize leaves was associated with the expression level of defense-related genes, suggesting that PAF-AH induced resistance to the foliar pathogen. Our findings showed that PAF-AH had an important function in inducing systemic resistance to maize leaf spot pathogen.
Collapse
Affiliation(s)
- Chuanjin Yu
- a Department of Resource and Environmental Science , School of Agriculture and Biology, Shanghai Jiao Tong University , Shanghai , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Yu C, Fan L, Wu Q, Fu K, Gao S, Wang M, Gao J, Li Y, Chen J. Biological role of Trichoderma harzianum-derived platelet-activating factor acetylhydrolase (PAF-AH) on stress response and antagonism. PLoS One 2014; 9:e100367. [PMID: 24964161 PMCID: PMC4070952 DOI: 10.1371/journal.pone.0100367] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/27/2014] [Indexed: 11/18/2022] Open
Abstract
We investigated the properties of platelet-activating factor acetylhydrolase (PAF-AH) derived from Trichoderma harzianum. The enzyme, comprised of 572 amino acids, shares high homology with PAF-AH proteins from T. koningii and other microbial species. The optimum enzymatic activity of PAF-AH occurred at pH 6 in the absence of Ca2+ and it localized in the cytoplasm, and we observed the upregulation of PAF-AH expression in response to carbon starvation and strong heat shock. Furthermore, PAF-AH knockout transformant growth occurred more slowly than wild type cells and over-expression strains grown in SM medium at 37°C and 42°C. In addition, PAF-AH expression significantly increased under a series of maize root induction assay. Eicosanoic acid and ergosterol levels decreased in the PAF-AH knockouts compared to wild type cells, as revealed by GC/MS analysis. We also determined stress responses mediated by PAF-AH were related to proteins HEX1, Cu/Zn superoxide dismutase, and cytochrome c. Finally, PAF-AH exhibited antagonistic activity against Rhizoctonia solani in plate confrontation assays. Our results indicate PAF-AH may play an important role in T. harzianum stress response and antagonism under diverse environmental conditions.
Collapse
Affiliation(s)
- Chuanjin Yu
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Lili Fan
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Qiong Wu
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Kehe Fu
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Shigang Gao
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Meng Wang
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jinxin Gao
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yaqian Li
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jie Chen
- Department of Resource and Environmental Science, School of Agriculture and Biology, Shanghai Jiao tong University, Shanghai, P. R. China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, P. R. China
- * E-mail:
| |
Collapse
|
15
|
Yousefi B, Jadidi-Niaragh F, Azizi G, Hajighasemi F, Mirshafiey A. The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol 2014; 24:225-35. [DOI: 10.3109/14397595.2013.854056] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Lee IT, Lin CC, Lin WN, Wu WL, Hsiao LD, Yang CM. Lung inflammation caused by adenosine-5'-triphosphate is mediated via Ca2+/PKCs-dependent COX-2/PGE2 induction. Int J Biochem Cell Biol 2013; 45:1657-68. [PMID: 23680674 DOI: 10.1016/j.biocel.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022]
Abstract
Up-regulation of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) are implicated in lung inflammation. Adenosine 5'-triphosphate (ATP) has been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases. The mechanisms of ATP-induced COX-2 expression and PGE2 release remain unclear. We showed that pretreatment with the inhibitors of P2 receptors (PPADS and Suramin), Gq protein (GPA2A), phosphatidylcholine-phospholipase C (PC-PLC; D609), phosphoinositide-phospholipase C (PI-PLC; ET-18-OCH3), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII; KN62), protein kinase C (PKC; Gö6976, Ro-318220, GF109203X, and rottlerin), MEK1/2 (PD98059), p38 MAPK (SB202190), and nuclear factor-kappaB (NF-κB; Bay11-7082) and the intracellular calcium chelator (BAPTA/AM) or transfection with siRNAs of these molecules and cPLA2 reduced ATPγS-induced COX-2 expression or PGE2 production in A549 cells. In addition, ATPγS-induced elevation of intracellular Ca(2+) concentration was attenuated by PPADS, Suramin, D609, or ET-18-OCH3. ATPγS-induced p38 MAPK, p42/p44 MAPK, and NF-κB p65 activation were inhibited by Gö6976, Ro-318220, GF109203X, or rottlerin. ATPγS also induced cPLA2 phosphorylation and activity, which were reduced via inhibition of P2 receptors, PKCs, p38 MAPK, and p42/p44 MAPK. ATPγS-induced cPLA2 expression was inhibited by SB202190, PD98059, or Bay11-7082. In the in vitro study, we established that ATPγS induced PGE2 generation via a cPLA2/COX-2-dependent pathway. In the in vivo study, we found that ATPγS induced COX-2 mRNA expression in the lungs and leukocyte (mainly eosinophils and neutrophils) count in bronchoalveolar lavage (BAL) fluid in mice via a P2 receptors-dependent signaling pathway. We concluded that ATPγS may induce lung inflammation via a cPLA2/COX-2/PGE2-dependent pathway.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Anesthetics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Yousefi B, Jadidi-Niaragh F, Azizi G, Hajighasemi F, Mirshafiey A. The role of leukotrienes in immunopathogenesis of rheumatoid arthritis. Mod Rheumatol 2013. [PMID: 23529572 DOI: 10.1007/s10165-013-0861-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder of joints for which there is no strict cure. However, conventional medications can reduce inflammation, relieve pain, and slow joint damage. Leukotrienes are a family of paracrine agents derived from oxidative metabolism of arachidonic acid. Synthesis of lipid mediators and subsequent induction of receptor activity are tightly regulated under normal physiological conditions, so that enzyme and/or receptor dysfunction can lead to a variety of clinical signs and symptoms of disease, such as local pain and tissue edema. In these tissues, immunocompetent cells accumulate at the site of injury, contributing to tissue damage and perpetuation of the disease process. Leukotrienes (often leukotriene B4) as potent chemotactic agents can provoke most signs and symptoms in rheumatoid arthritis by initiating, coordinating, sustaining, and amplifying the inflammatory response, through recruitment of leukocytes. A number of studies have reported that pharmacological modulation in this field can significantly attenuate clinical manifestations associated with different inflammatory pathologies.
Collapse
Affiliation(s)
- Bahman Yousefi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Box: 6446, 14155, Tehran, Iran
| | | | | | | | | |
Collapse
|
18
|
Lipoteichoic acid from Staphylococcus aureus induces lung endothelial cell barrier dysfunction: role of reactive oxygen and nitrogen species. PLoS One 2012; 7:e49209. [PMID: 23166614 PMCID: PMC3499573 DOI: 10.1371/journal.pone.0049209] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/08/2012] [Indexed: 11/29/2022] Open
Abstract
Tunneled central venous catheters (TCVCs) are used for dialysis access in 82% of new hemodialysis patients and are rapidly colonized with Gram-positive organism (e.g. Staphylococcus aureus) biofilm, a source of recurrent infections and chronic inflammation. Lipoteichoic acid (LTA), a cell wall ribitol polymer from Gram-positive organisms, mediates inflammation through the Toll-like receptor 2 (TLR2). The effect of LTA on lung endothelial permeability is not known. We tested the hypothesis that LTA from Staphylococcus aureus induces alterations in the permeability of pulmonary microvessel endothelial monolayers (PMEM) that result from activation of TLR2 and are mediated by reactive oxygen/nitrogen species (RONS). The permeability of PMEM was assessed by the clearance rate of Evans blue-labeled albumin, the activation of the TLR2 pathway was assessed by Western blot, and the generation of RONS was measured by the fluorescence of oxidized dihydroethidium and a dichlorofluorescein derivative. Treatment with LTA or the TLR2 agonist Pam(3)CSK(4) induced significant increases in albumin permeability, IκBα phosphorylation, IRAK1 degradation, RONS generation, and endothelial nitric oxide synthase (eNOS) activation (as measured by the p-eNOSser1177:p-eNOSthr495 ratio). The effects on permeability and RONS were effectively prevented by co-administration of the superoxide scavenger Tiron, the peroxynitrite scavenger Urate, or the eNOS inhibitor L-NAME and these effects as well as eNOS activation were reduced or prevented by pretreatment with an IRAK1/4 inhibitor. The results indicate that the activation of TLR2 and the generation of ROS/RNS mediates LTA-induced barrier dysfunction in PMEM.
Collapse
|
19
|
Esser J, Gehrmann U, Salvado MD, Wetterholm A, Haeggström JZ, Samuelsson B, Gabrielsson S, Scheynius A, Rådmark O. Zymosan suppresses leukotriene C₄ synthase activity in differentiating monocytes: antagonism by aspirin and protein kinase inhibitors. FASEB J 2011; 25:1417-27. [PMID: 21228223 DOI: 10.1096/fj.10-175828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cysteinyl leukotrienes (cysLTs) are potent proinflammatory mediators with particular relevance for asthma. However, control of cysLT biosynthesis in the time period after onset of acute inflammation has not been extensively studied. As a model for later phases of inflammation, we investigated regulation of leukotriene (LT) C(4) synthase (LTC(4)S) in differentiating monocytes, exposed for several days to fungal zymosan. Incubations with LTA(4) revealed 20-fold increased LTC(4)S activity during differentiation of monocytic Mono Mac 6 (MM6) cells, which was reduced by 80% in the presence of zymosan (25 μg/ml, 96 h). Zymosan (48 h) similarly attenuated LTC(4)S activity of primary human monocyte-derived macrophages and dendritic cells. Several findings indicate phosphoregulation of LTC(4)S: increased activity during MM6 cell differentiation correlated with reduced phosphorylation of 70-kDa ribosomal protein S6 kinase (p70S6K), which could phosphorylate purified LTC(4)S; the p70S6K inhibitor rapamycin (20 nM) doubled LTC(4)S activity of undifferentiated MM6 cells, and protein kinase A and C inhibitors (H-89, CGP-53353, and staurosporine) reversed the zymosan-induced suppression of LTC(4)S activity. Finally, zymosan (48 h) up-regulated PGE(2) biosynthesis, and aspirin (10 μM) or prostaglandin E(2) (PGE(2)) receptor antagonists counteracted the zymosan effect. Our results suggest a late PGE(2)-mediated phosphoregulation of LTC(4)S during microbial exposure, which may contribute to resolution of inflammation, with implications for aspirin hypersensitivity.
Collapse
Affiliation(s)
- Julia Esser
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wang M, Sui H, Li W, Wang J, Liu Y, Gu L, Wang WH, Gu R. Stimulation of A(₂a) adenosine receptor abolishes the inhibitory effect of arachidonic acid on the basolateral 50-pS K channel in the thick ascending limb. Am J Physiol Renal Physiol 2011; 300:F906-13. [PMID: 21209003 DOI: 10.1152/ajprenal.00617.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The basolateral 50-pS K channels are stimulated by a cAMP-dependent pathway and inhibited by cytochrome P-450-omega-hydroxylase-dependent metabolism of arachidonic acid (AA) in the rat thick ascending limb (TAL). We now used the patch-clamp technique to examine whether stimulation of adenosine A(₂a) receptor modulates the inhibitory effect of AA on the basolateral 50-pS K channels in the medullary TAL. Stimulation of adenosine A(₂a) receptor with CGS-21680 or inhibition of phospholipase A₂ (PLA₂) with AACOCF3 increased the 50-pS K channel activity in the TAL. Western blot demonstrated that application of CGS-21680 decreased the phosphorylation of PLA(2) at serine residue 505, an indication of inhibiting PLA₂ activity. In the presence of CGS-21680, inhibition of PLA₂ had no further effect on the basolateral 50-pS K channels. The possibility that CGS-21680-induced stimulation of the basolateral 50-pS K channels was partially achieved by inhibition of PLA₂ in the TAL was also supported by the observation that CGS-21680 had no additional effect in the presence of AACOCF3. Moreover, stimulation of adenosine A(₂a) receptor with CGS-21680 also abolished the inhibitory effect of AA and 20-hydroxyeicosatetraenoic acid (20-HETE) on the 50-pS K channels. The effect of CGS-21680 on AA and 20-HETE-mediated inhibition of the 50-pS K channels was mediated by cAMP because application of membrane-permeable cAMP analog, dibutyryl-cAMP, not only increased the 50-pS K channel activity but also abolished the inhibitory effect of AA and 20-HETE. We conclude that stimulation of adenosine A(₂a) receptor increased the 50-pS K channel activity in the TAL, an effect that is achieved by suppression of PLA₂ activity and 20-HETE-induced inhibition.
Collapse
Affiliation(s)
- Mingxiao Wang
- Dept. of Pharmacology, Harbin Med. Univ., Harbin 150086, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Serezani CH, Lewis C, Jancar S, Peters-Golden M. Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J Clin Invest 2011; 121:671-82. [PMID: 21206089 DOI: 10.1172/jci43302] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 11/03/2010] [Indexed: 12/28/2022] Open
Abstract
Activation of NF-κB and 5-lipoxygenase-mediated (5-LO-mediated) biosynthesis of the lipid mediator leukotriene B4 (LTB4) are pivotal components of host defense and inflammatory responses. However, the role of LTB4 in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1β and IL-18) are reduced in mice lacking either 5-LO or the LTB4 receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-κB. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO-deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-κB through Stat1-dependent expression of MyD88.
Collapse
Affiliation(s)
- Carlos H Serezani
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan 48109-5642, USA.
| | | | | | | |
Collapse
|
22
|
Eicosanoids in the innate immune response: TLR and non-TLR routes. Mediators Inflamm 2010; 2010. [PMID: 20689730 PMCID: PMC2905620 DOI: 10.1155/2010/201929] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/09/2010] [Indexed: 12/14/2022] Open
Abstract
The variable array of pattern receptor expression in different cells of the innate immune system explains the induction of distinct patterns of arachidonic acid (AA) metabolism. Peptidoglycan and mannan were strong stimuli in neutrophils, whereas the fungal extract zymosan was the most potent stimulus in monocyte-derived dendritic cells since it induced the production of PGE2, PGD2, and several cytokines including a robust IL-10 response. Zymosan activated κB-binding activity, but inhibition of NF-κB was associated with enhanced IL-10 production. In contrast, treatments acting on CREB (CRE binding protein), including PGE2, showed a direct correlation between CREB activation and IL-10 production. Therefore, in dendritic cells zymosan induces il10 transcription by a CRE-dependent mechanism that involves autocrine secretion of PGE2, thus unraveling a functional cooperation between eicosanoid production and cytokine production.
Collapse
|
23
|
Wu CY, Chi PL, Hsieh HL, Luo SF, Yang CM. TLR4-dependent induction of vascular adhesion molecule-1 in rheumatoid arthritis synovial fibroblasts: Roles of cytosolic phospholipase A(2)alpha/cyclooxygenase-2. J Cell Physiol 2010; 223:480-91. [PMID: 20112284 DOI: 10.1002/jcp.22059] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Lipopolysaccharide (LPS)/Toll-like receptor 4 (TLR4)-mediated signaling pathways have caught the attention of strategies designed for rheumatoid arthritis (RA). In this study, we identified that cPLA(2)alpha acted as a modulator of LPS-induced VCAM-1 expression and THP-1 (human acute monocytic leukemia cell line) adherence. Treatment of RA synovial fibroblasts (RASFs) with LPS, a TLR4 agonist, promoted the VCAM-1 expression and THP-1 adherence which were decreased by pretreatment with a selective cytosolic phospholipase A(2) (cPLA(2)) inhibitor (AACOCF(3)), implying the involvement of cPLA(2)alpha in these responses. This notion was further confirmed by knockdown of cPLA(2)alpha expression by transfection with cPLA(2)alpha small interfering RNA (siRNA) leading to a decrease in VCAM-1 expression and THP-1 adherence induced by LPS. Subsequently, the LPS-stimulated cPLA(2)alpha phosphorylation was attenuated by pretreatment with a MEK1/2 inhibitor (U0126), suggesting that LPS-stimulated cPLA(2)alpha phosphorylation and activity are mediated through an ERK-dependent mechanism. Moreover, COX-2-derived PGE(2) production appeared to involve in LPS-induced VCAM-1 expression which was attenuated by pretreatment with selective COX-2 inhibitors (NS-398 and celecoxib), transfection with COX-2 siRNA, or PGE(2) receptor antagonists. In addition, pretreatment with ecosapentaenoic acid (EPA), a substrate competitor of arachidonic acid (AA), also blocked LPS-induced VCAM-1 mRNA and protein expression, and THP-1 adherence. Collectively, these results suggest that LPS-induced VCAM-1 expression and adhesion of THP-1 cells are mediated through the TLR4/ERK/cPLA(2)alpha phosphorylation and COX-2 expression/PGE(2) synthesis in RASFs.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Funk D, Sorg BL, Lindner SC, Schmeiser HH. 32P-postlabeling analysis of DNA adducts formed by leukotriene A4 (LTA4). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:338-343. [PMID: 20120015 DOI: 10.1002/em.20547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Leukotriene A(4) (LTA(4)), a reactive electrophilic intermediate formed during the biosynthesis of inflammation-related lipid mediators, has been found to bind covalently to DNA. The major DNA adducts formed by LTA(4) in vitro and human cells have been identified by mass spectrometry on the nucleoside level. Here we investigated whether the thin-layer chromatography (TLC) (32)P-postlabeling method is suitable for the detection of LTA(4)-DNA adducts. The reaction of individual deoxynucleoside 3'-monophosphates with LTA(4) in aqueous basic solution yielded numerous adduct spots when analyzed by the two enrichment procedures of the (32)P-postlabeling method-nuclease P1 digestion and butanol extraction. Highest LTA(4)-adduct levels were found with deoxyguanosine 3'-phosphate (around one adduct per 10(4) normal nucleotides). Under similar reaction conditions LTA(4) (25-320 microM) was incubated with calf thymus DNA, then DNA adduct patterns and levels were determined with the TLC (32)P-postlabeling method using both enrichment versions. The same DNA adduct pattern consisting of up to seven spots was observed with both enrichment versions. DNA adduct formation by LTA(4) was concentration-dependent with major adducts being derived from deoxyguanosine. When a human monocytic cell line (Mono Mac 6) was stimulated with arachidonic acid and calcium ionophore LTA(4)-DNA adducts were detected by (32)P-postlabeling. However, the level of these endogenously formed DNA adducts was close to the detection limit (3 +/- 2 adducts per 10(8) normal nucleotides). In summary, the TLC (32)P-postlabeling method is suitable for studying DNA adduct formation by LTA(4) and can be used for further investigations on the link between inflammation and cancer.
Collapse
Affiliation(s)
- Dorothee Funk
- German Cancer Research Center, Division of Preventive Oncology, INF 581, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
25
|
Lee CH, Nawar HF, Mandell L, Liang S, Hajishengallis G, Connell TD. Enhanced antigen uptake by dendritic cells induced by the B pentamer of the type II heat-labile enterotoxin LT-IIa requires engagement of TLR2. Vaccine 2010; 28:3696-705. [PMID: 20332049 DOI: 10.1016/j.vaccine.2010.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/01/2010] [Accepted: 03/09/2010] [Indexed: 11/19/2022]
Abstract
The potent mucosal adjuvant properties of the type II heat-labile enterotoxin LT-IIa of Escherichia coli are dependent upon binding of the B pentamer of the enterotoxin (LT-IIa-B(5)) to ganglioside receptors on immunocompetent cells. To evaluate the immunomodulatory activities of LT-IIa-B(5), in vitro experiments employing bone marrow-derived dendritic cells (BMDC) were performed. Uptake of OVA-FITC, a model antigen (Ag), was enhanced by treatment of BMDC with LT-IIa-B5, but not by treatment of cells with the B pentamer of cholera toxin (CTB). Expression of co-stimulatory molecules (CD40, CD80, CD86, and MHC-II) and cytokines (IL-12p40, TNF-alpha, and IFN-gamma) was increased in BMDC treated with LT-IIa-B(5). The capacity of LT-IIa-B(5) to enhance Ag uptake and to induce expression of co-stimulatory receptors and cytokines by BMDC was dependent upon expression of TLR2 by the cell. Increased Ag uptake induced by LT-IIa-B(5) was correlated with increased Ag-specific proliferation of CD4(+) T cells in an in vitro syngeneic DO11.10 CD4(+) T cell proliferation assay. These experiments confirm that LT-IIa-B(5) exhibits potent immunomodulatory properties which may be exploitable as a non-toxic mucosal adjuvant.
Collapse
Affiliation(s)
- Chang Hoon Lee
- The Department of Microbiology and Immunology, The University at Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|