1
|
Chen Y, Zhao T, Han M, Chen Y. miR-143 promotes cell proliferation, invasion and migration via directly binding to BRD2 in lens epithelial cells. Am J Transl Res 2024; 16:446-457. [PMID: 38463605 PMCID: PMC10918123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/23/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Cataract causes the greatest number of blindnesses worldwide. This study aims to investigate the role of miR-143 in lens epithelial cells. METHODS Clustering analysis was conducted to systematically compare miRNA expression levels across cataract and myopia. The levels of miR-143 and Bromodomain containing 2 (BRD2) were determined using real-time quantitative PCR (RT-qPCR) assay in lens epithelial cells. Transwell and wound healing assays were conducted to detect cell invasive and migratory abilities. The regulation relationship between MiR-143 and BRD2 was assessed using dual-luciferase reporter gene assays. BRD2 was knocked down using siRNA-BRD2, and siRNA-BRD2, and miR-143 inhibitors were transfected into cells with lipofectamine 2000. RESULTS Through retrieving five databases, 2690 miRNAs were selected. Volcano plot results demonstrated that 200 miRNAs were differentially expressed between cataract and myopia, in which 152 miRNAs were upregulated and 48 miRNAs downregulated in myopia compared with cataract. MiR-143 was upregulated in cataract compared with myopia (P<0.05). MiR-143 inhibitor suppressed the proliferation, invasion and migration of lens epithelial cells (all P<0.05). Luciferase reporter assays confirmed that BRD2 was a miR-143 target gene in SRA01/04 cells. Knockdown of BRD2 promoted SRA01/04 cell proliferation, invasion and migration (all P<0.05). In addition, silencing of BRD2 partially reversed the functions of miR-143 inhibitor on proliferation, invasion and migration (all P<0.05). CONCLUSION MiR-143 suppresses lens epithelial cell proliferation, invasion and migration by regulating BRD2, which may support a novel therapeutic strategy for cataract patients.
Collapse
Affiliation(s)
- You Chen
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| | - Tong Zhao
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| | - Mengyu Han
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| | - Yi Chen
- Department of Ophthalmology, China-Japan Friendship Hospital Beijing 100029, China
| |
Collapse
|
2
|
Ali I, Cha HJ, Lim B, Chae CH, Youm J, Park WJ, Lee SH, Kim JH, Jeong D, Lim JK, Hwang YH, Roe JS, Woo JS, Lee K, Choi G. DW71177: A novel [1,2,4]triazolo[4,3-a]quinoxaline-based potent and BD1-Selective BET inhibitor for the treatment of acute myeloid leukemia. Eur J Med Chem 2024; 265:116052. [PMID: 38134745 DOI: 10.1016/j.ejmech.2023.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
The bromodomain and extraterminal domain (BET) family proteins recognize acetyl-lysine (Kac) at the histone tail through two tandem bromodomains, i.e., BD1 and BD2, to regulate gene expression. BET proteins are attractive therapeutic targets in cancer due to their involvement in oncogenic transcriptional activation, and bromodomains have defined Kac-binding pockets. Here, we present DW-71177, a potent BET inhibitor that selectively interacts with BD1 and exhibits strong antileukemic activity. X-ray crystallography, isothermal titration calorimetry, and molecular dynamic studies have revealed the robust and specific binding of DW-71177 to the Kac-binding pocket of BD1. DW-71177 effectively inhibits oncogenes comparable to the pan-BET inhibitor OTX-015, but with a milder impact on housekeeping genes. It efficiently blocks cancer-associated transcriptional changes by targeting genes that are highly enriched with BRD4 and histone acetylation marks, suggesting that BD1-selective targeting could be an effective and safe therapeutic strategy against leukemia.
Collapse
Affiliation(s)
- Imran Ali
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hyung Jin Cha
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byungho Lim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Chong Hak Chae
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jihyun Youm
- Dongwha Pharm Research Institute, 71 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17084, Republic of Korea
| | - Whui Jung Park
- Dongwha Pharm Research Institute, 71 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17084, Republic of Korea
| | - Sang Ho Lee
- Dongwha Pharm Research Institute, 71 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17084, Republic of Korea
| | - Jung Hwan Kim
- Dongwha Pharm Research Institute, 71 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17084, Republic of Korea
| | - Docgyun Jeong
- Dongwha Pharm Research Institute, 71 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17084, Republic of Korea
| | - Jae Kyung Lim
- Dongwha Pharm Research Institute, 71 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17084, Republic of Korea
| | - Yun-Ha Hwang
- Dongwha Pharm Research Institute, 71 Tapsil-ro, 35 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17084, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Kwangho Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| | - Gildon Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, Korea National University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2023:1-23. [PMID: 38100543 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
4
|
Heo CK, Lim WH, Park I, Choi YS, Lim KJ, Cho EW. Serum BRD2 autoantibody in hepatocellular carcinoma and its detection using mimotope peptide‑conjugated BSA. Int J Oncol 2022; 61:158. [PMID: 36321789 PMCID: PMC9635863 DOI: 10.3892/ijo.2022.5448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor‑associated (TA) autoantibodies are considered to be promising biomarkers for the early detection of cancer, prior to the development of clinical symptoms. In the present study, a novel TA autoantibody was detected, which may prove to be useful as a diagnostic marker of human HCC using an HBx‑transgenic (HBx‑tg) hepatocellular carcinoma (HCC) mouse model. Its target antigen was identified as the bromodomain‑containing protein 2 (BRD2), a transcriptional regulator that plays a pivotal role in the transcriptional control of diverse genes. BRD2 was upregulated in HCC tissues of the H‑ras12V‑tg mouse and human subjects, as demonstrated using western blotting or immunohistochemical analysis, with the BRD2 autoantibody. In addition, the truncated BRD2 reactive to the BRD2 autoantibody was detected in tumor cell‑derived exosomes, which possibly activated TA immune responses and the generation of autoantibodies. For the detection of the serum BRD2 autoantibody, epitope mimicries of autoantigenic BRD2 were screened from a random cyclic peptide CX<sub>7</sub>C library with the BRD2 autoantibody. A mimotope with the sequence of CTSVFLPHC, which was cyclized by one pair of cysteine residues, exhibited high affinity to the BRD2 autoantibody and competitively inhibited the binding of the autoantibody to the cellular BRD2 antigen. The use of this cyclic peptide as a capture antigen in human serum enzyme‑linked immunosorbent assay allowed the distinction of patients with HCC from healthy subjects with 64.41% sensitivity and 82.42% specificity (area under the ROC curve, 0.7761), which is superior to serum alpha‑fetoprotein (AFP; 35.83% sensitivity; 100% specificity; area under the ROC curve, 0.5337) for the diagnosis of HCC. In addition, the detection of the BRD2 autoantibody combined with other autoantibody biomarkers or AFP has increased the accuracy of HCC diagnosis, suggesting that the combinational detection of cancer biomarkers, including the BRD2 autoantibody, is a promising assay for HCC diagnosis.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Functional Genomics, University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Inseo Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Yon-Sik Choi
- ProteomeTech Inc., Seoul 07528, Republic of Korea
| | - Kook-Jin Lim
- ProteomeTech Inc., Seoul 07528, Republic of Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea,Department of Functional Genomics, University of Science and Technology, Daejeon 34141, Republic of Korea,Correspondence to: Dr Eun-Wie Cho, Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea, E-mail:
| |
Collapse
|
5
|
Kong P, Zhang L, Zhang Z, Feng K, Sang Y, Duan X, Liu C, Sun T, Tao Z, Liu W. Emerging Proteins in CRPC: Functional Roles and Clinical Implications. Front Oncol 2022; 12:873876. [PMID: 35756667 PMCID: PMC9226405 DOI: 10.3389/fonc.2022.873876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men in the western world, but the lack of specific and sensitive markers often leads to overtreatment of prostate cancer which eventually develops into castration-resistant prostate cancer (CRPC). Novel protein markers for diagnosis and management of CRPC will be promising. In this review, we systematically summarize and discuss the expression pattern of emerging proteins in tissue, cell lines, and serum when castration-sensitive prostate cancer (CSPC) progresses to CRPC; focus on the proteins involved in CRPC growth, invasion, metastasis, metabolism, and immune microenvironment; summarize the current understanding of the regulatory mechanisms of emerging proteins in CSPC progressed to CRPC at the molecular level; and finally summarize the clinical applications of emerging proteins as diagnostic marker, prognostic marker, predictive marker, and therapeutic marker.
Collapse
Affiliation(s)
- Piaoping Kong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lingyu Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengliang Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kangle Feng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwen Sang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzhi Duan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunhua Liu
- Department of Blood Transfusion, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihua Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Mori JO, Shafran JS, Stojanova M, Katz MH, Gignac GA, Wisco JJ, Heaphy CM, Denis GV. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: Rationale for targeting BET proteins. Prostate 2022; 82:1005-1015. [PMID: 35403746 PMCID: PMC11134172 DOI: 10.1002/pros.24351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
In patients with prostate cancer, the duration of remission after treatment with androgen deprivation therapies (ADTs) varies dramatically. Clinical experience has demonstrated difficulties in predicting individual risk for progression due to chemoresistance. Drug combinations that inhibit androgen biosynthesis (e.g., abiraterone acetate) and androgen signaling (e.g., enzalutamide or apalutamide) have proven so effective that new forms of ADT resistance are emerging. In particular, prostate cancers with a neuroendocrine transcriptional signature, which demonstrate greater plasticity, and potentially, increased predisposition to metastasize, are becoming more prevalent. Notably, these subtypes had in fact been relatively rare before the widespread success of novel ADT regimens. Therefore, better understanding of these resistance mechanisms and potential alternative treatments are necessary to improve progression-free survival for patients treated with ADT. Targeting the bromodomain and extra-terminal (BET) protein family, specifically BRD4, with newer investigational agents may represent one such option. Several families of chromatin modifiers appear to be involved in ADT resistance and targeting these pathways could also offer novel approaches. However, the limited transcriptional and genomic information on ADT resistance mechanisms, and a serious lack of patient diversity in clinical trials, demand profiling of a much broader clinical and demographic range of patients, before robust conclusions can be drawn and a clear direction established.
Collapse
Affiliation(s)
- Joakin O. Mori
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jordan S. Shafran
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Marija Stojanova
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mark H. Katz
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gretchen A. Gignac
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jonathan J. Wisco
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christopher M. Heaphy
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gerald V. Denis
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Abstract
The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single cell RNA-seq studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We here show that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution. Latently infected T cells exhibited a de-differentiated phenotype, characterized by the loss of T cell-specific markers and gene regulation profiles reminiscent of hematopoietic stem cells (HSC). These changes had functional consequences. As reported for stem cells, latently HIV-1 infected T cells efficiently forced lentiviral superinfections into a latent state and favored glycolysis. As a result, metabolic reprogramming or cell re-differentiation destabilized latent infection. Guided by these findings, data-mining of single cell RNA-seq data of latently HIV-1 infected primary T cells from patients revealed the presence of similar dedifferentiation motifs. >20% of the highly detectable genes that were differentially regulated in latently infected cells were associated with hematopoietic lineage development (e.g. HUWE1, IRF4, PRDM1, BATF3, TOX, ID2, IKZF3, CDK6) or were hematopoietic markers (SRGN; hematopoietic proteoglycan core protein). The data add to evidence that the biomolecular phenotype of latently HIV-1 infected cells differs from normal T cells and strategies to address their differential phenotype need to be considered in the design of therapeutic cure interventions. IMPORTANCE HIV-1 persists in a latent reservoir in memory CD4 T cells for the lifetime of a patient. Understanding the biomolecular mechanisms used by the host cells to suppress viral expression will provide essential insights required to develop curative therapeutic interventions. Unfortunately, our current understanding of these control mechanisms is still limited. By studying gene expression profiles, we demonstrated that latently HIV-1-infected T cells have a de-differentiated T cell phenotype. Software-based data integration allowed for the identification of drug targets that would re-differentiate viral host cells and, in extension, destabilize latent HIV-1 infection events. The importance of the presented data lies within the clear demonstration that HIV-1 latency is a host cell phenomenon. As such, therapeutic strategies must first restore proper host cell functionality to accomplish efficient HIV-1 reactivation.
Collapse
|
8
|
Zeng S, Qiu Q, Zhou Y, Xiao Y, Wang J, Li R, Xu S, Shi M, Wang C, Kuang Y, Lao M, Cai X, Liang L, Xu H. The suppression of Brd4 inhibits peripheral plasma cell differentiation and exhibits therapeutic potential for systemic lupus erythematosus. Int Immunopharmacol 2021; 103:108498. [PMID: 34972067 DOI: 10.1016/j.intimp.2021.108498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
The mechanisms that control B cell terminal differentiation remain undefined. Here, we investigate the role of bromodomain-containing protein 4 (Brd4) in regulating B cell differentiation and its therapeutic potential for B cell-mediated autoimmune diseases including systemic lupus erythematosus (SLE). We showed that Brd4 inhibitor PFI-1 suppressed plasmablast-mediated plasma cell differentiation in healthy human CD19+ B cells. PFI-1 reduced IgG and IgM secretion in costimulation-induced human B cells. We also observed a reduced percentage of plasma cells in mice with B cell-specific deletion of the Brd4 gene (Brd4flox/floxCD19-cre+). Mechanistically, using the luciferase reporter assay and the chromatin immunoprecipitation, we explored that Brd4 regulates the expression of B lymphocyte-induced maturation protein 1 (BLIMP1), an important transcript factor that is involved in modulation of plasma cell differentiation. Interestingly, PFI-1 decreased the percentages of plasmablasts and plasma cells from patients with SLE. PFI-1 administration reduced the percentages of plasma cells, hypergammaglobulinemia, and attenuated nephritis in MRL/lpr lupus mice. Pristane-injected Brd4flox/floxCD19-cre+ mice exhibited improved nephritis and reduced percentages of plasma cells. These findings suggest an essential factor of Brd4 in regulating plasma cell differentiation. Brd4 inhibition may be a potential strategy for the treatment of B cell-associated autoimmune disorders.
Collapse
Affiliation(s)
- Shan Zeng
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Rheumatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zhou
- Department of Rheumatology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minxi Lao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Branigan GL, Olsen KS, Burda I, Haemmerle MW, Ho J, Venuto A, D’Antonio ND, Briggs IE, DiBenedetto AJ. Zebrafish Paralogs brd2a and brd2b Are Needed for Proper Circulatory, Excretory and Central Nervous System Formation and Act as Genetic Antagonists during Development. J Dev Biol 2021; 9:jdb9040046. [PMID: 34842711 PMCID: PMC8629005 DOI: 10.3390/jdb9040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Brd2 belongs to the BET family of epigenetic transcriptional co-regulators that act as adaptor-scaffolds for the assembly of chromatin-modifying complexes and other factors at target gene promoters. Brd2 is a protooncogene and candidate gene for juvenile myoclonic epilepsy in humans, a homeobox gene regulator in Drosophila, and a maternal-zygotic factor and cell death modulator that is necessary for normal development of the vertebrate central nervous system (CNS). As two copies of Brd2 exist in zebrafish, we use antisense morpholino knockdown to probe the role of paralog Brd2b, as a comparative study to Brd2a, the ortholog of human Brd2. A deficiency in either paralog results in excess cell death and dysmorphology of the CNS, whereas only Brd2b deficiency leads to loss of circulation and occlusion of the pronephric duct. Co-knockdown of both paralogs suppresses single morphant defects, while co-injection of morpholinos with paralogous RNA enhances them, suggesting novel genetic interaction with functional antagonism. Brd2 diversification includes paralog-specific RNA variants, a distinct localization of maternal factors, and shared and unique spatiotemporal expression, providing unique insight into the evolution and potential functions of this gene.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Medical Scientist Training Program, Center for Innovation in Brain Science, Department of Pharmacology, University of Arizona College of Medicine-Tucson, 1501 N Campbell Ave., Tucson, AZ 85724, USA;
| | - Kelly S. Olsen
- Biological and Biomedical Sciences Program, Department of Microbiology and Immunology, University of North Carolina School of Medicine-Chapel Hill, 321 S Columbia St., Chapel Hill, NC 27516, USA;
| | - Isabella Burda
- Department of Molecular Biology and Genetics, Weill Institute for Cell & Molecular Biology, Cornell University, 239 Weill Hall, Ithaca, NY 14853, USA;
| | - Matthew W. Haemmerle
- Institute for Diabetes, Obesity, and Metabolism, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Room 12-124, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Jason Ho
- Robert Wood Johnson Medical School, Rutgers University, Clinical Academic Building (CAB), 125 Paterson St., New Brunswick, NJ 08901, USA;
| | - Alexandra Venuto
- Department of Biology, East Carolina University, Greenville, NC 27858, USA;
| | - Nicholas D. D’Antonio
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, 1025 Walnut St. #100, Philadelphia, PA 19107, USA;
| | - Ian E. Briggs
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
| | - Angela J. DiBenedetto
- Department of Biology, Villanova University, 800 Lancaster Ave., Villanova, PA 19085, USA;
- Correspondence:
| |
Collapse
|
10
|
Antoun E, Kitaba NT, Titcombe P, Dalrymple KV, Garratt ES, Barton SJ, Murray R, Seed PT, Holbrook JD, Kobor MS, Lin DTS, MacIsaac JL, Burdge GC, White SL, Poston L, Godfrey KM, Lillycrop KA. Maternal dysglycaemia, changes in the infant's epigenome modified with a diet and physical activity intervention in pregnancy: Secondary analysis of a randomised control trial. PLoS Med 2020; 17:e1003229. [PMID: 33151971 PMCID: PMC7643947 DOI: 10.1371/journal.pmed.1003229] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Higher maternal plasma glucose (PG) concentrations, even below gestational diabetes mellitus (GDM) thresholds, are associated with adverse offspring outcomes, with DNA methylation proposed as a mediating mechanism. Here, we examined the relationships between maternal dysglycaemia at 24 to 28 weeks' gestation and DNA methylation in neonates and whether a dietary and physical activity intervention in pregnant women with obesity modified the methylation signatures associated with maternal dysglycaemia. METHODS AND FINDINGS We investigated 557 women, recruited between 2009 and 2014 from the UK Pregnancies Better Eating and Activity Trial (UPBEAT), a randomised controlled trial (RCT), of a lifestyle intervention (low glycaemic index (GI) diet plus physical activity) in pregnant women with obesity (294 contol, 263 intervention). Between 27 and 28 weeks of pregnancy, participants had an oral glucose (75 g) tolerance test (OGTT), and GDM diagnosis was based on diagnostic criteria recommended by the International Association of Diabetes and Pregnancy Study Groups (IADPSG), with 159 women having a diagnosis of GDM. Cord blood DNA samples from the infants were interrogated for genome-wide DNA methylation levels using the Infinium Human MethylationEPIC BeadChip array. Robust regression was carried out, adjusting for maternal age, smoking, parity, ethnicity, neonate sex, and predicted cell-type composition. Maternal GDM, fasting glucose, 1-h, and 2-h glucose concentrations following an OGTT were associated with 242, 1, 592, and 17 differentially methylated cytosine-phosphate-guanine (dmCpG) sites (false discovery rate (FDR) ≤ 0.05), respectively, in the infant's cord blood DNA. The most significantly GDM-associated CpG was cg03566881 located within the leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) (FDR = 0.0002). Moreover, we show that the GDM and 1-h glucose-associated methylation signatures in the cord blood of the infant appeared to be attenuated by the dietary and physical activity intervention during pregnancy; in the intervention arm, there were no GDM and two 1-h glucose-associated dmCpGs, whereas in the standard care arm, there were 41 GDM and 160 1-h glucose-associated dmCpGs. A total of 87% of the GDM and 77% of the 1-h glucose-associated dmCpGs had smaller effect sizes in the intervention compared to the standard care arm; the adjusted r2 for the association of LGR6 cg03566881 with GDM was 0.317 (95% confidence interval (CI) 0.012, 0.022) in the standard care and 0.240 (95% CI 0.001, 0.015) in the intervention arm. Limitations included measurement of DNA methylation in cord blood, where the functional significance of such changes are unclear, and because of the strong collinearity between treatment modality and severity of hyperglycaemia, we cannot exclude that treatment-related differences are potential confounders. CONCLUSIONS Maternal dysglycaemia was associated with significant changes in the epigenome of the infants. Moreover, we found that the epigenetic impact of a dysglycaemic prenatal maternal environment appeared to be modified by a lifestyle intervention in pregnancy. Further research will be needed to investigate possible medical implications of the findings. TRIAL REGISTRATION ISRCTN89971375.
Collapse
Affiliation(s)
- Elie Antoun
- Biological Sciences, Institute of Developmental Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Negusse T. Kitaba
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Philip Titcombe
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Kathryn V. Dalrymple
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Emma S. Garratt
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Sheila J. Barton
- MRC Lifecourse Epidemiology Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert Murray
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Paul T. Seed
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Joanna D. Holbrook
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Michael S. Kobor
- BC Childrens Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - David TS Lin
- BC Childrens Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Julia L. MacIsaac
- BC Childrens Hospital Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Graham C. Burdge
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Sara L. White
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lucilla Poston
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Keith M. Godfrey
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Trust, Southampton, United Kingdom
| | - Karen A. Lillycrop
- Biological Sciences, Institute of Developmental Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Trust, Southampton, United Kingdom
- * E-mail:
| | | |
Collapse
|
11
|
Kulikowski E, Rakai BD, Wong NCW. Inhibitors of bromodomain and extra-terminal proteins for treating multiple human diseases. Med Res Rev 2020; 41:223-245. [PMID: 32926459 PMCID: PMC7756446 DOI: 10.1002/med.21730] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Clinical development of bromodomain and extra‐terminal (BET) protein inhibitors differs from the traditional course of drug development. These drugs are simultaneously being evaluated for treating a wide spectrum of human diseases due to their novel mechanism of action. BET proteins are epigenetic “readers,” which play a primary role in transcription. Here, we briefly describe the BET family of proteins, of which BRD4 has been studied most extensively. We discuss BRD4 activity at latent enhancers as an example of BET protein function. We examine BRD4 redistribution and enhancer reprogramming in embryonic development, cancer, cardiovascular, autoimmune, and metabolic diseases, presenting hallmark studies that highlight BET proteins as attractive targets for therapeutic intervention. We review the currently available approaches to targeting BET proteins, methods of selectively targeting individual bromodomains, and review studies that compare the effects of selective BET inhibition to those of pan‐BET inhibition. Lastly, we examine the current clinical landscape of BET inhibitor development.
Collapse
|
12
|
Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. PLoS One 2020; 15:e0234910. [PMID: 32559200 PMCID: PMC7304595 DOI: 10.1371/journal.pone.0234910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/04/2020] [Indexed: 11/19/2022] Open
Abstract
Aging in mammals is the gradual decline of an organism's physical, mental, and physiological capacity. Aging leads to increased risk for disease and eventually to death. Here, we show that Brd2 haploinsufficiency (Brd2+/-) extends lifespan and increases healthspan in C57B6/J mice. In Brd2+/- mice, longevity is increased by 23% (p<0.0001), and, relative to wildtype animals (Brd2+/+), cancer incidence is reduced by 43% (p<0.001). In addition, relative to age-matched wildtype mice, Brd2 heterozygotes show healthier aging including: improved grooming, extended period of fertility, and lack of age-related decline in kidney function and morphology. Our data support a role for haploinsufficiency of Brd2 in promoting healthy aging. We hypothesize that Brd2 affects aging by protecting against the accumulation of molecular and cellular damage. Given the recent advances in the development of BET inhibitors, our research provides impetus to test drugs that target BRD2 as a way to understand and treat/prevent age-related diseases.
Collapse
|
13
|
Letson C, Padron E. Non-canonical transcriptional consequences of BET inhibition in cancer. Pharmacol Res 2019; 150:104508. [PMID: 31698067 DOI: 10.1016/j.phrs.2019.104508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/12/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023]
Abstract
Inhibition of the bromo and extra-terminal domain (BET) protein family in preclinical studies has demonstrated that BET proteins are critical for cancer progression and important therapeutic targets. Downregulation of the MYC oncogene, CDK6, BCL2 and FOSL1 are just a few examples of the effects of BET inhibitors that can lead to cell cycle arrest and apoptosis in cancer cells. However, BET inhibitors have had little success in the clinic as a single agent, and there are an increasing number of reports of resistance to BET inhibition emerging after sustained treatment of cancer cells in vitro. Here we summarize the non-canonical consequences of BET inhibition in cancer, and discuss how these may both lead to resistance and inform rational combinations that could greatly enhance the clinical application of these inhibitors.
Collapse
Affiliation(s)
- Christopher Letson
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - Eric Padron
- Moffitt Cancer Center: 12902 USF Magnolia Drive, Tampa, FL 33612, United States.
| |
Collapse
|
14
|
Shafran JS, Andrieu GP, Györffy B, Denis GV. BRD4 Regulates Metastatic Potential of Castration-Resistant Prostate Cancer through AHNAK. Mol Cancer Res 2019; 17:1627-1638. [PMID: 31110158 PMCID: PMC6677600 DOI: 10.1158/1541-7786.mcr-18-1279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022]
Abstract
The inevitable progression of advanced prostate cancer to castration resistance, and ultimately to lethal metastatic disease, depends on primary or acquired resistance to conventional androgen deprivation therapy (ADT) and accumulated resistance strategies to evade androgen receptor (AR) suppression. In prostate cancer cells, AR adaptations that arise in response to ADT are not singular, but diverse, and include gene amplification, mutation, and even complete loss of receptor expression. Collectively, each of these AR adaptations contributes to a complex, heterogeneous, ADT-resistant tumor. Here, we examined prostate cancer cell lines that model common castration-resistant prostate cancer (CRPC) subtypes, each with different AR composition, and focused on novel regulators of tumor progression, the Bromodomain and Extraterminal (BET) family of proteins. We found that BRD4 regulates cell migration across all models of CRPC, regardless of aggressiveness and AR status, whereas BRD2 and BRD3 only regulate migration and invasion in less aggressive models that retain AR expression or signaling. BRD4, a coregulator of gene transcription, controls migration and invasion through transcription of AHNAK, a large scaffolding protein linked to promotion of metastasis in a diverse set of cancers. Furthermore, treatment of CRPC cell lines with low doses of MZ1, a small-molecule, BRD4-selective degrader, inhibits metastatic potential. Overall, these results reveal a novel BRD4-AHNAK pathway that may be targetable to treat metastatic CRPC (mCRPC). IMPLICATIONS: BRD4 functions as the dominant regulator of CRPC cell migration and invasion through direct transcriptional regulation of AHNAK, which together offer a novel targetable pathway to treat metastatic CRPC.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/8/1627/F1.large.jpg.
Collapse
MESH Headings
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Neoplasm Metastasis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Prognosis
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction
- Survival Rate
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Jordan S Shafran
- Boston University-Boston Medical Center Cancer Center, Boston, Massachusetts
- Department of Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Guillaume P Andrieu
- Boston University-Boston Medical Center Cancer Center, Boston, Massachusetts
| | - Balázs Györffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
- Second Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gerald V Denis
- Boston University-Boston Medical Center Cancer Center, Boston, Massachusetts.
- Department of Molecular and Translational Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
15
|
Peeters JGC, Vastert SJ, van Wijk F, van Loosdregt J. Review: Enhancers in Autoimmune Arthritis: Implications and Therapeutic Potential. Arthritis Rheumatol 2019; 69:1925-1936. [PMID: 28666076 PMCID: PMC5659109 DOI: 10.1002/art.40194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Janneke G C Peeters
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sebastiaan J Vastert
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
van Loosdregt J, van Wijk F, Prakken B, Vastert B. Update on research and clinical translation on specific clinical areas from biology to bedside: Unpacking the mysteries of juvenile idiopathic arthritis pathogenesis. Best Pract Res Clin Rheumatol 2018; 31:460-475. [PMID: 29773267 DOI: 10.1016/j.berh.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 02/08/2023]
Abstract
In the past decades, we have gained important insights into the mechanisms of disease and therapy underlying chronic inflammation in juvenile idiopathic arthritis (JIA). These insights have resulted in several game-changing therapeutic modalities for many patients. However, additional progress still has to be made with regard to efficacy, cost reduction, minimization of side effects, and dose-tapering and stop strategies of maintenance drugs. Moreover, to really transform the current therapeutic strategies into personalized medicine, we need validated biomarkers to translate increased insights into clinical practice. In this article, we describe recent developments in JIA research and outline how clinical innovations need to go hand in hand with basic discoveries to really effect care for patients. Facilitating the transition from bench to bedside is crucial for addressing the major current challenges in JIA management. When successful, it will set new standards for a safe, targeted, and personalized medicine in JIA.
Collapse
Affiliation(s)
- Jorg van Loosdregt
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands
| | - Femke van Wijk
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands
| | - Berent Prakken
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands
| | - Bas Vastert
- Department of Pediatric Immunology & Rheumatology, Laboratory for Translational Medicine, University Medical Centre Utrecht, University of Utrecht, Lundlaan 6, P.O. Box 85090, 3584 EA/3508 AB, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Luna-Peláez N, García-Domínguez M. Lyar-Mediated Recruitment of Brd2 to the Chromatin Attenuates Nanog Downregulation Following Induction of Differentiation. J Mol Biol 2018; 430:1084-1097. [PMID: 29505757 DOI: 10.1016/j.jmb.2018.02.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 01/24/2023]
Abstract
During development, cellular differentiation programs need tight regulation for proper display of the activity of multiple factors in time and space. Chromatin adaptors of the BET family (Brd2, Brd3, Brd4 and Brdt in vertebrates) are transcription co-regulators tightly associated with the progression of the cell cycle. A key question regarding their function is whether they work as part of the general transcription machinery or, on the contrary, they are precisely recruited to the chromatin through specific transcription factors. Here, we report the selective recruitment of Brd2 to the chromatin by the transcription factor Lyar. We show that Lyar downregulation results in Brd2 dissociation from a number of promoters studied. On the contrary, dissociation of BET proteins from the chromatin has no effect on Lyar occupancy. Under differentiation conditions, the absence of Lyar leads to impaired downregulation of the pluripotency gene Nanog, with concomitant reduction in the upregulation of differentiation markers. Interestingly, following the induction of differentiation, Brd2 depletion exhibits the same effects as expressing a truncated Lyar molecule lacking the Brd2 interacting domain. Both approaches result in stronger Nanog repression, indicating that Lyar-mediated recruitment of Brd2 moderates Nanog downregulation when differentiation is triggered. Moreover, expression of truncated Lyar leads to impaired differentiation and increased apoptosis. Thus, Lyar-mediated recruitment of Brd2 would participate in preserving a proper timing for Nanog silencing ensuring the appropriate establishment of the differentiation program.
Collapse
Affiliation(s)
- Noelia Luna-Peláez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain
| | - Mario García-Domínguez
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|
18
|
Shadrick WR, Slavish PJ, Chai SC, Waddell B, Connelly M, Low JA, Tallant C, Young BM, Bharatham N, Knapp S, Boyd VA, Morfouace M, Roussel MF, Chen T, Lee RE, Kiplin Guy R, Shelat AA, Potter PM. Exploiting a water network to achieve enthalpy-driven, bromodomain-selective BET inhibitors. Bioorg Med Chem 2018; 26:25-36. [PMID: 29170024 PMCID: PMC5733700 DOI: 10.1016/j.bmc.2017.10.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
Within the last decade, the Bromodomain and Extra-Terminal domain family (BET) of proteins have emerged as promising drug targets in diverse clinical indications including oncology, auto-immune disease, heart failure, and male contraception. The BET family consists of four isoforms (BRD2, BRD3, BRD4, and BRDT/BRDT6) which are distinguished by the presence of two tandem bromodomains (BD1 and BD2) that independently recognize acetylated-lysine (KAc) residues and appear to have distinct biological roles. BET BD1 and BD2 bromodomains differ at five positions near the substrate binding pocket: the variation in the ZA channel induces different water networks nearby. We designed a set of congeneric 2- and 3-heteroaryl substituted tetrahydroquinolines (THQ) to differentially engage bound waters in the ZA channel with the goal of achieving bromodomain selectivity. SJ830599 (9) showed modest, but consistent, selectivity for BRD2-BD2. Using isothermal titration calorimetry, we showed that the binding of all THQ analogs in our study to either of the two bromodomains was enthalpy driven. Remarkably, the binding of 9 to BRD2-BD2 was marked by negative entropy and was entirely driven by enthalpy, consistent with significant restriction of conformational flexibility and/or engagement with bound waters. Co-crystallography studies confirmed that 9 did indeed stabilize a water-mediated hydrogen bond network. Finally, we report that 9 retained cytotoxicity against several pediatric cancer cell lines with EC50 values comparable to BET inhibitor (BETi) clinical candidates.
Collapse
Affiliation(s)
- William R Shadrick
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Peter J Slavish
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brett Waddell
- Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Michele Connelly
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jonathan A Low
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Cynthia Tallant
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK; Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Brandon M Young
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Nagakumar Bharatham
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stefan Knapp
- Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7FZ, UK; Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Vincent A Boyd
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marie Morfouace
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Richard E Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - R Kiplin Guy
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anang A Shelat
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| | - Philip M Potter
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
19
|
Suarez-Alvarez B, Rodriguez RM, Ruiz-Ortega M, Lopez-Larrea C. BET Proteins: An Approach to Future Therapies in Transplantation. Am J Transplant 2017; 17:2254-2262. [PMID: 28173625 DOI: 10.1111/ajt.14221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/13/2017] [Accepted: 01/31/2017] [Indexed: 01/25/2023]
Abstract
In order to develop new efficient therapies for organ transplantation, it is essential to acquire a comprehensive knowledge of the molecular mechanisms and processes, such as immune activation, chronic inflammation, and fibrosis, which lead to rejection and long-term graft loss. Recent efforts have shed some light on the epigenetic regulation associated with these processes. In this context, the bromo and extraterminal (BET) family of bromodomain proteins (BRD2, BRD3, BRD4, and BRDT) have emerged as major epigenetic players, connecting chromatin structure with gene expression changes. These proteins recognize acetylated lysines in histones and master transcription factors to recruit regulatory complex and, finally, modify the transcriptional program. Recent studies indicate that BET proteins are essential in the NF-kB-mediated inflammatory response, during the activation and differentiation of Th17-immune cells, and in profibrotic processes. Here, we review this new body of data and highlight the efficiency of BET inhibitors in several models of diseases. The promising results obtained from these preclinical models indicate that it may be time to translate these outcomes to the transplantation field, where epigenetics will be of increasing value in the coming years.
Collapse
Affiliation(s)
- B Suarez-Alvarez
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - R M Rodriguez
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - M Ruiz-Ortega
- Cellular Biology of Renal Disease Laboratory, Nephrology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - C Lopez-Larrea
- Department of Immunology, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
20
|
Knockdown of epigenetic transcriptional co-regulator Brd2a disrupts apoptosis and proper formation of hindbrain and midbrain-hindbrain boundary (MHB) region in zebrafish. Mech Dev 2017; 146:10-30. [PMID: 28549975 DOI: 10.1016/j.mod.2017.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Brd2 is a member of the bromodomain-extraterminal domain (BET) family of proteins and functions as an acetyl-histone-directed transcriptional co-regulator and recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. While Brd2 acts as a protooncogene in mammalian blood, developmental studies link it to regulation of neuronal apoptosis and epilepsy, and complete knockout of the gene is invariably embryonic lethal. In Drosophila, the Brd2 homolog acts as a maternal effect factor necessary for segment formation and identity and proper expression of homeotic loci, including Ultrabithorax and engrailed. To test the various roles attributed to Brd2 in a single developmental system representing a non-mammalian vertebrate, we conducted a phenotypic characterization of Brd2a deficient zebrafish embryos produced by morpholino knockdown and corroborated by Crispr-Cas9 disruption and small molecule inhibitor treatments. brd2aMO morphants exhibit reduced hindbrain with an ill-defined midbrain-hindbrain boundary (MHB) region; irregular notochord, neural tube, and somites; and abnormalities in ventral trunk and ventral nerve cord interneuron positioning. Using whole mount TUNEL and confocal microscopy, we uncover a significant decrease, then a dramatic increase, of p53-independent cell death at the start and end of segmentation, respectively. In contrast, using qualitative and quantitative analyses of BrdU incorporation, phosphohistone H3-tagging, and flow cytometry, we detect little effect of Brd2a knockdown on overall proliferation levels in embryos. RNA in situ hybridization shows reduced or absent expression of homeobox gene eng2a and paired box gene pax2a, in the hindbrain domain of the MHB region, and an overabundance of pax2a-positive kidney progenitors, in knockdowns. Together, these results suggest an evolutionarily conserved role for Brd2 in the proper formation and/or patterning of segmented tissues, including the vertebrate CNS, where it acts as a bi-modal regulator of apoptosis, and is necessary, directly or indirectly, for proper expression of genes that pattern the MHB and/or regulate differentiation in the anterior hindbrain.
Collapse
|
21
|
Ren W, Wang C, Wang Q, Zhao D, Zhao K, Sun D, Liu X, Han C, Hou J, Li X, Zhang Q, Cao X, Li N. Bromodomain protein Brd3 promotes Ifnb1 transcription via enhancing IRF3/p300 complex formation and recruitment to Ifnb1 promoter in macrophages. Sci Rep 2017; 7:39986. [PMID: 28045112 PMCID: PMC5206742 DOI: 10.1038/srep39986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
As members of bromodomain and extra-terminal motif protein family, bromodomain-containing proteins regulate a wide range of biological processes including protein scaffolding, mitosis, cell cycle progression and transcriptional regulation. The function of these bromodomain proteins (Brds) in innate immune response has been reported but the role of Brd3 remains unclear. Here we find that virus infection significantly downregulate Brd3 expression in macrophages and Brd3 knockout inhibits virus-triggered IFN-β production. Brd3 interacts with both IRF3 and p300, increases p300-mediated acetylation of IRF3, and enhances the association of IRF3 with p300 upon virus infection. Importantly, Brd3 promotes the recruitment of IRF3/p300 complex to the promoter of Ifnb1, and increases the acetylation of histone3/histone4 within the Ifnb1 promoter, leading to the enhancement of type I interferon production. Therefore, our work indicated that Brd3 may act as a coactivator in IRF3/p300 transcriptional activation of Ifnb1 and provided new epigenetic mechanistic insight into the efficient activation of the innate immune response.
Collapse
Affiliation(s)
- Wenhui Ren
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Chunmei Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qinlan Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Dezhi Zhao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Kai Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Donghao Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Chaofeng Han
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Jin Hou
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xia Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Qian Zhang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China.,Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Nan Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
22
|
Nicholas DA, Andrieu G, Strissel KJ, Nikolajczyk BS, Denis GV. BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cell Mol Life Sci 2017; 74:231-243. [PMID: 27491296 PMCID: PMC5222701 DOI: 10.1007/s00018-016-2320-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/29/2016] [Indexed: 12/18/2022]
Abstract
Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone "readers", in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.
Collapse
Affiliation(s)
- Dequina A Nicholas
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Guillaume Andrieu
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Katherine J Strissel
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Training Program in Inflammatory Disorders, 72 East Concord Street, K520, Boston, MA, 02118, USA
| | - Gerald V Denis
- Cancer Center, Boston University School of Medicine, 72 East Concord Street, Room K520, Boston, MA, 02118, USA.
- Section of Hematology/Oncology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, K520, Boston, MA, 02118, USA.
| |
Collapse
|
23
|
Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. Sci Rep 2016; 6:39831. [PMID: 28008999 PMCID: PMC5180213 DOI: 10.1038/srep39831] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022] Open
Abstract
Most inflammatory bowel diseases (IBDs) are classic complex disorders represented by common alleles. Here we aimed to define the genetic architecture of pediatric and adult-onset IBDs for the Polish population. A total of 1495 patients were recruited, including 761 patients with Crohn’s disease (CD; 424 pediatric), 734 patients with ulcerative colitis (UC; 390 pediatric), and 934 healthy controls. Allelotyping employed a pooled-DNA genome-wide association study (GWAS) and was validated by individual genotyping. Whole exome sequencing (WES) was performed on 44 IBD patients diagnosed before 6 years of age, 45 patients diagnosed after 40 years of age, and 18 healthy controls. Altogether, out of 88 selected SNPs, 31 SNPs were replicated for association with IBD. A novel BRD2 (rs1049526) association reached significance of P = 5.2 × 10−11 and odds ratio (OR) = 2.43. Twenty SNPs were shared between pediatric and adult patients; 1 and 7 were unique to adult-onset and pediatric-onset IBD, respectively. WES identified numerous rare and potentially deleterious variants in IBD-associated or innate immunity-associated genes. Deleterious alleles in both groups were over-represented among rare variants in affected children. Our GWAS revealed differences in the polygenic architecture of pediatric- and adult-onset IBD. A significant accumulation of rare and deleterious variants in affected children suggests a contribution by yet unexplained genetic components.
Collapse
|
24
|
Tough DF, Prinjha RK. Immune disease-associated variants in gene enhancers point to BET epigenetic mechanisms for therapeutic intervention. Epigenomics 2016; 9:573-584. [PMID: 27925476 DOI: 10.2217/epi-2016-0144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies have identified thousands of single nucleotide polymorphisms in the human genome that are statistically associated with particular disease traits. In this Perspective, we review emerging data suggesting that most single nucleotide polymorphisms associated with immune-mediated diseases are found in regulatory regions of the DNA - parts of the genome that control expression of the protein encoding genes - rather than causing mutations in proteins. We discuss how the emerging understanding of particular gene regulatory regions, gene enhancers and the epigenetic mechanisms by which they are regulated is opening up new opportunities for the treatment of immune-mediated diseases, focusing particularly on the BET family of epigenetic reader proteins as potential therapeutic targets.
Collapse
Affiliation(s)
- David F Tough
- Epigenetics DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, UK
| | - Rab K Prinjha
- Epigenetics DPU, Immuno-Inflammation Therapy Area Unit, GlaxoSmithKline, Medicines Research Centre, Stevenage SG1 2NY, UK
| |
Collapse
|
25
|
Hotspots of MLV integration in the hematopoietic tumor genome. Oncogene 2016; 36:1169-1175. [PMID: 27721401 PMCID: PMC5340798 DOI: 10.1038/onc.2016.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 01/16/2023]
Abstract
Extensive research has been performed regarding the integration sites of murine leukemia retrovirus (MLV) for the identification of proto-oncogenes. To date, the overlap of mutations within specific oligonucleotides across different tumor genomes has been regarded as a rare event; however, a recent study of MLV integration into the oncogene Zfp521 suggested the existence of a hotspot oligonucleotide for MLV integration. In the current review, we discuss the hotspots of MLV integration into several genes: c-Myc, Stat5a and N-myc, as well as ZFP521, as examined in tumor genomes. From this, MLV integration convergence within specific oligonucleotides is not necessarily a rare event. This short review aims to promote re-consideration of MLV integration within the tumor genome, which involves both well-known and potentially newly identified and novel mechanisms and specifications.
Collapse
|
26
|
|
27
|
Andrieu G, Belkina AC, Denis GV. Clinical trials for BET inhibitors run ahead of the science. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:45-50. [PMID: 27769357 DOI: 10.1016/j.ddtec.2016.06.004] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/21/2016] [Accepted: 06/02/2016] [Indexed: 12/16/2022]
Abstract
Several cancer clinical trials for small molecule inhibitors of BET bromodomain proteins have been initiated. There is enthusiasm for the anti-proliferative effect of inhibiting BRD4, one of the targets of these inhibitors, which is thought to cooperate with MYC, a long-desired target for cancer therapeutics. However, no current inhibitor is selective for BRD4 among the three somatic BET proteins, which include BRD2 and BRD3; their respective functions are partially overlapping and none are functionally redundant with BRD4. Each BET protein controls distinct transcriptional pathways that are important for functions beyond cancer cell proliferation, including insulin production, cytokine gene transcription, T cell differentiation, adipogenesis and most seriously, active repression of dangerous latent viruses like HIV. BET inhibitors have been shown to reactivate HIV in human cells. Failure to appreciate that at concentrations used, no available BET inhibitor is member-selective, or to develop a sound biological basis to understand the diverse functions of BET proteins before undertaking for these clinical trials is reckless and likely to lead to adverse events. More mechanistic information from new basic science studies should enable proper focus on the most relevant cancers and define the expected side effect profiles.
Collapse
Affiliation(s)
- Guillaume Andrieu
- Department of Medicine, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, United States
| | - Anna C Belkina
- Flow Cytometry Core Facility, Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, United States
| | - Gerald V Denis
- Department of Medicine, Cancer Research Center, Boston University School of Medicine, Boston, MA 02118, United States; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
28
|
Lori L, Pasquo A, Lori C, Petrosino M, Chiaraluce R, Tallant C, Knapp S, Consalvi V. Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability. PLoS One 2016; 11:e0159180. [PMID: 27403962 PMCID: PMC4942050 DOI: 10.1371/journal.pone.0159180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023] Open
Abstract
Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding.
Collapse
Affiliation(s)
- Laura Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | | | - Clorinda Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Roberta Chiaraluce
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
- * E-mail:
| | - Cynthia Tallant
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Valerio Consalvi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
29
|
Deeney JT, Belkina AC, Shirihai OS, Corkey BE, Denis GV. BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell. PLoS One 2016; 11:e0151329. [PMID: 27008626 PMCID: PMC4805167 DOI: 10.1371/journal.pone.0151329] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/26/2016] [Indexed: 11/18/2022] Open
Abstract
Displacement of Bromodomain and Extra-Terminal (BET) proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt), making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic β-cells upon BET inhibition with JQ1 or BET-specific siRNAs. JQ1 (50–400 nM) increases insulin secretion from INS-1 cells in a concentration dependent manner. JQ1 increases insulin content in INS-1 cells, accounting for increased secretion, in both rat and human islets. Higher concentrations of JQ1 decrease intracellular triglyceride stores in INS-1 cells, a result of increased fatty acid oxidation. Specific inhibition of both Brd2 and Brd4 enhances insulin transcription, leading to increased insulin content. Inhibition of Brd2 alone increases fatty acid oxidation. Overlapping yet discrete roles for individual BET proteins in metabolic regulation suggest new isoform-selective BET inhibitors may be useful to treat insulin resistant/diabetic patients. Results imply that cancer and diseases of chronic inflammation or disordered metabolism are related through shared chromatin regulatory mechanisms.
Collapse
Affiliation(s)
- Jude T. Deeney
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Anna C. Belkina
- Flow Cytometry Core Facility, Boston University School of Medicine, 650 Albany Street, X326, Boston, Massachusetts 02118, United States of America
| | - Orian S. Shirihai
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Barbara E. Corkey
- Department of Medicine, Section of Endocrinology, Obesity Research Center, Evans Biomedical Research Center; Boston University School of Medicine, 650 Albany Street, X804, Boston, Massachusetts 02118, United States of America
| | - Gerald V. Denis
- Department of Pharmacology and Experimental Therapeutics, and Section of Hematology/ Oncology, Cancer Research Center; Boston University School of Medicine, 72 East Concord Street, K520, Boston, Massachusetts 02118, United States of America
- * E-mail:
| |
Collapse
|
30
|
Stonestrom AJ, Hsu SC, Werner MT, Blobel GA. Erythropoiesis provides a BRD's eye view of BET protein function. DRUG DISCOVERY TODAY. TECHNOLOGIES 2016; 19:23-28. [PMID: 27769353 PMCID: PMC5116323 DOI: 10.1016/j.ddtec.2016.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 06/06/2023]
Abstract
Pharmacologic inhibitors of the bromodomain and extra-terminal motif (BET) protein family are in clinical trials for the treatment of hematologic malignancies, yet the functions of individual BET proteins remain largely uncharacterized. We review the molecular roles of BETs in the context of erythropoiesis. Studies in this lineage have provided valuable insights into their mechanisms of action, and helped define the individual and overlapping functions of BET protein family members BRD2, BRD3, and BRD4. These studies have important ramifications for our understanding of the molecular and physiologic roles of BET proteins, and provide a framework for elucidating some of the beneficial and adverse effects of pharmacologic inhibitors.
Collapse
Affiliation(s)
- Aaron J Stonestrom
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Sarah C Hsu
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Michael T Werner
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Gerd A Blobel
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
31
|
Alghamdi S, Khan I, Beeravolu N, McKee C, Thibodeau B, Wilson G, Chaudhry GR. BET protein inhibitor JQ1 inhibits growth and modulates WNT signaling in mesenchymal stem cells. Stem Cell Res Ther 2016; 7:22. [PMID: 26830473 PMCID: PMC4736146 DOI: 10.1186/s13287-016-0278-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/04/2015] [Accepted: 01/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficacy and safety of anticancer drugs are traditionally studied using cancer cell lines and animal models. The thienodiazepine class of BET inhibitors, such as JQ1, has been extensively studied for the potential treatment of hematological malignancies and several small molecules belonging to this class are currently under clinical investigation. While these compounds are well known to inhibit cancer cell growth and cause apoptosis, their effects on stem cells, particularly mesenchymal stem cells (MSCs), which are important for regeneration of damaged cells and tissues, are unknown. In this study we employed umbilical cord derived MSCs as a model system to evaluate the safety of JQ1. METHODS Cord derived MSCs were treated with various doses of JQ1 and subjected to cell metabolic activity, apoptosis, and cell cycle analyses using MTT assay, Annexin-V/FITC and PI staining, and flow cytometry, respectively. The effect of JQ1 on gene expression was determined using microarray and quantitative real-time reverse transcriptase polymerase chain reaction analysis. Furthermore, protein expression of apoptotic and neuronal markers was carried out using western blot and immunostaining, respectively. RESULTS Our results showed that JQ1 inhibited cell growth and caused cell cycle arrest in G1 phase but did not induce apoptosis or senescence. JQ1 also down-regulated genes involved in self-renewal, cell cycle, DNA replication, and mitosis, which may have negative implications on the regenerative potential of MSCs. In addition, JQ1 interfered with signaling pathways by down regulating the expression of WNT, resulting in limiting the self-renewal. These results suggest that anticancer agents belonging to the thienodiazepine class of BET inhibitors should be carefully evaluated before their use in cancer therapy. CONCLUSIONS This study revealed for the first time that JQ1 adversely affected MSCs, which are important for repair and regeneration. JQ1 specifically modulated signal transduction and inhibited growth as well as self-renewal. These findings suggest that perinatal MSCs could be used to supplement animal models for investigating the safety of anticancer agents and other drugs.
Collapse
Affiliation(s)
- Saeed Alghamdi
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| | - Irfan Khan
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| | - Naimisha Beeravolu
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| | | | - George Wilson
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA. .,Beaumont Health System, Royal Oak, MI, 48073, USA.
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, 48309, USA.
| |
Collapse
|
32
|
Gelato KA, Shaikhibrahim Z, Ocker M, Haendler B. Targeting epigenetic regulators for cancer therapy: modulation of bromodomain proteins, methyltransferases, demethylases, and microRNAs. Expert Opin Ther Targets 2016; 20:783-99. [PMID: 26799480 DOI: 10.1517/14728222.2016.1134490] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Matthias Ocker
- Global Drug Discovery, Bayer Pharma AG, Berlin, Germany
- Department of Gastroenterology/Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
33
|
Grimholt U. MHC and Evolution in Teleosts. BIOLOGY 2016; 5:biology5010006. [PMID: 26797646 PMCID: PMC4810163 DOI: 10.3390/biology5010006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions.
Collapse
Affiliation(s)
- Unni Grimholt
- Department of Virology, Norwegian Veterinary Institute, Ullevaalsveien 68, Oslo N-0106, Norway.
| |
Collapse
|
34
|
Wang CY, Filippakopoulos P. Beating the odds: BETs in disease. Trends Biochem Sci 2015; 40:468-79. [PMID: 26145250 DOI: 10.1016/j.tibs.2015.06.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/04/2015] [Indexed: 01/16/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein interaction modules that specifically recognise acetyl-lysine on histones and other proteins, facilitating roles in regulating gene transcription. BRD-containing proteins bound to chromatin loci such as enhancers are often deregulated in disease leading to aberrant expression of proinflammatory cytokines and growth-promoting genes. Recent developments targeting the bromo and extraterminal (BET) subset of BRD proteins demonstrated remarkable efficacy in murine models providing a compelling rationale for drug development and translation to the clinic. Here we summarise recent advances in our understanding of the roles of BETs in regulating gene transcription in normal and diseased tissue as well as the current status of their clinical translation.
Collapse
Affiliation(s)
- Chen-Yi Wang
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, UK; Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
35
|
Gao F, Yang Y, Wang Z, Gao X, Zheng B. BRAD4 plays a critical role in germinal center response by regulating Bcl-6 and NF-κB activation. Cell Immunol 2015; 294:1-8. [DOI: 10.1016/j.cellimm.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/19/2015] [Indexed: 12/19/2022]
|
36
|
Rajagopalan V, Vaidyanathan M, Janardhanam VA, Bradner JE. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing. Cell Mol Neurobiol 2014; 34:1059-69. [PMID: 25056450 DOI: 10.1007/s10571-014-0083-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/06/2014] [Indexed: 01/24/2023]
Abstract
Glioblastoma Multiforme (GBM) is an aggressive form of brain Tumor that has few cures. In this study, we analyze the anti-proliferative effects of a new molecule JQ1 against GBMs induced in Wistar Rats. JQ1 is essentially a Myc inhibitor. c-Myc is also known for altering the biochemistry of a tumor cell. Therefore, the study is intended to analyze certain other oncogenes associated with c-Myc and also the change in cellular biochemistry upon c-Myc inhibition. The quantitative analysis of gene expression gave a co-expressive pattern for all the three genes involved namely; c-Myc, Bcl-2, and Akt. The cellular biochemistry analysis by transmission electron microscopy revealed high glycogen and lipid aggregation in Myc inhibited cells and excessive autophagy. The study demonstrates the role of c-Myc as a central metabolic regulator and Bcl-2 and Akt assisting in extending c-Myc half-life as well as in regulation of autophagy, so as to regulate cell survival on the whole. The study also demonstrates that transient treatment by JQ1 leads to aggressive development of tumor and therefore, accelerating death, emphasizing the importance of dosage fixation, and duration for clinical use in future.
Collapse
Affiliation(s)
- Vishal Rajagopalan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India,
| | | | | | | |
Collapse
|
37
|
Garcia-Gutierrez P, Juarez-Vicente F, Wolgemuth DJ, Garcia-Dominguez M. Pleiotrophin antagonizes Brd2 during neuronal differentiation. J Cell Sci 2014; 127:2554-64. [PMID: 24695857 DOI: 10.1242/jcs.147462] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bromodomain-containing protein 2 (Brd2) is a BET family chromatin adaptor required for expression of cell-cycle-associated genes and therefore involved in cell cycle progression. Brd2 is expressed in proliferating neuronal progenitors, displays cell-cycle-stimulating activity and, when overexpressed, impairs neuronal differentiation. Paradoxically, Brd2 is also detected in differentiating neurons. To shed light on the role of Brd2 in the transition from cell proliferation to differentiation, we had previously looked for proteins that interacted with Brd2 upon induction of neuronal differentiation. Surprisingly, we identified the growth factor pleiotrophin (Ptn). Here, we show that Ptn antagonized the cell-cycle-stimulating activity associated with Brd2, thus enhancing induced neuronal differentiation. Moreover, Ptn knockdown reduced neuronal differentiation. We analyzed Ptn-mediated antagonism of Brd2 in a cell differentiation model and in two embryonic processes associated with the neural tube: spinal cord neurogenesis and neural crest migration. Finally, we investigated the mechanisms of Ptn-mediated antagonism and determined that Ptn destabilizes the association of Brd2 with chromatin. Thus, Ptn-mediated Brd2 antagonism emerges as a modulation system accounting for the balance between cell proliferation and differentiation in the vertebrate nervous system.
Collapse
Affiliation(s)
- Pablo Garcia-Gutierrez
- Stem Cells Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) (Consejo Superior de Investigaciones Cientificas (CSIC), Junta de Andalucía, Universidad de Sevilla, Universidad Pablo de Olavide), Seville 41092, Spain
| | - Francisco Juarez-Vicente
- Stem Cells Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) (Consejo Superior de Investigaciones Cientificas (CSIC), Junta de Andalucía, Universidad de Sevilla, Universidad Pablo de Olavide), Seville 41092, Spain
| | - Debra J Wolgemuth
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Mario Garcia-Dominguez
- Stem Cells Department, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER) (Consejo Superior de Investigaciones Cientificas (CSIC), Junta de Andalucía, Universidad de Sevilla, Universidad Pablo de Olavide), Seville 41092, Spain
| |
Collapse
|
38
|
Pastori C, Daniel M, Penas C, Volmar CH, Johnstone AL, Brothers SP, Graham RM, Allen B, Sarkaria JN, Komotar RJ, Wahlestedt C, Ayad NG. BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics 2014; 9:611-20. [PMID: 24496381 PMCID: PMC4121371 DOI: 10.4161/epi.27906] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors.
Collapse
Affiliation(s)
- Chiara Pastori
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Mark Daniel
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Clara Penas
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Claude-Henry Volmar
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Andrea L Johnstone
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Shaun P Brothers
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Regina M Graham
- Department of Neurosurgery; University of Miami Miller School of Medicine; Miami, FL USA
| | - Bryce Allen
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Jann N Sarkaria
- Department of Radiation Oncology; Mayo Clinic; Rochester, MN USA
| | - Ricardo J Komotar
- Department of Neurosurgery; University of Miami Miller School of Medicine; Miami, FL USA
| | - Claes Wahlestedt
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| | - Nagi G Ayad
- Center For Therapeutic Innovation; Department of Psychiatry and Behavioral Sciences; University of Miami Miller School of Medicine; Miami, FL USA
| |
Collapse
|