1
|
Bishara K, Kwon JH, Hill MA, Helke KL, Norris RA, Whitworth K, Prather RS, Rajab TK. Characterization of Green Fluorescent Protein in Heart Valves of a Transgenic Swine Model for Partial Heart Transplant Research. J Cardiovasc Dev Dis 2023; 10:254. [PMID: 37367419 PMCID: PMC10299052 DOI: 10.3390/jcdd10060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
A transgenic strain of pigs was created to express green fluorescent protein (GFP) ubiquitously using a pCAGG promoter. Here, we characterize GFP expression in the semilunar valves and great arteries of GFP-transgenic (GFP-Tg) pigs. Immunofluorescence was performed to visualize and quantify GFP expression and colocalization with nuclear staining. GFP expression was confirmed in both the semilunar valves and great arteries of GFP-Tg pigs compared to wild-type tissues (aorta, p = 0.0002; pulmonary artery, p = 0.0005; aortic valve; and pulmonic valve, p < 0.0001). The quantification of GFP expression in cardiac tissue allows this strain of GFP-Tg pigs to be used for future research in partial heart transplantation.
Collapse
Affiliation(s)
- Katherine Bishara
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Jennie H. Kwon
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Morgan A. Hill
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Russell A. Norris
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC 29501, USA
| | - Kristin Whitworth
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA; (K.W.)
| | - Randall S. Prather
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA; (K.W.)
| | - Taufiek Konrad Rajab
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29501, USA
| |
Collapse
|
2
|
Spella M, Ntaliarda G, Skiadas G, Lamort AS, Vreka M, Marazioti A, Lilis I, Bouloukou E, Giotopoulou GA, Pepe MAA, Weiss SAI, Petrera A, Hauck SM, Koch I, Lindner M, Hatz RA, Behr J, Arendt KAM, Giopanou I, Brunn D, Savai R, Jenne DE, de Château M, Yull FE, Blackwell TS, Stathopoulos GT. Non-Oncogene Addiction of KRAS-Mutant Cancers to IL-1β via Versican and Mononuclear IKKβ. Cancers (Basel) 2023; 15:1866. [PMID: 36980752 PMCID: PMC10047096 DOI: 10.3390/cancers15061866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Kirsten rat sarcoma virus (KRAS)-mutant cancers are frequent, metastatic, lethal, and largely undruggable. While interleukin (IL)-1β and nuclear factor (NF)-κB inhibition hold promise against cancer, untargeted treatments are not effective. Here, we show that human KRAS-mutant cancers are addicted to IL-1β via inflammatory versican signaling to macrophage inhibitor of NF-κB kinase (IKK) β. Human pan-cancer and experimental NF-κB reporter, transcriptome, and proteome screens reveal that KRAS-mutant tumors trigger macrophage IKKβ activation and IL-1β release via secretory versican. Tumor-specific versican silencing and macrophage-restricted IKKβ deletion prevents myeloid NF-κB activation and metastasis. Versican and IKKβ are mutually addicted and/or overexpressed in human cancers and possess diagnostic and prognostic power. Non-oncogene KRAS/IL-1β addiction is abolished by IL-1β and TLR1/2 inhibition, indicating cardinal and actionable roles for versican and IKKβ in metastasis.
Collapse
Affiliation(s)
- Magda Spella
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Giannoula Ntaliarda
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Georgios Skiadas
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Anne-Sophie Lamort
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Malamati Vreka
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Antonia Marazioti
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Ioannis Lilis
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Eleni Bouloukou
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Georgia A. Giotopoulou
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Mario A. A. Pepe
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Stefanie A. I. Weiss
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Agnese Petrera
- Research Unit Protein Science-Core Facility Proteomics, Helmholtz Center Munich–German Research Center for Environmental Health, 80939 Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science-Core Facility Proteomics, Helmholtz Center Munich–German Research Center for Environmental Health, 80939 Munich, Germany
| | - Ina Koch
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich and Asklepios Medical Center, 82131 Gauting, Germany
| | - Michael Lindner
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich and Asklepios Medical Center, 82131 Gauting, Germany
| | - Rudolph A. Hatz
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich and Asklepios Medical Center, 82131 Gauting, Germany
| | - Juergen Behr
- Department of Internal Medicine V, Ludwig-Maximilian-University of Munich, 81377 Munich, Germany
| | - Kristina A. M. Arendt
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - Ioanna Giopanou
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
| | - David Brunn
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
- Department of Internal Medicine and Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
- Max-Planck-Institute of Neurobiology, 82152 Planegg, Germany
| | | | - Fiona E. Yull
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Timothy S. Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Georgios T. Stathopoulos
- Department of Physiology, Faculty of Medicine, University of Patras, 26504 Rio, Greece
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, Helmholtz Center Munich-German Research Center for Environmental Health, 81377 Munich, Germany
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| |
Collapse
|
3
|
Guo X, Zhang M, Guo Y, Liu H, Yang B, Gou J, Yin T, Zhang Y, He H, Liu D, Tang X. Impact of jet pulverization and wet milling techniques on properties of aripiprazole long-acting injection and absorption mechanism research in vivo. Int J Pharm 2021; 612:121300. [PMID: 34793936 DOI: 10.1016/j.ijpharm.2021.121300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/31/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
This study aims to explore the influence of wet milling and jet pulverization on the aripiprazole microcrystalline long-acting injection. Crystal form and particle size distribution were taken as inspection indicators in vitro, and process parameters were optimized. The formulation prepared by wet milling (AMLAI-WM) was shown to undergo a slight conversion of crystal form by DSC, PXRD, TG, FT-IR and have a wider particle size distribution with D50 and Span values of 2.967 μm and 3.457 compared to the formulation fabricated by jet pulverization (AMLAI-JP) with 2.887 μm and 2.258 respectively. In addition, the in vitro release of AMLAI-WM was faster, whereby the pharmacokinetic data indicated that AMLAI-WM was absorbed more quickly within five days with AUC0-5d of 5243.7 μg·L-1·h and 4818.28 μg·L-1·h, respectively. Furthermore, no statistically significant differences in Cmax, tmax and AUC between AMLAI-JP and the commercial formulation (Abilify Maintena™) were found. The absorption mechanism was studied and showed a 1.4-fold later Tmax after depletion of macrophages and significantly lower Cmax and AUC after inhibiting angiogenesis, indicating inflammatory granuloma could facilitate drug plasma exposure. Overall, we demonstrated that jet pulverization was a good strategy for long-acting microcrystalline injection, and that the absorption behavior was affected by both particle size distribution and inflammatory granuloma.
Collapse
Affiliation(s)
- Xueting Guo
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maolian Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yibin Guo
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Liu
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bing Yang
- Department of Traditional Chinese Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongchun Liu
- Department of Traditional Chinese Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Furuya K, Zheng YW, Ge JY, Zhang L, Furuta T, Liang C, Abe H, Yagi H, Hamada H, Isoda H, Hui L, Ohkohchi N, Oda T. The evidence of a macrophage barrier in the xenotransplantation of human hematopoietic stem cells to severely immunodeficient rats. Xenotransplantation 2021; 28:e12702. [PMID: 34145650 DOI: 10.1111/xen.12702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The human-to-rat hematopoietic stem cell transplantation (HSCT) model is rare, unlike its human-to-mouse counterpart. The rat models are desired, especially in areas of physiology, toxicology, and pharmacology. In addition to lymphocytes, macrophages are also considered to be important for xenotransplantation. We generated a rat xenotransplantation model to prove the role of macrophages as a xenotransplantation barrier. METHODS Immunodeficiency in SRG rats, which are Sprague-Dawley (SD) rats lacking Rag2 and Il2rg, was confirmed by flow cytometry and spleen immunostaining. Human umbilical cord blood was collected after scheduled cesarean section at the University of Tsukuba Hospital. Cord blood mononuclear cells (CB-MNCs) were transplanted into the SRG rats administered several injections of clodronate liposome (CL), which cause macrophage depletion. Survival of human cells was observed by flow cytometry. Rat macrophage phagocytosis assay was performed to check the species-specific effects of rat macrophages on injected human/rat blood cells. RESULTS SRG rats were deficient in T/B/NK cells. Without CL pretreatment, human CB-MNCs were removed from SRG rats within 7 hours after transplantation. The rats pretreated with CL could survive after transplantation. Prolonged survival for more than 4 weeks was observed only following a one-time CL injection. Rat macrophages had a species-specific potential for the phagocytosis of human blood cells in vivo. CONCLUSION In human-to-rat HSCT, the short period of early macrophage control, leading to macrophage immunotolerance, is important for engraftment. The generated model can be useful for the creation of future xenotransplantation models or other clinical research.
Collapse
Affiliation(s)
- Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine and School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China.,Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama, Japan
| | - Jian-Yun Ge
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine and School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai, China
| | - Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Chen Liang
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Abe
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroya Yagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiromi Hamada
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Lijian Hui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Science, Shanghai, China
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
5
|
Giopanou I, Kanellakis NI, Giannou AD, Lilis I, Marazioti A, Spella M, Papaleonidopoulos V, Simoes DCM, Zazara DE, Agalioti T, Moschos C, Magkouta S, Kalomenidis I, Panoutsakopoulou V, Lamort AS, Stathopoulos GT, Psallidas I. Osteopontin drives KRAS-mutant lung adenocarcinoma. Carcinogenesis 2021; 41:1134-1144. [PMID: 31740923 DOI: 10.1093/carcin/bgz190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Increased expression of osteopontin (secreted phosphoprotein 1, SPP1) is associated with aggressive human lung adenocarcinoma (LADC), but its function remains unknown. Our aim was to determine the role of SPP1 in smoking-induced LADC. We combined mouse models of tobacco carcinogen-induced LADC, of deficiency of endogenous Spp1 alleles, and of adoptive pulmonary macrophage reconstitution to map the expression of SPP1 and its receptors and determine its impact during carcinogenesis. Co-expression of Spp1 and mutant KrasG12C in benign cells was employed to investigate SPP1/KRAS interactions in oncogenesis. Finally, intratracheal adenovirus encoding Cre recombinase was delivered to LSL.KRASG12D mice lacking endogenous or overexpressing transgenic Spp1 alleles. SPP1 was overexpressed in experimental and human LADC and portended poor survival. In response to two different smoke carcinogens, Spp1-deficient mice developed fewer and smaller LADC with decreased cellular survival and angiogenesis. Both lung epithelial- and macrophage-secreted SPP1 drove tumor-associated inflammation, while epithelial SPP1 promoted early tumorigenesis by fostering the survival of KRAS-mutated cells. Finally, loss and overexpression of Spp1 was, respectively, protective and deleterious for mice harboring KRASG12D-driven LADC. Our data support that SPP1 is functionally involved in early stages of airway epithelial carcinogenesis driven by smoking and mutant KRAS and may present an important therapeutic target.
Collapse
Affiliation(s)
- Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Nikolaos I Kanellakis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Anastasios D Giannou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Davina C M Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University Newcastle, Newcastle Upon Tyne, UK
| | - Dimitra E Zazara
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Theodora Agalioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Charalampos Moschos
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Sophia Magkouta
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Ioannis Kalomenidis
- "Marianthi Simou Laboratory," 1st Department of Critical Care and Pulmonary Medicine, National and Kapodistrian University of Athens, School of Medicine, Evangelismos Hospital, Athens, Greece
| | - Vily Panoutsakopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Anne-Sophie Lamort
- Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz ZentrumMünchen, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz ZentrumMünchen, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| | - Ioannis Psallidas
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.,Oxford Centre for Respiratory Medicine, Oxford University Hospitals NHS Trust, Oxford, UK.,Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| |
Collapse
|
6
|
Baloglu E, Nonnenmacher G, Seleninova A, Berg L, Velineni K, Ermis-Kaya E, Mairbäurl H. The role of hypoxia-induced modulation of alveolar epithelial Na +- transport in hypoxemia at high altitude. Pulm Circ 2020; 10:50-58. [PMID: 33110497 PMCID: PMC7557693 DOI: 10.1177/2045894020936662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Reabsorption of excess alveolar fluid is driven by vectorial Na+-transport across alveolar epithelium, which protects from alveolar flooding and facilitates gas exchange. Hypoxia inhibits Na+-reabsorption in cultured cells and in-vivo by decreasing activity of epithelial Na+-channels (ENaC), which impairs alveolar fluid clearance. Inhibition also occurs during in-vivo hypoxia in humans and laboratory animals. Signaling mechanisms that inhibit alveolar reabsorption are poorly understood. Because cellular adaptation to hypoxia is regulated by hypoxia-inducible transcription factors (HIF), we tested whether HIFs are involved in decreasing Na+-transport in hypoxic alveolar epithelium. Expression of HIFs was suppressed in cultured rat primary alveolar epithelial cells (AEC) with shRNAs. Hypoxia (1.5% O2, 24 h) decreased amiloride-sensitive transepithelial Na+-transport, decreased the mRNA expression of α-, β-, and γ-ENaC subunits, and reduced the amount of αβγ-ENaC subunits in the apical plasma membrane. Silencing HIF-2α partially prevented impaired fluid reabsorption in hypoxic rats and prevented the hypoxia-induced decrease in α- but not the βγ-subunits of ENaC protein expression resulting in a less active form of ENaC in hypoxic AEC. Inhibition of alveolar reabsorption also caused pulmonary vasoconstriction in ventilated rats. These results indicate that a HIF-2α-dependent decrease in Na+-transport in hypoxic alveolar epithelium decreases alveolar reabsorption. Because susceptibles to high-altitude pulmonary edema (HAPE) have decreased Na+-transport even in normoxia, inhibition of alveolar reabsorption by hypoxia at high altitude might further impair alveolar gas exchange. Thus, aggravated hypoxemia might further enhance hypoxic pulmonary vasoconstriction and might subsequently cause HAPE.
Collapse
Affiliation(s)
- Emel Baloglu
- Department of Pharmacology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey.,Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | | | - Anna Seleninova
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Lena Berg
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Kalpana Velineni
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Ezgi Ermis-Kaya
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Heimo Mairbäurl
- Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,Translational Pneumology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Novitskiy SV, Zaynagetdinov R, Vasiukov G, Gutor S, Han W, Serezani A, Matafonov A, Gleaves LA, Sherrill TP, Polosukhin VV, Blackwell TS. Gas6/MerTK signaling is negatively regulated by NF-κB and supports lung carcinogenesis. Oncotarget 2019; 10:7031-7042. [PMID: 31903163 PMCID: PMC6925028 DOI: 10.18632/oncotarget.27345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023] Open
Abstract
Growth arrest-specific 6 (Gas6) has been implicated in carcinogenesis through activation of its receptors, particularly MerTK. To investigate whether Gas6 plays a role in resistance to NF-κB inhibitors, which have not proven to be effective agents for lung cancer therapy, we studied lung cancer models induced by urethane injection or expression of mutant Kras (KrasG12D). We found that Gas6 is primarily produced by macrophages during tumorigenesis and that Gas6 is negatively regulated by NF-κB. Since Gas6 is a vitamin K dependent protein, we used low-dose warfarin to block Gas6 production and showed that this treatment inhibited tumorigenesis in both the urethane and KrasG12D models, most prominently in mice with targeted deletion of IKKβ in myeloid cells (IKKβΔMye mice). In addition, MerTK deficient mice had reduced urethane-induced tumorigenesis. Inhibition of the Gas6-MerTK pathway in all these models reduced macrophages and neutrophils in the lungs of tumor-bearing mice. Analysis of mouse lung tumors revealed MerTK staining on tumor cells and in vitro studies showed that Gas6 increased proliferation of human lung cancer cell lines. To assess the therapeutic potential for combination treatment targeting NF-κB and Gas6-MerTK, we injected Lewis Lung Carcinoma cells subcutaneously and treated mice with Bay 11-70852 (NF-κB inhibitor) and/or Foretinib (MerTK inhibitor). While individual treatments were ineffective, combination therapy markedly reduced tumor growth, blocked tumor cell proliferation, reduced tumor-associated macrophages, and increased CD4+ T cells. Together, our studies unmask a role for Gas6-MerTK signaling in lung carcinogenesis and indicate that up-regulation of Gas6 production in macrophages could be a major mechanism of resistance to NF-κB inhibitors.
Collapse
Affiliation(s)
- Sergey V Novitskiy
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Rinat Zaynagetdinov
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Georgii Vasiukov
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Sergey Gutor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Ana Serezani
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Anton Matafonov
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37212, USA
| | - Linda A Gleaves
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Taylor P Sherrill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Vasiliy V Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA
| | - Timothy S Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37212, USA.,Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.,Department of Veterans Affairs Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
8
|
West J, Chen X, Yan L, Gladson S, Loyd J, Rizwan H, Talati M. Adverse effects of BMPR2 suppression in macrophages in animal models of pulmonary hypertension. Pulm Circ 2019; 10:2045894019856483. [PMID: 31124398 PMCID: PMC7074495 DOI: 10.1177/2045894019856483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/17/2019] [Indexed: 01/11/2023] Open
Abstract
Inflammatory cells contribute to irreversible damage in pulmonary arterial hypertension (PAH). We hypothesized that in PAH, dysfunctional BMPR2 signaling in macrophages contributes to pulmonary vascular injury and phenotypic changes via proinflammatory cytokine production. Studies were conducted in: (1) Rosa26-rtTA2 3 X TetO7-Bmpr2delx4 FVB/N mice (mutant Bmpr2 is universally expressed, BMPR2delx4 mice) given a weekly intra-tracheal liposomal clodronate injections for four weeks; and (2) LysM-Cre X floxed BMPR2 X floxed eGFP monocyte lineage-specific BMPR2 knockout (KO) mouse model (Bmpr2 gene expression knockdown in monocytic lineage cells) (BMPR2KO) following three weeks of sugen/hypoxia treatment. In the BMPR2delx4 mice, increased right ventricular systolic pressure (RVSP; P < 0.05) was normalized by clodronate, and in monocyte lineage-specific BMPR2KO mice sugen hypoxia treatment increased (P < 0.05) RVSP compared to control littermates, suggesting that suppressed BMPR2 in macrophages modulate RVSP in animal models of PH. In addition, in these mouse models, muscularized pulmonary vessels were increased (P < 0.05) and surrounded by an increased number of macrophages. Elimination of macrophages in BMPR2delx4 mice reduced the number of muscularized pulmonary vessels and macrophages surrounding these vessels. Further, in monocyte lineage-specific BMPR2KO mice, there was significant increase in proinflammatory cytokines, including C-X-C Motif Chemokine Ligand 12 (CXCL12), complement component 5 a (C5a), Interleukin-16 (IL-16), and secretory ICAM. C5a positive inflammatory cells present in and around the pulmonary vessels in the PAH lung could potentially be involved in pulmonary vessel remodeling. In summary, our data indicate that, in BMPR2-related PAH, macrophages with dysfunctional BMPR2 influence pulmonary vascular remodeling and phenotypic outcomes via proinflammatory cytokine production.
Collapse
Affiliation(s)
- James West
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xinping Chen
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ling Yan
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Santhi Gladson
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - James Loyd
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hamid Rizwan
- Division of Medical Genetics and Genomic Medicine, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Megha Talati
- Division of Respiratory and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
9
|
Nayak DK, Zhou F, Xu M, Huang J, Tsuji M, Hachem R, Mohanakumar T. Long-Term Persistence of Donor Alveolar Macrophages in Human Lung Transplant Recipients That Influences Donor-Specific Immune Responses. Am J Transplant 2016; 16:2300-11. [PMID: 27062199 PMCID: PMC5289407 DOI: 10.1111/ajt.13819] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/10/2016] [Accepted: 04/03/2016] [Indexed: 01/25/2023]
Abstract
Steady-state alveolar macrophages (AMs) are long-lived lung-resident macrophages with sentinel function. Evidence suggests that AM precursors originate during embryogenesis and populate lungs without replenishment by circulating leukocytes. However, their presence and persistence are unclear following human lung transplantation (LTx). Our goal was to examine donor AM longevity and evaluate whether AMs of recipient origin seed the transplanted lungs. Origin of AMs was accessed using donor-recipient HLA mismatches. We demonstrate that 94-100% of AMs present in bronchoalveolar lavage (BAL) were donor derived and, importantly, AMs of recipient origin were not detected. Further, analysis of BAL cells up to 3.5 years post-LTx revealed that the majority of AMs (>87%) was donor derived. Elicitation of de novo donor-specific antibody (DSA) is a major post-LTx complication and a risk factor for development of chronic rejection. The donor AMs responded to anti-HLA framework antibody (Ab) with secretion of inflammatory cytokines. Further, in an experimental murine model, we demonstrate that adoptive transfer of allogeneic AMs stimulated humoral and cellular immune responses to alloantigen and lung-associated self-antigens and led to bronchiolar obstruction. Therefore, donor-derived AMs play an essential role in the DSA-induced inflammatory cascade leading to obliterative airway disease of the transplanted lungs.
Collapse
Affiliation(s)
- D K Nayak
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - F Zhou
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - M Xu
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - J Huang
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY
| | - M Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of Rockefeller University, New York, NY
| | - R Hachem
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - T Mohanakumar
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ
- Department of Surgery, Washington University School of Medicine, Saint Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
10
|
Saxon JA, Sherrill TP, Polosukhin VV, Sai J, Zaynagetdinov R, McLoed AG, Gulleman PM, Barham W, Cheng DS, Hunt RP, Gleaves LA, Richmond A, Young LR, Yull FE, Blackwell TS. Epithelial NF-κB signaling promotes EGFR-driven lung carcinogenesis via macrophage recruitment. Oncoimmunology 2016; 5:e1168549. [PMID: 27471643 DOI: 10.1080/2162402x.2016.1168549] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023] Open
Abstract
Several studies have demonstrated that NF-κB activation is common in lung cancer; however, the mechanistic links between NF-κB signaling and tumorigenesis remain to be fully elucidated. We investigated the function of NF-κB signaling in epidermal growth factor receptor (EGFR)-mutant lung tumors using a transgenic mouse model with doxycycline (dox)-inducible expression of oncogenic EGFR in the lung epithelium with or without a dominant inhibitor of NF-κB signaling. NF-κB inhibition resulted in a significant reduction in tumor burden in both EGFR tyrosine kinase inhibitor (TKI)-sensitive and resistant tumors. However, NF-κB inhibition did not alter epithelial cell survival in vitro or in vivo, and no changes were detected in activation of EGFR downstream signaling pathways. Instead, we observed an influx of inflammatory cells (macrophages and neutrophils) in the lungs of mice with oncogenic EGFR expression that was blocked in the setting of NF-κB inhibition. To investigate whether inflammatory cells play a role in promoting EGFR-mutant lung tumors, we depleted macrophages and neutrophils during tumorigenesis and found that neutrophil depletion had no effect on tumor formation, but macrophage depletion caused a significant reduction in tumor burden. Together, these data suggest that epithelial NF-κB signaling supports carcinogenesis in a non-cell autonomous manner in EGFR-mutant tumors through recruitment of pro-tumorigenic macrophages.
Collapse
Affiliation(s)
- Jamie A Saxon
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Taylor P Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Jiqing Sai
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Allyson G McLoed
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Dong-Sheng Cheng
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Raphael P Hunt
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center , Nashville, TN, USA
| | - Ann Richmond
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA
| | - Lisa R Young
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University , Nashville, TN, USA
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Veterans Affairs Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Han W, Zaynagetdinov R, Yull FE, Polosukhin VV, Gleaves LA, Tanjore H, Young LR, Peterson TE, Manning HC, Prince LS, Blackwell TS. Molecular imaging of folate receptor β-positive macrophages during acute lung inflammation. Am J Respir Cell Mol Biol 2015; 53:50-9. [PMID: 25375039 DOI: 10.1165/rcmb.2014-0289oc] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Characterization of markers that identify activated macrophages could advance understanding of inflammatory lung diseases and facilitate development of novel methodologies for monitoring disease activity. We investigated whether folate receptor β (FRβ) expression could be used to identify and quantify activated macrophages in the lungs during acute inflammation induced by Escherichia coli LPS. We found that FRβ expression was markedly increased in lung macrophages at 48 hours after intratracheal LPS. In vivo molecular imaging with a fluorescent probe (cyanine 5 polyethylene glycol folate) showed that the fluorescence signal over the chest peaked at 48 hours after intratracheal LPS and was markedly attenuated after depletion of macrophages. Using flow cytometry, we identified the cells responsible for uptake of cyanine 5-conjugated folate as FRβ(+) interstitial macrophages and pulmonary monocytes, which coexpressed markers associated with an M1 proinflammatory macrophage phenotype. These findings were confirmed using a second model of acute lung inflammation generated by inducible transgenic expression of an NF-κB activator in airway epithelium. Using CC chemokine receptor 2-deficient mice, we found that FRβ(+) macrophage/monocyte recruitment was dependent on the monocyte chemotactic protein-1/CC chemokine receptor 2 pathway. Together, our results demonstrate that folate-based molecular imaging can be used as a noninvasive approach to detect classically activated monocytes/macrophages recruited to the lungs during acute inflammation.
Collapse
Affiliation(s)
- Wei Han
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Rinat Zaynagetdinov
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - Vasiliy V Polosukhin
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Linda A Gleaves
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Harikrishna Tanjore
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine
| | - Lisa R Young
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine.,3 Division of Pulmonary Medicine, Department of Pediatrics
| | - Todd E Peterson
- 4 Department of Radiology and Radiological Sciences.,5 Institute of Imaging Science, and
| | - H Charles Manning
- 4 Department of Radiology and Radiological Sciences.,5 Institute of Imaging Science, and
| | - Lawrence S Prince
- 6 Division of Neonatology, Department of Pediatrics, University of California, San Diego, La Jolla, California; and
| | - Timothy S Blackwell
- 1 Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine.,2 Department of Cancer Biology.,7 Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee.,8 Department of Veterans Affairs Medical Center, Nashville, Tennessee
| |
Collapse
|
12
|
Oczypok EA, Milutinovic PS, Alcorn JF, Khare A, Crum LT, Manni ML, Epperly MW, Pawluk AM, Ray A, Oury TD. Pulmonary receptor for advanced glycation end-products promotes asthma pathogenesis through IL-33 and accumulation of group 2 innate lymphoid cells. J Allergy Clin Immunol 2015; 136:747-756.e4. [PMID: 25930197 PMCID: PMC4562894 DOI: 10.1016/j.jaci.2015.03.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Single nucleotide polymorphisms in the human gene for the receptor for advanced glycation end-products (RAGE) are associated with an increased incidence of asthma. RAGE is highly expressed in the lung and has been reported to play a vital role in the pathogenesis of murine models of asthma/allergic airway inflammation (AAI) by promoting expression of the type 2 cytokines IL-5 and IL-13. IL-5 and IL-13 are prominently secreted by group 2 innate lymphoid cells (ILC2s), which are stimulated by the proallergic cytokine IL-33. OBJECTIVE We sought to test the hypothesis that pulmonary RAGE is necessary for allergen-induced ILC2 accumulation in the lung. METHODS AAI was induced in wild-type and RAGE knockout mice by using IL-33, house dust mite extract, or Alternaria alternata extract. RAGE's lung-specific role in type 2 responses was explored with bone marrow chimeras and induction of gastrointestinal type 2 immune responses. RESULTS RAGE was found to drive AAI by promoting IL-33 expression in response to allergen and by coordinating the inflammatory response downstream of IL-33. Absence of RAGE impedes pulmonary accumulation of ILC2s in models of AAI. Bone marrow chimera studies suggest that pulmonary parenchymal, but not hematopoietic, RAGE has a central role in promoting AAI. In contrast to the lung, the absence of RAGE does not affect IL-33-induced ILC2 influx in the spleen, type 2 cytokine production in the peritoneum, or mucus hypersecretion in the gastrointestinal tract. CONCLUSIONS For the first time, this study demonstrates that a parenchymal factor, RAGE, mediates lung-specific accumulation of ILC2s.
Collapse
Affiliation(s)
- Elizabeth A Oczypok
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Pavle S Milutinovic
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Anupriya Khare
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Lauren T Crum
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Michelle L Manni
- Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pa
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pa
| | - Adriane M Pawluk
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Anuradha Ray
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa.
| |
Collapse
|
13
|
Plosa EJ, Young LR, Gulleman PM, Polosukhin VV, Zaynagetdinov R, Benjamin JT, Im AM, van der Meer R, Gleaves LA, Bulus N, Han W, Prince LS, Blackwell TS, Zent R. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 2014; 141:4751-62. [PMID: 25395457 PMCID: PMC4299273 DOI: 10.1242/dev.117200] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022]
Abstract
Integrin-dependent interactions between cells and extracellular matrix regulate lung development; however, specific roles for β1-containing integrins in individual cell types, including epithelial cells, remain incompletely understood. In this study, the functional importance of β1 integrin in lung epithelium during mouse lung development was investigated by deleting the integrin from E10.5 onwards using surfactant protein C promoter-driven Cre. These mutant mice appeared normal at birth but failed to gain weight appropriately and died by 4 months of age with severe hypoxemia. Defects in airway branching morphogenesis in association with impaired epithelial cell adhesion and migration, as well as alveolarization defects and persistent macrophage-mediated inflammation were identified. Using an inducible system to delete β1 integrin after completion of airway branching, we showed that alveolarization defects, characterized by disrupted secondary septation, abnormal alveolar epithelial cell differentiation, excessive collagen I and elastin deposition, and hypercellularity of the mesenchyme occurred independently of airway branching defects. By depleting macrophages using liposomal clodronate, we found that alveolarization defects were secondary to persistent alveolar inflammation. β1 integrin-deficient alveolar epithelial cells produced excessive monocyte chemoattractant protein 1 and reactive oxygen species, suggesting a direct role for β1 integrin in regulating alveolar homeostasis. Taken together, these studies define distinct functions of epithelial β1 integrin during both early and late lung development that affect airway branching morphogenesis, epithelial cell differentiation, alveolar septation and regulation of alveolar homeostasis.
Collapse
Affiliation(s)
- Erin J Plosa
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Peter M Gulleman
- Department of Pediatrics, Division of Pulmonary Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vasiliy V Polosukhin
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Amanda M Im
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Riet van der Meer
- Department of Pediatrics, Division of Neonatology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Linda A Gleaves
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bulus
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wei Han
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lawrence S Prince
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA 92103, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | - Roy Zent
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA Nashville Veterans Affairs Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
14
|
Zaynagetdinov R, Sherrill TP, Kendall PL, Segal BH, Weller KP, Tighe RM, Blackwell TS. Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol 2013; 49:180-9. [PMID: 23492192 DOI: 10.1165/rcmb.2012-0366ma] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although the antibody-based recognition of cell-surface markers has been widely used for the identification of immune cells, overlap in the expression of markers by different cell types and the inconsistent use of antibody panels have resulted in a lack of clearly defined signatures for myeloid cell subsets. We developed a 10-fluorochrome flow cytometry panel for the identification and quantitation of myeloid cells in the lungs, including pulmonary monocytes, myeloid dendritic cells, alveolar and interstitial macrophages, and neutrophils. After the initial sorting of viable CD45(+) leukocytes, we detected three leukocyte subpopulations based on CD68 expression: CD68(-), CD68(low), and CD68(hi). Further characterization of the CD68(hi) population revealed CD45(+)/CD68(hi)/F4/80(+)/CD11b(-)/CD11c(+)/Gr1(-) alveolar macrophages and CD45(+)/CD68(hi)/F4/80(-)/CD11c(+)/Gr1(-)/CD103(+)/major histocompatibility complex (MHC) class II(hi) dendritic cells. The CD68(low) population contained primarily CD45(+)/CD68(low)/F4/80(+)/CD11b(+)/CD11c(+)/Gr1(-)/CD14(low) interstitial macrophages and CD45(+)/CD68(low)/F4/80(+)/CD11b(+)/CD11c(-)/Gr1(low)/CD14(hi) monocytes, whereas the CD68(-) population contained neutrophils (CD45(+)/CD68(-)/F4/80(-)/CD11b(+)/Gr1(hi)). The validity of cellular signatures was confirmed by a morphological analysis of FACS-sorted cells, functional studies, and the depletion of specific macrophage subpopulations using liposomal clodronate. We believe our approach provides an accurate and reproducible method for the isolation, quantification, and characterization of myeloid cell subsets in the lungs, which may be useful for studying the roles of myeloid cells during various pathological processes.
Collapse
Affiliation(s)
- Rinat Zaynagetdinov
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Deng J, Wang X, Qian F, Vogel S, Xiao L, Ranjan R, Park H, Karpurapu M, Ye RD, Park GY, Christman JW. Protective role of reactive oxygen species in endotoxin-induced lung inflammation through modulation of IL-10 expression. THE JOURNAL OF IMMUNOLOGY 2012; 188:5734-40. [PMID: 22547702 DOI: 10.4049/jimmunol.1101323] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase are generally known to be proinflammatory, and it seems to be counterintuitive that ROS play a critical role in regulating the resolution of the inflammatory response. However, we observed that deficiency of the p47(phox) component of NADPH oxidase in macrophages was associated with a paradoxical accentuation of inflammation in a whole animal model of noninfectious sepsis induced by endotoxin. We have confirmed this observation by interrogating four separate in vivo models that use complementary methodology including the use of p47(phox-/-) mice, p47(phox-/-) bone marrow chimera mice, adoptive transfer of macrophages from p47(phox-/-) mice, and an isolated perfused lung edema model that all point to a relationship between excessive acute inflammation and p47(phox) deficiency in macrophages. Mechanistic data indicate that ROS deficiency in both cells and mice results in decreased production of IL-10 in response to treatment with LPS, at least in part, through attenuation of the Akt-GSK3-β signal pathway and that it can be reversed by the administration of rIL-10. Our data support the innovative concept that generation of ROS is essential for counterregulation of acute lung inflammation.
Collapse
Affiliation(s)
- Jing Deng
- Section of Pulmonary, Critical Care, Sleep, and Allergy, Department of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Zaynagetdinov R, Sherrill TP, Polosukhin VV, Han W, Ausborn JA, McLoed AG, McMahon FB, Gleaves LA, Degryse AL, Stathopoulos GT, Yull FE, Blackwell TS. A critical role for macrophages in promotion of urethane-induced lung carcinogenesis. THE JOURNAL OF IMMUNOLOGY 2011; 187:5703-11. [PMID: 22048774 DOI: 10.4049/jimmunol.1100558] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages have established roles in tumor growth and metastasis, but information about their role in lung tumor promotion is limited. To assess the role of macrophages in lung tumorigenesis, we developed a method of minimally invasive, long-term macrophage depletion by repetitive intratracheal instillation of liposomal clodronate. Compared with controls treated with repetitive doses of PBS-containing liposomes, long-term macrophage depletion resulted in a marked reduction in tumor number and size at 4 mo after a single i.p. injection of the carcinogen urethane. After urethane treatment, lung macrophages developed increased M1 macrophage marker expression during the first 2-3 wk, followed by increased M2 marker expression by week 6. Using a strategy to reduce alveolar macrophages during tumor initiation and early promotion stages (weeks 1-2) or during late promotion and progression stages (weeks 4-16), we found significantly fewer and smaller lung tumors in both groups compared with controls. Late-stage macrophage depletion reduced VEGF expression and impaired vascular growth in tumors. In contrast, early-stage depletion of alveolar macrophages impaired urethane-induced NF-κB activation in the lungs and reduced the development of premalignant atypical adenomatous hyperplasia lesions at 6 wk after urethane injection. Together, these studies elucidate an important role for macrophages in lung tumor promotion and indicate that these cells have distinct roles during different stages of lung carcinogenesis.
Collapse
Affiliation(s)
- Rinat Zaynagetdinov
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Manni ML, Epperly MW, Han W, Blackwell TS, Duncan SR, Piganelli JD, Oury TD. Leukocyte-derived extracellular superoxide dismutase does not contribute to airspace EC-SOD after interstitial pulmonary injury. Am J Physiol Lung Cell Mol Physiol 2011; 302:L160-6. [PMID: 22003088 DOI: 10.1152/ajplung.00360.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The antioxidant enzyme extracellular superoxide dismutase (EC-SOD) is abundant in the lung and is known to limit inflammation and fibrosis following numerous pulmonary insults. Previous studies have reported a loss of full-length EC-SOD from the pulmonary parenchyma with accumulation of proteolyzed EC-SOD in the airspace after an interstitial lung injury. However, following airspace only inflammation, EC-SOD accumulates in the airspace without a loss from the interstitium, suggesting this antioxidant may be released from an extrapulmonary source. Because leukocytes are known to express EC-SOD and are prevalent in the bronchoalveolar lavage fluid (BALF) after injury, it was hypothesized that these cells may transport and release EC-SOD into airspaces. To test this hypothesis, C57BL/6 wild-type and EC-SOD knockout mice were irradiated and transplanted with bone marrow from either wild-type mice or EC-SOD knockout mice. Bone marrow chimeric mice were then intratracheally treated with asbestos and killed 3 and 7 days later. At both 3 and 7 days following asbestos injury, mice without pulmonary EC-SOD expression but with EC-SOD in infiltrating and resident leukocytes did not have detectable levels of EC-SOD in the airspaces. In addition, leukocyte-derived EC-SOD did not significantly lessen inflammation or early stage fibrosis that resulted from asbestos injury in the lungs. Although it is not influential in the asbestos-induced interstitial lung injury model, EC-SOD is still known to be present in leukocytes and may play an influential role in attenuating pneumonias and other inflammatory diseases.
Collapse
Affiliation(s)
- Michelle L Manni
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Functional PU.1 in macrophages has a pivotal role in NF-κB activation and neutrophilic lung inflammation during endotoxemia. Blood 2011; 118:5255-66. [PMID: 21937699 DOI: 10.1182/blood-2011-03-341123] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the role of ETS family transcriptional factor PU.1 is well established in macrophage maturation, its role in mature macrophages with reference to sepsis- related animal model has not been elucidated. Here, we report the in vivo function of PU.1 in mediating mature macrophage inflammatory phenotype by using bone marrow chimera mice with conditional PU.1 knockout. We observed that the expression of monocyte/macrophage-specific markers CD 11b, F4/80 in fetal liver cells, and bone marrow-derived macrophages were dependent on functional PU.1. Systemic inflammation as measured in terms of NF-κB reporter activity in lung, liver, and spleen tissues was significantly decreased in PU.1-deficient chimera mice compared with wild-type chimeras on lipopolysaccharide (LPS) challenge. Unlike wild-type chimera mice, LPS challenge in PU.1-deficient chimera mice resulted in decreased lung neu-trophilic inflammation and myeloperoxidase activity. Similarly, we found attenuated inflammatory gene expression (cyclooxygenase-2, inducible nitric-oxide synthase, and TLR4) and inflammatory cytokine secretion (IL-6, MCP-1, IL-1β, TNF-α, and neutrophilic chemokine keratinocyte-derived chemokine) in PU.1-deficient mice. Most importantly, this attenuated lung and systemic inflammatory phenotype was associated with survival benefit in LPS-challenged heterozygotic PU.1-deficient mice, establishing a novel protective mechanistic role for the lineage-specific transcription factor PU.1.
Collapse
|
19
|
Hafeman SD, Varland D, Dow SW. Bisphosphonates significantly increase the activity of doxorubicin or vincristine against canine malignant histiocytosis cells. Vet Comp Oncol 2011; 10:44-56. [PMID: 22236140 DOI: 10.1111/j.1476-5829.2011.00274.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Canine malignant histiocytosis (MH) is an aggressive neoplasm of macrophages and dendritic cells. It carries a poor prognosis because of the development of widespread metastasis and poor sensitivity to chemotherapy. Thus, there is a large need for new treatments for MH. We hypothesized that bisphosphonates might be useful to increase the effectiveness of cytotoxic chemotherapy against MH. To address this question, we conducted in vitro screening studies using MH cell lines and a panel of 6 chemotherapy and 5 bisphosphonate drugs. The combination of clodronate with vincristine was found to elicit synergistic killing which was associated with a significant increase in cell cycle arrest. Second, zoledronate combined with doxorubicin also significantly increased cell killing. Zoledronate significantly increased the uptake of doxorubicin by MH cells. On the basis of these findings, we conclude that certain bisphosphonate drugs may increase the overall effectiveness of chemotherapy for MH in dogs.
Collapse
Affiliation(s)
- S D Hafeman
- Department of Clinical Sciences, Animal Cancer Center, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
20
|
Abstract
Abstract
Aged or damaged RBCs are effectively removed from the blood circulation by Kupffer cells in the liver, but little is known regarding the mechanism of the clearance process. Here we show that stabilin-1 and stabilin-2 in hepatic sinusoidal endothelial cells (HSECs) are critical in effectively clearing damaged RBCs in mouse liver. Damaged RBCs and phosphatidylserine (PS)–coated beads were effectively sequestered in the hepatic sinusoid regardless of the presence of Kupffer cells, suggesting a role for HSECs in PS-dependent sequestration of PS-exposed RBCs in the liver. HSECs mediate tethering of damaged RBCs in a PS-dependent manner via stabilin-1 and stabilin-2. In a sinusoid-mimicked coculture system consisting of macrophages layered over HSECs, there was significant enhancement of the phagocytic capacity of macrophages, and this was mediated by stabilin-1 and stabilin-2 in HSECs. Liver-specific knockdown of stabilin-1 and stabilin-2 inhibited the sequestration of damaged RBCs in the hepatic sinusoid and delayed the elimination of damaged cells in an in vivo animal model. Thus, the roles of stabilin-1 and stabilin-2 in hepatic sequestration of PS-exposed RBCs may represent a potential mechanism for the clearance of damaged RBCs by Kupffer cells and for the control of some pathologic conditions such as hemolytic anemia.
Collapse
|
21
|
Bone marrow derived mesenchymal stem cells incorporate into the prostate during regrowth. PLoS One 2010; 5:e12920. [PMID: 20886110 PMCID: PMC2944821 DOI: 10.1371/journal.pone.0012920] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 08/30/2010] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prostate cancer recurrence involves increased growth of cancer epithelial cells, as androgen dependent prostate cancer progresses to castrate resistant prostate cancer (CRPC) following initial therapy. Understanding CRPC prostate regrowth will provide opportunities for new cancer therapies to treat advanced disease. METHODOLOGY/PRINCIPAL FINDINGS Elevated chemokine expression in the prostate stroma of a castrate resistant mouse model, Tgfbr2(fspKO), prompted us to look at the involvement of bone marrow derived cells (BMDCs) in prostate regrowth. We identified bone marrow cells recruited to the prostate in GFP-chimeric mice. A dramatic increase in BMDC recruitment for prostate regrowth occurred three days after exogenous testosterone implantation. Recruitment led to incorporation of BMDCs within the prostate epithelia. Immunofluorescence staining suggested BMDCs in the prostate coexpressed androgen receptor; p63, a basal epithelial marker; and cytokeratin 8, a luminal epithelial marker. A subset of the BMDC population, mesenchymal stem cells (MSCs), were specifically found to be incorporated in the prostate at its greatest time of remodeling. Rosa26 expressing MSCs injected into GFP mice supported MSC fusion with resident prostate epithelial cells through co-localization of β-galactosidase and GFP during regrowth. In a human C4-2B xenograft model of CRPC, MSCs were specifically recruited. Injection of GFP-labeled MSCs supported C4-2B tumor progression by potentiating canonical Wnt signaling. The use of MSCs as a targeted delivery vector for the exogenously expressed Wnt antagonist, secreted frizzled related protein-2 (SFRP2), reduced tumor growth, increased apoptosis and potentiated tumor necrosis. CONCLUSIONS/SIGNIFICANCE Mesenchymal stem cells fuse with prostate epithelia during the process of prostate regrowth. MSCs recruited to the regrowing prostate can be used as a vehicle for transporting genetic information with potential therapeutic effects on castrate resistant prostate cancer, for instance by antagonizing Wnt signaling through SFRP2.
Collapse
|
22
|
Mathai SK, Gulati M, Peng X, Russell TR, Shaw AC, Rubinowitz AN, Murray LA, Siner JM, Antin-Ozerkis DE, Montgomery RR, Reilkoff RAS, Bucala RJ, Herzog EL. Circulating monocytes from systemic sclerosis patients with interstitial lung disease show an enhanced profibrotic phenotype. J Transl Med 2010; 90:812-23. [PMID: 20404807 PMCID: PMC3682419 DOI: 10.1038/labinvest.2010.73] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Profibrotic cells derived from circulating CD14+ monocytes include fibrocytes and alternatively activated macrophages. These cells are associated with interstitial lung disease (ILD) and are implicated in the pathogenesis of systemic sclerosis (SSc); however, the simultaneous presence of profibrotic cells and their associated mediators in the circulation of these patients has not been defined. We hypothesized that monocytes from patients with SSc-related ILD (SSc-ILD) would show profibrotic characteristics when compared with normal controls. We recruited patients with SSc-ILD (n=12) and normal controls (n=27) and quantified circulating collagen-producing cells by flow cytometry for CD45 and pro-collagen I. The in vitro activation potential of CD14+ monocytes in response to lipopolysaccharide was assessed using flow cytometry for CD163, and by ELISA for CCL18 and IL-10 secretion. Profibrotic mediators in plasma were quantified using Luminex-based assays. The concentration of circulating collagen-producing cells was increased in the SSc-ILD patients when compared with controls. These cells were composed of both CD34+ fibrocytes and a population of CD34+CD14+ cells. Cultured CD14+ monocytes from SSc-ILD patients revealed a profibrotic phenotype characterized by expression of CD163 and by enhanced secretion of CCL18 and IL-10 in response to proinflammatory activation. Plasma levels of IL-10, MCP-1, IL-1RA, and TNF levels were significantly elevated in the plasma of the SSc-ILD cohort. Subgroup analysis of the normal controls revealed that unlike the subjects < or =35 years, subjects > or =60 years old showed higher levels of circulating CD34+CD14+ cells, collagen-producing CD14+ monocytes, CD163+ monocytes, IL-4, IL-10, IL-13, MCP-1, and CCL18. These data indicate that the blood of patients with SSc-ILD and of healthy aged controls is enriched for fibrocytes, profibrotic monocytes, and fibrosis-associated mediators. Investigations defining the factors responsible for this peripheral blood profile may provide new insight into SSc-ILD as well as the pathophysiology of aging.
Collapse
Affiliation(s)
- Susan K Mathai
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiang M, Fan J. Pattern recognition receptor-dependent mechanisms of acute lung injury. Mol Med 2009; 16:69-82. [PMID: 19949486 PMCID: PMC2785474 DOI: 10.2119/molmed.2009.00097] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/30/2009] [Indexed: 12/23/2022] Open
Abstract
Acute lung injury (ALI) that clinically manifests as acute respiratory distress syndrome is caused by an uncontrolled systemic inflammatory response resulting from clinical events including sepsis, major surgery and trauma. Innate immunity activation plays a central role in the development of ALI. Innate immunity is activated through families of related pattern recognition receptors (PRRs), which recognize conserved microbial motifs or pathogen-associated molecular patterns (PAMPs). Toll-like receptors were the first major family of PRRs discovered in mammals. Recently, NACHT-leucine-rich repeat (LRR) receptors and retinoic acid-inducible gene-like receptors have been added to the list. It is now understood that in addition to recognizing infectious stimuli, both Toll-like receptors and NACHT-LRR receptors can also respond to endogenous molecules released in response to stress, trauma and cell damage. These molecules have been termed damage-associated molecular patterns (DAMPs). It has been clinically observed for a long time that infectious and noninfectious insults initiate inflammation, so confirmation of overlapping receptor-signal pathways of activation between PAMPs and DAMPs is no surprise. This review provides an overview of the PRR-dependent mechanisms of ALI and clinical implication. Modification of PRR pathways is likely to be a logical therapeutic target for ALI/acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Meng Xiang
- Department of Surgery, School of Medicine, University of Pittsburgh and Surgical Research, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania 15240, United States of America
| | | |
Collapse
|
24
|
Tanaka ST, Martinez-Ferrer M, Makari JH, Wills ML, Thomas JC, Adams MC, Brock JW, Pope JC, Bhowmick NA. Recruitment of bone marrow derived cells to the bladder after bladder outlet obstruction. J Urol 2009; 182:1769-74. [PMID: 19692058 DOI: 10.1016/j.juro.2009.02.081] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE Bladder fibrosis is an undesired end point of partial bladder outlet obstruction. In fibrotic disease of the lung, kidney, skin and heart chemokines recruit bone marrow derived cells to injured tissue. Blockade of chemokines like CCL2 results in decreased fibrosis in other organs. To our knowledge we present the first report of bone marrow derived cell recruitment to the bladder in a murine bladder outlet obstruction model. MATERIALS AND METHODS We lethally irradiated WT female mice and reconstituted their bone marrow using fetal liver cells from transgenic mice ubiquitously expressing green fluorescent protein. Periurethral collagen injection was used for bladder outlet obstruction. Obstruction was assessed by urodynamics, and bladder and kidney histological changes. Bladders were harvested 1 to 12 weeks after bladder outlet obstruction and compared to those in nonobstructed controls. The chemokine CCL2 was compared between obstructed and nonobstructed mice with reverse transcriptase-polymerase chain reaction. Green fluorescent protein expressing bone marrow derived cells were identified with immunohistochemistry and fluorescence activated cell sorting. RESULTS Bladders showed histological and urodynamic changes consistent with obstruction. CCL2 induction increased after obstruction compared to that in controls. After obstruction bone marrow derived cells were present in the urothelial and stromal layers. Activated epidermal growth factor receptor was found in cells associated with bone marrow derived cells. CONCLUSIONS Bone marrow derived cells are recruited to the bladder by bladder outlet obstruction and are present in the urothelial and stromal layers. Stromal bone marrow derived cells may have a role in hypertrophy and fibrosis. Further study of the recruitment and function of bone marrow derived cells in the bladder may provide potential targets for antifibrotic therapy.
Collapse
Affiliation(s)
- Stacy T Tanaka
- Division of Pediatric Urology, Monroe Carell, Jr. Vanderbilt Children's Hospital, Nashville, Tennessee 37232-9820, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, Sherrill TP, Plieth D, Neilson EG, Blackwell TS, Lawson WE. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 2009; 180:657-65. [PMID: 19556518 DOI: 10.1164/rccm.200903-0322oc] [Citation(s) in RCA: 335] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Lung fibroblasts are key mediators of fibrosis resulting in accumulation of excessive interstitial collagen and extracellular matrix, but their origins are not well defined. OBJECTIVES We aimed to elucidate the contribution of lung epithelium-derived fibroblasts via epithelial-mesenchymal transition (EMT) in the intratracheal bleomycin model. METHODS Primary type II alveolar epithelial cells were cultured from Immortomice and exposed to transforming growth factor-beta(1) and epidermal growth factor. Cell fate reporter mice that permanently mark cells of lung epithelial lineage with beta-galactosidase were developed to study EMT, and bone marrow chimeras expressing green fluorescent protein under the control of the fibroblast-associated S100A4 promoter were generated to examine bone marrow-derived fibroblasts. Mice were given intratracheal bleomycin (0.08 unit). Immunostaining was performed for S100A4, beta-galactosidase, green fluorescent protein, and alpha-smooth muscle actin. MEASUREMENTS AND MAIN RESULTS In vitro, primary type II alveolar epithelial cells undergo phenotypic changes of EMT when exposed to transforming growth factor-beta(1) and epidermal growth factor with loss of prosurfactant protein C and E-cadherin and gain of S100A4 and type I procollagen. In vivo, using cell fate reporter mice, approximately one-third of S100A4-positive fibroblasts were derived from lung epithelium 2 weeks after bleomycin administration. From bone marrow chimera studies, one-fifth of S100A4-positive fibroblasts were derived from bone marrow at this same time point. Myofibroblasts rarely derived from EMT or bone marrow progenitors. CONCLUSIONS Both EMT and bone marrow progenitors contribute to S100A4-positive fibroblasts in bleomycin-induced lung fibrosis. However, neither origin is a principal contributor to lung myofibroblasts.
Collapse
Affiliation(s)
- Harikrishna Tanjore
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu G, Park YJ, Tsuruta Y, Lorne E, Abraham E. p53 Attenuates Lipopolysaccharide-Induced NF-κB Activation and Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2009; 182:5063-71. [DOI: 10.4049/jimmunol.0803526] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Han W, Joo M, Everhart MB, Christman JW, Yull FE, Blackwell TS. Myeloid cells control termination of lung inflammation through the NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 2008; 296:L320-7. [PMID: 19098124 DOI: 10.1152/ajplung.90485.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Although acute lung inflammation in response to local or systemic infection involves myeloid and nonmyeloid cells, the interplay between different cell types remains poorly defined. Since NF-kappaB is a key transcription factor for innate immunity, we investigated whether dysregulated NF-kappaB activation in myeloid cells impacts inflammatory signaling in nonmyeloid cells and generation of neutrophilic lung inflammation in response to systemic endotoxemia. We generated bone marrow chimeras by fetal liver transplantation of cells deficient in IkappaBalpha or p50 into lethally irradiated NF-kappaB reporter transgenic mice. No differences were apparent between bone marrow chimeras in the absence of an inflammatory stimulus; however, following intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS), IkappaBalpha- or p50-deficient bone marrow chimeras showed increased NF-kappaB activation in nonhematopoietic cells, exaggerated neutrophilic inflammation, and higher mortality compared with untransplanted reporter mice and wild-type bone marrow chimeras. Primary bone marrow-derived macrophages (BMDM) from IkappaBalpha(-/-) or p50(-/-) exhibited increased NF-kappaB activation and macrophage inflammatory protein-2 production after LPS treatment compared with wild-type cells, and coculture of BMDM with lung epithelial (A549) cells resulted in increased NF-kappaB activation in A549 cells and excess IL-8 production by these epithelial cells. These studies indicate an important role for inhibitory members of the NF-kappaB family acting specifically within myeloid cells to limit inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Wei Han
- Department of Medicine, Division of Allergy, Pulmonary, Vanderbilt University School of Medicine, Nashville, Tennessee USA.
| | | | | | | | | | | |
Collapse
|
28
|
Twelve chromatically opponent ganglion cell types in turtle retina. Vis Neurosci 2008; 26:382-94. [PMID: 18598402 DOI: 10.1007/s11095-008-9755-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Accepted: 10/10/2008] [Indexed: 12/21/2022]
Abstract
The turtle retina has been extensively used for the study of chromatic processing mechanisms. Color opponency has been previously investigated with trichromatic paradigms, but behavioral studies show that the turtle has an ultraviolet (UV) channel and a tetrachromatic visual system. Our laboratory has been working in the characterization of neuronal responses in the retina of vertebrates using stimuli in the UV-visible range of the electromagnetic spectrum. In the present investigation, we recorded color-opponent responses from turtle amacrine and ganglion cells to UV and visible stimuli and extended our previous results that UV color-opponency is present at the level of the inner nuclear layer. We recorded from 181 neurons, 36 of which were spectrally opponent. Among these, there were 10 amacrine (5%), and 26 ganglion cells (15%). Morphological identification of color-opponent neurons was possible for two ganglion cell classes (G17 and G22) and two amacrine cell classes (A22 and A23b). There was a variety of cell response types and a potential for complex processing of chromatic stimuli, with intensity- and wavelength-dependent response components. Ten types of color opponency were found in ganglion cells and by adding previous results from our laboratory, 12 types of opponent responses have been found. The majority of the ganglion cells were R+UVBG- and RG+UVB-color-opponents but there were other less frequent types of chromatic opponency. This study confirms the participation of a UV channel in the processing of color opponency in the turtle inner retina and shows that the turtle visual system has the retinal mechanisms to allow many possible chromatic combinations.
Collapse
|
29
|
Ren W, Markel DC, Schwendener R, Ding Y, Wu B, Wooley PH. Macrophage depletion diminishes implant-wear-induced inflammatory osteolysis in a mouse model. J Biomed Mater Res A 2008; 85:1043-51. [PMID: 17937417 DOI: 10.1002/jbm.a.31665] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to determine whether macrophage depletion using clodronate liposomes diminishes wear-debris-induced inflammatory osteolysis in a murine osteolysis model. Ultra high molecular weight polyethylene (UHMWPE) particles were introduced into established air pouches on BALB/c mice, followed by implantation of calvaria bone from syngeneic littermates. Macrophages were depleted by the intraperitoneal injection of clodronate liposome (2 mg) 2 days before bone implantation and re-injection every 3 days (1 mg) until the sacrifice of the mice. Mice without clodronate liposome therapy or treated with empty liposome as well as mice injected with saline alone were included in this study as controls. Pouch tissues were collected 14 days after bone implantation for molecular and histology analysis. Our findings indicated that (1) macrophage depletion in clodronate-liposome-treated mice was achieved, as illustrated by F4/80 immunostaining in both pouch and spleen tissues; (2) clodronate-liposome treatment significantly reduced UHMWPE-induced tissue inflammation, with diminished pouch membrane thickness, reduced inflammatory cellular infiltration, and lowered interleukin 1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) expression; (3) clodronate-liposome treatment markedly reduced the number of TRAP(+) cells in pouch tissues and protected against bone collagen depletion. In conclusion, this study demonstrates that macrophage depletion using clodronate-liposome reduces UHMWPE particle-induced inflammatory osteolysis. This observation supports the hypothesis that macrophages contribute to the severity of UHMWPE particles induced inflammatory osteolysis, and suggest that macrophage depletion represents a viable therapeutic approach to the prevention and treatment of patients with aseptic loosening.
Collapse
Affiliation(s)
- Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Stathopoulos GT, Sherrill TP, Han W, Sadikot RT, Yull FE, Blackwell TS, Fingleton B. Host nuclear factor-kappaB activation potentiates lung cancer metastasis. Mol Cancer Res 2008; 6:364-71. [PMID: 18337446 DOI: 10.1158/1541-7786.mcr-07-0309] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiologic and experimental evidence suggests that a link exists between inflammation and cancer, although this relationship has only recently begun to be elucidated for lung cancer, the most frequently fatal human tumor. Nuclear factor-kappaB (NF-kappaB), a transcription factor that controls innate immune responses in the lungs, has been implicated as an important determinant of cancer cell proliferative and metastatic potential; however, its role in lung tumorigenesis is uncertain. Here, we specifically examine the role of NF-kappaB-induced airway inflammation in lung cancer metastasis using a model of intravenous injection of Lewis lung carcinoma cells into immunocompetent C57Bl/6 mice. Induction of lung inflammation by direct and specific NF-kappaB activation in airway epithelial cells potentiates lung adenocarcinoma metastasis. Moreover, we identify resident lung macrophages as crucial effectors of lung susceptibility to metastatic cancer growth. We conclude that NF-kappaB activity in host tissue is a significant factor in the development of lung metastasis.
Collapse
Affiliation(s)
- Georgios T Stathopoulos
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6840, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Mutlu GM, Green D, Bellmeyer A, Baker CM, Burgess Z, Rajamannan N, Christman JW, Foiles N, Kamp DW, Ghio AJ, Chandel NS, Dean DA, Sznajder JI, Budinger GRS. Ambient particulate matter accelerates coagulation via an IL-6-dependent pathway. J Clin Invest 2007; 117:2952-61. [PMID: 17885684 PMCID: PMC1978421 DOI: 10.1172/jci30639] [Citation(s) in RCA: 228] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 07/06/2007] [Indexed: 12/21/2022] Open
Abstract
The mechanisms by which exposure to particulate matter increases the risk of cardiovascular events are not known. Recent human and animal data suggest that particulate matter may induce alterations in hemostatic factors. In this study we determined the mechanisms by which particulate matter might accelerate thrombosis. We found that mice treated with a dose of well characterized particulate matter of less than 10 microM in diameter exhibited a shortened bleeding time, decreased prothrombin and partial thromboplastin times (decreased plasma clotting times), increased levels of fibrinogen, and increased activity of factor II, VIII, and X. This prothrombotic tendency was associated with increased generation of intravascular thrombin, an acceleration of arterial thrombosis, and an increase in bronchoalveolar fluid concentration of the prothrombotic cytokine IL-6. Knockout mice lacking IL-6 were protected against particulate matter-induced intravascular thrombin formation and the acceleration of arterial thrombosis. Depletion of macrophages by the intratracheal administration of liposomal clodronate attenuated particulate matter-induced IL-6 production and the resultant prothrombotic tendency. Our findings suggest that exposure to particulate matter triggers IL-6 production by alveolar macrophages, resulting in reduced clotting times, intravascular thrombin formation, and accelerated arterial thrombosis. These results provide a potential mechanism linking ambient particulate matter exposure and thrombotic events.
Collapse
Affiliation(s)
- Gökhan M Mutlu
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Taut K, Winter C, Briles DE, Paton JC, Christman JW, Maus R, Baumann R, Welte T, Maus UA. Macrophage Turnover Kinetics in the Lungs of Mice Infected with Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2007; 38:105-13. [PMID: 17690327 DOI: 10.1165/rcmb.2007-0132oc] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pneumoniae is the most prevalent cause of community-acquired pneumonia and is known to induce apoptosis and necrosis in macrophages in vivo. We analyzed the kinetics of alveolar and lung parenchymal macrophage replacement by newly recruited exudate macrophages in vehicle-treated and S. pneumoniae-challenged bone marrow chimeric CD45.1 mice. After lethal irradiation, CD45.1 alloantigen-expressing recipient mice were transplanted with bone marrow cells from CD45.2 alloantigen-expressing donor mice. After only 24 hours of low-dose S. pneumoniae infection, approximately 60% of CD45.1(pos) recipient-type alveolar macrophages (AM) were replaced by CD45.2(pos) donor-type exudate AM in bronchoalveolar lavage fluid, and this increased to more than 80% on Day 7 of infection. In contrast, lung parenchymal macrophages of S. pneumoniae-infected chimeric CD45.1 mice were replaced by only about 10% by 24 hours, although this increased to over 80% by Days 3 to 7 of infection. This dramatic macrophage turnover was accompanied by early induction of apoptosis/necrosis in donor-type exudate AM peaking at 6 hours after infection, whereas peak apoptosis/necrosis induction in recipient-type AM was delayed until Day 7. Collectively, these data for the first time demonstrate that S. pneumoniae infection of the lung triggers a brisk turnover of both resident and recruited mononuclear phagocyte subsets, and suggest an important role of exudate but not resident macrophages in re-establishing alveolar and lung homeostasis.
Collapse
Affiliation(s)
- Katharina Taut
- Department of Pulmonary Medicine, Laboratory for Experimental Lung Research, Hannover School of Medicine, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maus UA, Janzen S, Wall G, Srivastava M, Blackwell TS, Christman JW, Seeger W, Welte T, Lohmeyer J. Resident alveolar macrophages are replaced by recruited monocytes in response to endotoxin-induced lung inflammation. Am J Respir Cell Mol Biol 2006; 35:227-35. [PMID: 16543608 DOI: 10.1165/rcmb.2005-0241oc] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the acute respiratory distress syndrome, recruitment of peripheral blood monocytes results in expansion of the total pool of resident alveolar macrophages. The fate of resident macrophages, or whether recruited monocytes are selectively eliminated from the alveolar airspace or differentiate into resident alveolar macrophages during the resolving phase of inflammation, has not been determined. Here, we analyzed the kinetics of resident and recruited macrophage turnover within the alveolar airspace of untreated and LPS-challenged mice. Using bone marrow chimeric CD45.2 mice that were generated by lethal irradiation of CD45.2 alloantigen-expressing recipient mice and bone marrow transplantation from CD45.1 alloantigen-expressing donor mice, we employed a flow cytometric approach to distinguish recipient from donor-type macrophages in bronchoalveolar lavage fluids. Our data show that resident alveolar macrophages of untreated chimeric CD45.2 mice are very slowly replaced by constitutively immigrating CD45.1 positive monocytes, resulting in a replacement rate of approximately 40% by 1 yr. In contrast, more than 85% of the resident CD45.2 positive alveolar and lung homogenate macrophages were exchanged by donor CD45.1-expressing macrophages within 2 mo after treatment with Escherichia coli endotoxin (LPS). Importantly, fluorescence-activated cell sorter analysis of increased annexin V binding to both recipient and donor-type macrophages revealed increased apoptotic events to underlie this endotoxin-driven inflammatory macrophage turnover. Collectively, the data show that under baseline conditions the alveolar macrophage turnover exhibits very slow kinetics, whereas acute lung inflammation in response to treatment with LPS triggers a brisk acceleration of recruitment of monocytes that replace the resident alveolar macrophage population.
Collapse
Affiliation(s)
- Ulrich A Maus
- Laboratory for Experimental Lung Research, Hannover School of Medicine, Feodor-Lynen-Strasse 21, Hannover 30625, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|