1
|
Cappelleri A, Canesi S, Bertola L, Capo V, Zecchillo A, Albano L, Villa A, Scanziani E, Recordati C. Pneumocystis murina lesions in lungs of experimentally infected Cd40l -/- mice. Vet Pathol 2024; 61:988-997. [PMID: 38757523 DOI: 10.1177/03009858241252409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/18/2024]
Abstract
The Cd40l-/- mouse is a well-established model of X-linked hyper-immunoglobulin M (IgM) syndrome, an immunodeficiency disorder of human beings characterized by the lack of expression of the CD40 ligand (CD40L) on activated T-cells, predisposing to infections with opportunistic pathogens like Pneumocystis jirovecii. The aim of our study was to describe the pulmonary lesions in Cd40l-/- mice experimentally infected with Pneumocystis murina, in comparison with naturally infected severe combined immunodeficient (SCID) mice. Formalin-fixed paraffin-embedded lungs from 26 Cd40l-/-, 11 SCID, and 5 uninfected Cd40l-/- mice were examined by histology and immunohistochemistry for the presence of the pathogen and for leukocyte populations (CD3, CD4, CD45R/B220, CD8a, Iba-1, Ly-6G, CD206, MHC II, and NKp46/NCR1). Infection was confirmed by immunohistochemistry in 18/26 (69%) Cd40l-/- mice and in 11/11 (100%) SCID mice. Fourteen out of 26 (54%) Cd40l-/- mice had interstitial pneumonia. Twenty-three out of 26 (88%) Cd40l-/- mice had peribronchiolar/perivascular lymphoplasmacytic infiltrates, rich in B-cells and Mott cells. Acidophilic macrophage pneumonia was additionally found in 20/26 (77%) Cd40l-/- mice. Only 4/11 (36%) SCID mice had interstitial pneumonia, but no peribronchiolar/perivascular infiltrates or acidophilic macrophage pneumonia were observed in this strain. This study represents the first description of pulmonary histopathological lesions in Cd40l-/- mice infected with P. murina. We speculate that the singular characteristics of the inflammatory infiltrates observed in Cd40l-/- mice could be explained by the specific immune phenotype of the model.
Collapse
Affiliation(s)
- Andrea Cappelleri
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Simone Canesi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Luca Bertola
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute of Genetic and Biomedical Research, Milan Unit, Italy
| | - Alessandra Zecchillo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute of Genetic and Biomedical Research, Milan Unit, Italy
| | - Luisa Albano
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- National Research Council, Institute of Genetic and Biomedical Research, Milan Unit, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Lodi, Italy
- Mouse and Animal Pathology Laboratory (MAPLab), UniMi Foundation, Milan, Italy
| |
Collapse
|
2
|
Sassi M, Curran SJ, Bishop LR, Liu Y, Kovacs JA. CD40 Expression by B Cells Is Required for Optimal Immunity to Murine Pneumocystis Infection. J Infect Dis 2024; 230:1033-1041. [PMID: 38478734 PMCID: PMC11481328 DOI: 10.1093/infdis/jiae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
CD40-CD40 ligand interactions are critical for controlling Pneumocystis infection. However, which CD40-expressing cell populations are important for this interaction have not been well defined. We used a cohousing mouse model of Pneumocystis infection, combined with flow cytometry and quantitative polymerase chain reaction, to examine the ability of different populations of cells from C57BL/6 mice to reconstitute immunity in CD40 knockout mice. Unfractionated splenocytes, as well as purified B cells, were able to control Pneumocystis infection, while B cell-depleted splenocytes and unstimulated bone marrow-derived dendritic cells were unable to control infection in CD40 knockout mice. Pneumocystis antigen-pulsed bone marrow-derived dendritic cells showed early but limited control of infection. Additional findings were consistent with recent studies that suggested a role for antigen presentation by B cells; specifically, by using cells from immunized animals, B cells were able to present Pneumocystis antigens to induce proliferation of T cells. Thus, CD40 expression by B cells appears necessary for robust immunity to Pneumocystis.
Collapse
Affiliation(s)
- Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Shelly J Curran
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Bishop LR, Starost MF, Kovacs JA. CD4, but not Cxcr6, is necessary for control of Pneumocystis murina infection. Microbes Infect 2024:105408. [PMID: 39182643 PMCID: PMC11846962 DOI: 10.1016/j.micinf.2024.105408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
CD4+ T cells are critical to control of Pneumocystis infection, and Cxcr6 has been shown to be upregulated in these cells during infection, but the roles of CD4 and Cxcr6 in this setting are undefined. To explore this, mice deficient in CD4 or Cxcr6 expression were utilized in a co-housing mouse model that mimics the natural route of Pneumocystis infection. Organism load and anti-Pneumocystis antibodies were assayed over time, and immunohistochemistry, flow cytometry, and quantitative PCR were used to characterize host immune responses during infection. CD4 was found to be necessary for clearance of Pneumocystis murina, though partial control was seen in it's absence; based on ThPOK expression, double negative T cells with T helper cell characteristics may be contributing to this control. Using a Cxcr6 deficient mouse expressing gfp, control of infection in the absence of Cxcr6 was similar to that in heterozygous control mice. It is noteworthy that gfp + cells were seen in the lungs with similar frequencies between the 2 strains. Interferon-ɣ and chemokine/ligands Cxcr3, Cxcl9, and Cxcl10 increased during P. murina infection in all models. Thus, CD4, but not Cxcr6, is needed for clearance of P. murina infection.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892, USA
| | - Matthew F Starost
- Diagnostic and Research Services Branch, Division of Veterinary Resources, National Institutes of Health, Building 28A, Room 111A, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Sassi M, Curran SJ, Bishop LR, Liu Y, Kovacs JA. CD40 Expression by B cells is Required for Optimal Immunity to Murine Pneumocystis Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578900. [PMID: 38410485 PMCID: PMC10896351 DOI: 10.1101/2024.02.05.578900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/28/2024]
Abstract
CD40-CD40L interactions are critical for controlling Pneumocystis infection. However, which CD40-expressing cell populations are important for this interaction have not been well-defined. We used a cohousing mouse model of Pneumocystis infection, combined with flow cytometry and qPCR, to examine the ability of different populations of cells from C57BL/6 mice to reconstitute immunity in CD40 knockout (KO) mice. Unfractionated splenocytes, as well as purified B cells, were able to control Pneumocystis infection, while B cell depleted splenocytes and unstimulated bone-marrow derived dendritic cells (BMDCs) were unable to control infection in CD40 KO mice. Pneumocystis antigen-pulsed BMDCs showed early, but limited, control of infection. Consistent with recent studies that have suggested a role for antigen presentation by B cells, using cells from immunized animals, B cells were able to present Pneumocystis antigens to induce proliferation of T cells. Thus, CD40 expression by B cells appears necessary for robust immunity to Pneumocystis.
Collapse
Affiliation(s)
- Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Shelly J Curran
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Yueqin Liu
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|
6
|
Bishop LR, Curran SJ, Kovacs JA. Mucosal-Associated Invariant T Cells Accumulate in the Lungs during Murine Pneumocystis Infection but Are Not Required for Clearance. J Fungi (Basel) 2022; 8:jof8060645. [PMID: 35736127 PMCID: PMC9224882 DOI: 10.3390/jof8060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Pneumocystis is a fungal pathogen that can cause pneumonia in immunosuppressed hosts and subclinical infection in immunocompetent hosts. Mucosal-associated invariant T (MAIT) cells are unconventional lymphocytes with a semi-invariant T-cell receptor that are activated by riboflavin metabolites that are presented by the MHC-1b molecule MR1. Although Pneumocystis can presumably synthesize riboflavin metabolites based on whole-genome studies, the role of MAIT cells in controlling Pneumocystis infection is unknown. We used a co-housing mouse model of Pneumocystis infection, combined with flow cytometry and qPCR, to characterize the response of MAIT cells to infection in C57BL/6 mice, and, using MR1−/− mice, which lack MAIT cells, to examine their role in clearing the infection. MAIT cells accumulated in the lungs of C57BL/6 mice during Pneumocystis infection and remained at increased levels for many weeks after clearance of infection. In MR1−/− mice, Pneumocystis infection was cleared with kinetics similar to C57BL/6 mice. Thus, MAIT cells are not necessary for control of Pneumocystis infection, but the prolonged retention of these cells in the lungs following clearance of infection may allow a more rapid future response to other pathogens.
Collapse
|
7
|
Li XL, Liu ZX, Liu ZJ, Li H, Wilde B, Witzke O, Qi M, Xu WL, He Q, Zhu JQ. Pneumocystis pneumonia in liver transplant recipients. Am J Transl Res 2021; 13:13981-13992. [PMID: 35035740 PMCID: PMC8748142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2021] [Accepted: 06/11/2021] [Indexed: 06/14/2023]
Abstract
The clinical course of Pneumocystis pneumonia in liver transplant recipients has not been well investigated. Therefore, we collected and analyzed the clinical, epidemiological, and molecular data from patients with Pneumocystis pneumonia as well as paired controls (Chinese Clinical Trial Registry, ChiCTR2100046028; www.chictr.org.cn). There were a total of ten patients diagnosed with Pneumocystis pneumonia containing prospectively included six patients and retrospectively collected four patients, of which seven were transferred to the surgical intensive care unit and four died. The transmission map revealed that inter-patient transmission of Pneumocystis jirovecii was impossible; P. jirovecii detection was negative in all air samples. It was positive only in one sample from the twelve healthcare workers who had close contact with diseased patients. Five out of 79 liver transplant recipients during the outbreak were colonized with Pneumocystis jirovecii compared to 2 out of 94 after the outbreak upon admission (P>0.05). Liver transplant recipients with Pneumocystis pneumonia had totally different genotypes based on multilocus sequence typing. Additionally, we found an unreported mutation in the cytochrome b gene. The absolute CD19+ B-cell counts (odds ratio: 1.028; 95% confidence interval: 1.000-1.057; P=0.049) were defined to be the only significant independent risk factor. At a cut-off value of 117.16/µL, the sensitivity and specificity were 100% and 70%, respectively. Pneumocystis pneumonia is a severe complication following liver transplantation. The outbreak may not be caused by nosocomial transmission. A decrease in absolute CD19+ B-cell counts may be associated with the development of Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Xian-Liang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Zi-Xi Liu
- Department of Colorectal and Anal Surgery, Beijing Coloproctological Hospital, Beijing Erlonglu HospitalBeijing, China
| | - Zhen-Jia Liu
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Han Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-EssenEssen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-EssenGermany
| | - Man Qi
- Department of Pathology Department, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Wen-Li Xu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| | - Ji-Qiao Zhu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing, China
| |
Collapse
|
8
|
Merrill K, Coffey E, Furrow E, Masseau I, Rindt H, Reinero C. X-linked CD40 ligand deficiency in a 1-year-old male Shih Tzu with secondary Pneumocystis pneumonia. J Vet Intern Med 2020; 35:497-503. [PMID: 33274522 PMCID: PMC7848317 DOI: 10.1111/jvim.15988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
An approximately 1‐year‐old male intact Shih Tzu dog was referred to a tertiary facility with a history of progressive tachypnea, increased respiratory effort, and weight loss over a 3‐month period that failed to improve with empirical antimicrobial treatment. Upon completion of a comprehensive respiratory evaluation, the dog was diagnosed with severe Pneumocystis pneumonia and secondary pulmonary hypertension. Clinical signs resolved and disease resolution was confirmed after completion of an 8‐week course of trimethoprim‐sulfonamide, 4‐week tapering dose of prednisone to decrease an inflammatory response secondary to acute die‐off of organisms, a 2‐week course of clopidogrel to prevent clot formation, and a 2‐week course of a phosphodiesterase‐5 inhibitor to treat pulmonary hypertension. Immunodiagnostic testing and genetic sequencing were performed to evaluate for potential immunodeficiency as an underlying cause for the development Pneumocystis pneumonia, and identified an X‐linked CD40 ligand deficiency.
Collapse
Affiliation(s)
- Kristen Merrill
- Department of Veterinary Medicine and Surgery, University of Missouri, Ringgold Standard Institution - Small Animal Internal Medicine, Columbia, Missouri, USA
| | - Emily Coffey
- University of Minnesota, Ringgold Standard Institution, Minneapolis, Minnesota, USA
| | - Eva Furrow
- University of Minnesota, Internal Medicine Veterinary Medical Center, St. Paul, Minnesota, USA
| | - Isabelle Masseau
- Department of Sciences Cliniques, Universite de Montreal, St. Hyacinthe, Quebec, Canada
| | - Hansjörg Rindt
- University of Missouri, College of Veterinary Medicine, Veterinary Medicine and Surgery, Columbia, Missouri, USA
| | - Carol Reinero
- University of Missouri, Veterinary Medicine and Surgery, Columbia, Missouri, USA
| |
Collapse
|
9
|
Kutty G, Davis AS, Schuck K, Masterson M, Wang H, Liu Y, Kovacs JA. Characterization of Pneumocystis murina Bgl2, an Endo-β-1,3-Glucanase and Glucanosyltransferase. J Infect Dis 2020; 220:657-665. [PMID: 31100118 DOI: 10.1093/infdis/jiz172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2019] [Accepted: 04/13/2019] [Indexed: 11/13/2022] Open
Abstract
Glucan is the major cell wall component of Pneumocystis cysts. In the current study, we have characterized Pneumocystis Bgl2 (EC 3.2.1.58), an enzyme with glucanosyltransferase and β-1,3 endoglucanase activity in other fungi. Pneumocystis murina, Pneumocystis carinii, and Pneumocystis jirovecii bgl2 complementary DNA sequences encode proteins of 437, 447, and 408 amino acids, respectively. Recombinant P. murina Bgl2 expressed in COS-1 cells demonstrated β-glucanase activity, as shown by degradation of the cell wall of Pneumocystis cysts. It also cleaved reduced laminaripentaose and transferred oligosaccharides, resulting in polymers of 6 and 7 glucan residues, demonstrating glucanosyltransferase activity. Surprisingly, confocal immunofluorescence analysis of P. murina-infected mouse lung sections using an antibody against recombinant Bgl2 showed that the native protein is localized primarily to the trophic form of Pneumocystis in both untreated mice and mice treated with caspofungin, an antifungal drug that inhibits β-1,3-glucan synthase. Thus, like other fungi, Bgl2 of Pneumocystis has both endoglucanase and glucanosyltransferase activities. Given that it is expressed primarily in trophic forms, further studies are needed to better understand its role in the biology of Pneumocystis.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Kaitlynn Schuck
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Mya Masterson
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Honghui Wang
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Yueqin Liu
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| |
Collapse
|
10
|
Pérez FJ, Iturra PA, Ponce CA, Magne F, Garcia-Angulo V, Vargas SL. Niflumic Acid Reverses Airway Mucus Excess and Improves Survival in the Rat Model of Steroid-Induced Pneumocystis Pneumonia. Front Microbiol 2019; 10:1522. [PMID: 31333624 PMCID: PMC6624676 DOI: 10.3389/fmicb.2019.01522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Although the role of adaptive immunity in fighting Pneumocystis infection is well known, the role of the innate, airway epithelium, responses remains largely unexplored. The concerted interaction of innate and adaptive responses is essential to successfully eradicate infection. Increased expression of goblet-cell-derived CLCA1 protein plus excess mucus in infant autopsy lungs and in murine models of primary Pneumocystis infection alert of innate immune system immunopathology associated to Pneumocystis infection. Nonetheless, whether blocking mucus-associated innate immune pathways decreases Pneumocystis-related immunopathology is unknown. Furthermore, current treatment of Pneumocystis pneumonia (PcP) relying on anti-Pneumocystis drugs plus steroids is not ideal because removes cellular immune responses against the fungal pathogen. In this study, we used the steroid-induced rat model of PcP to evaluate inflammation and mucus progression, and tested the effect of niflumic acid (NFA), a fenamate-type drug with potent CLCA1 blocker activity, in decreasing Pneumocystis-associated immunopathology. In this model, animals acquire Pneumocystis spontaneously and pneumonia develops owing to the steroids-induced immunodeficiency. Steroids led to decreased animal weight evidencing severe immunosuppression and to significant Pneumocystis-associated pulmonary edema as evidenced by wet-to-dry lung ratios that doubled those of uninfected animals. Inflammatory cuffing infiltrates were noticed first around lung blood vessels followed by bronchi, and both increased progressively. Similarly, airway epithelial and lumen mucus progressively increased. This occurred in parallel to increasing levels of MUC5AC and mCLCA3, the murine homolog of hCLCA1. Administration of NFA caused a significant decrease in total mucus, MUC5AC and mCLCA3 and also, in Pneumocystis-associated inflammation. Most relevant, NFA treatment improved survival at 8 weeks of steroids. Results suggest an important role of innate immune responses in immunopathology of steroid-induced PcP. They warrant evaluation of CLCA1 blockers as adjunctive therapy in this condition and describe a simple model to evaluate therapeutic interventions for steroid resistant mucus, a common condition in patients with chronic lung disease like asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis.
Collapse
Affiliation(s)
- Francisco J Pérez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A Iturra
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabien Magne
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Víctor Garcia-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sergio L Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Otieno-Odhiambo P, Wasserman S, Hoving JC. The Contribution of Host Cells to Pneumocystis Immunity: An Update. Pathogens 2019; 8:pathogens8020052. [PMID: 31010170 PMCID: PMC6631015 DOI: 10.3390/pathogens8020052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/04/2023] Open
Abstract
Pneumocystis is a ubiquitous atypical fungus that is distributed globally. The genus comprises morphologically similar but genetically heterogeneous species that have co-evolved with specific mammalian hosts as obligate intra-pulmonary pathogens. In humans, Pneumocystis jirovecii is the causative organism of Pneumocystis pneumonia (PCP) in immunocompromised individuals, a serious illness frequently leading to life-threatening respiratory failure. Initially observed in acquired immunodeficiency syndrome (AIDS) patients, PCP is increasingly observed in immunocompromised non-AIDS patients. The evolving epidemiology and persistently poor outcomes of this common infection will require new strategies for diagnosis and treatment. A deeper understanding of host immune responses and of the cells that mediate them will improve the chance of developing new treatment strategies. This brief review provides an update on recent studies on the role of host immunity against Pneumocystis.
Collapse
Affiliation(s)
- Patricia Otieno-Odhiambo
- AFGrica Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa.
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa.
| | - J Claire Hoving
- AFGrica Medical Mycology Research Unit, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK.
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town 7925, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
| |
Collapse
|
12
|
Rojas DA, Iturra PA, Méndez A, Ponce CA, Bustamante R, Gallo M, Bórquez P, Vargas SL. Increase in secreted airway mucins and partial Muc5b STAT6/FoxA2 regulation during Pneumocystis primary infection. Sci Rep 2019; 9:2078. [PMID: 30765827 PMCID: PMC6376022 DOI: 10.1038/s41598-019-39079-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
Airway mucus responses to subclinical infections may explain variations in progression of chronic lung diseases and differences in clinical expression of respiratory infections across individuals. Pneumocystis associates to more severe Chronic Obstructive Pulmonary Disease (COPD), asthma, respiratory distress of premature newborns, and is a consistent subclinical infection between 2 and 5 months of age when hospitalizations for respiratory cause and infant mortality are higher. This atypical fungus associates to increased mucin 5AC (MUC5AC), a central effector of Th2-type allergic inflammation, in infant lungs. However, mucus progression, expression of MUC5B essential for airway defense, and potential for pharmacologic modulation of mucus during Pneumocystis infection remain unknown. We measured MUC5B and Pneumocystis in infant lungs, and progression of mucin levels and effect of inhibition of the STAT6/FoxA2 mucus pathway using Kaempferol, a JAK/STAT6 inhibitor, in immunocompetent rats during Pneumocystis primary infection. Pneumocystis associated to increased MUC5B in infant lungs. Muc5b increased earlier and more abundantly than Muc5ac during experimental primary infection suggesting an acute defensive response against Pneumocystis as described against bacteria, while increased Muc5ac levels supports an ongoing allergic, Th2 lymphocyte-type response during primary Pneumocystis infection. Kaempferol partly reversed Muc5b stimulation suggesting limited potential for pharmacological modulation via the STAT6-FoxA2 pathway.
Collapse
Affiliation(s)
- Diego A Rojas
- Biomedical Sciences Institute, University of Chile School of Medicine, Independencia 1027, Independencia, Santiago, 8380453, Chile
| | - Pablo A Iturra
- Biomedical Sciences Institute, University of Chile School of Medicine, Independencia 1027, Independencia, Santiago, 8380453, Chile
| | - Andrea Méndez
- Biomedical Sciences Institute, University of Chile School of Medicine, Independencia 1027, Independencia, Santiago, 8380453, Chile
| | - Carolina A Ponce
- Biomedical Sciences Institute, University of Chile School of Medicine, Independencia 1027, Independencia, Santiago, 8380453, Chile
| | - Rebeca Bustamante
- Biomedical Sciences Institute, University of Chile School of Medicine, Independencia 1027, Independencia, Santiago, 8380453, Chile
| | - Miriam Gallo
- Servicio Médico Legal de Santiago, Av. La Paz 1012, Independencia, Santiago, 8380454, Chile
| | - Pamela Bórquez
- Servicio Médico Legal de Santiago, Av. La Paz 1012, Independencia, Santiago, 8380454, Chile
| | - Sergio L Vargas
- Biomedical Sciences Institute, University of Chile School of Medicine, Independencia 1027, Independencia, Santiago, 8380453, Chile.
| |
Collapse
|
13
|
Rong HM, Li T, Zhang C, Wang D, Hu Y, Zhai K, Shi HZ, Tong ZH. IL-10-producing B cells regulate Th1/Th17-cell immune responses in Pneumocystis pneumonia. Am J Physiol Lung Cell Mol Physiol 2018; 316:L291-L301. [PMID: 30284926 DOI: 10.1152/ajplung.00210.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
Pneumocystis pneumonia (PCP) is a common opportunistic infectious disease that is prevalent in immunosuppressed hosts. Accumulating evidence shows that B cells play an important role in infectious diseases. In the present study, the immune regulatory role of mature B cells in host defense to Pneumocystis was evaluated. Pneumocystis infection resulted in a decrease in B cells in patients and mice, and the Pneumocystis burden in B cell-deficient mice also progressively increased from weeks 1 to 7 after infection. The clearance of Pneumocystis was delayed in B cell-activating factor receptor (BAFF-R)-deficient mice (BAFF-R-/- mice), which had few B cells and Pneumocystis-specific IgG and IgM antibodies, compared with clearance in wild-type (WT) mice. There were fewer effector CD4+ T cells and higher percentages of T helper (Th)1/Th17 cells in BAFF-R-/- mice than in WT mice. Adoptive transfer of naive B cells, mRNA sequencing, and IL-1β neutralization experiments indicated that IL-1β is a likely determinant of the IL-10-producing B cell-mediated suppression of Th1/Th17-cell immune responses in BAFF-R-/- PCP mice. Our data indicated that B cells play a vital role in the regulation of Th cells in response to Pneumocystis infection.
Collapse
Affiliation(s)
- Heng-Mo Rong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Ting Li
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Chao Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Dong Wang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Yang Hu
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Kan Zhai
- Department of Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| | - Zhao-Hui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
14
|
Ripamonti C, Bishop LR, Kovacs JA. Pulmonary Interleukin-17-Positive Lymphocytes Increase during Pneumocystis murina Infection but Are Not Required for Clearance of Pneumocystis. Infect Immun 2017; 85:e00434-16. [PMID: 28438973 PMCID: PMC5478948 DOI: 10.1128/iai.00434-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2016] [Accepted: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
Pneumocystis remains an important pathogen of immunosuppressed patients, causing a potentially life-threatening pneumonia. Despite its medical importance, the immune responses required to control infection, including the role of interleukin-17 (IL-17), which is important in controlling other fungal infections, have not been clearly defined. Using flow cytometry and intracellular cytokine staining after stimulation with phorbol myristate acetate and ionomycin, we examined gamma interferon (IFN-γ), IL-4, IL-5, and IL-17 production by lung lymphocytes in immunocompetent C57BL/6 mice over time following infection with Pneumocystismurina We also examined the clearance of Pneumocystis infection in IL-17A-deficient mice. The production of both IFN-γ and IL-17 by pulmonary lymphocytes increased during infection, with maximum production at approximately days 35 to 40, coinciding with peak Pneumocystis levels in the lungs, while minimal changes were seen in IL-4- and IL-5-positive cells. The proportion of cells producing IFN-γ was consistently higher than for cells producing IL-17, with peak levels of ∼25 to 30% of CD3+ T cells for the former compared to ∼15% for the latter. Both CD4+ T cells and γδ T cells produced IL-17. Administration of anti-IFN-γ antibody led to a decrease in IFN-γ-positive cells, and an increase in IL-5-positive cells, but did not impact clearance of Pneumocystis infection. Despite the increases in IL-17 production during infection, IL-17A-deficient mice cleared Pneumocystis infection with kinetics similar to C57BL/6 mice. Thus, while IL-17 production in the lungs is increased during Pneumocystis infection in immunocompetent mice, IL-17A is not required for control of Pneumocystis infection.
Collapse
Affiliation(s)
- Chiara Ripamonti
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Hu Y, Wang D, Zhai K, Tong Z. Transcriptomic Analysis Reveals Significant B Lymphocyte Suppression in Corticosteroid-Treated Hosts with Pneumocystis Pneumonia. Am J Respir Cell Mol Biol 2017; 56:322-331. [PMID: 27788015 DOI: 10.1165/rcmb.2015-0356oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is an opportunistic, infectious disease that is prevalent in immunosuppressed hosts. Corticosteroid treatment is the most significant risk factor for patients with PCP who are human immunodeficiency virus negative, although little is known about how corticosteroids alter the host defense against Pneumocystis infection. In the present study, we used transcriptome analysis to examine the immune response in the lungs of corticosteroid-treated PCP mice. The results showed down-regulation in the genes related to both native immunity, such as antigen processing and presentation, inflammatory response, and phagocytosis, as well as B and T lymphocyte immunity. The repression of gene expression, corresponding to B cell immunity, including B cell signaling, homeostasis, and Ig production, was prominent. The finding was confirmed by quantitative PCR of mouse lungs and the peripheral blood of patients with PCP. Flow cytometry also revealed a significant depletion of B cells in corticosteroid-treated PCP mice. Our study has highlighted that corticosteroid treatment suppresses the B cell immunity in the PCP host, which is likely one of the main reasons that corticosteroid treatment may stimulate PCP development.
Collapse
Affiliation(s)
- Yang Hu
- 1 Department of Respiratory Medicine and Critical Care Medicine, and
| | - Dong Wang
- 1 Department of Respiratory Medicine and Critical Care Medicine, and
| | - Kan Zhai
- 2 Department of Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- 1 Department of Respiratory Medicine and Critical Care Medicine, and
| |
Collapse
|
16
|
Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun 2016; 7:13894. [PMID: 28004802 PMCID: PMC5192216 DOI: 10.1038/ncomms13894] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4+ T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4+ T-cell responses. In addition, activating endogenous host CD103+ DCs and the CD40–CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4+ T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy. A delay in T cell responses is postulated as a possible explanation for the limited efficacy of vaccines against tuberculosis. Here the authors demonstrate this T-cell block and remove it by activating endogenous dendritic cells or delivering activated dendritic cells to the lungs, enhancing immunity of mice to Mycobacterium tuberculosis.
Collapse
|
17
|
Kutty G, Davis AS, Ferreyra GA, Qiu J, Huang DW, Sassi M, Bishop L, Handley G, Sherman B, Lempicki R, Kovacs JA. β-Glucans Are Masked but Contribute to Pulmonary Inflammation During Pneumocystis Pneumonia. J Infect Dis 2016; 214:782-91. [PMID: 27324243 PMCID: PMC4978378 DOI: 10.1093/infdis/jiw249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2016] [Accepted: 06/09/2016] [Indexed: 12/14/2022] Open
Abstract
β-glucans, which can activate innate immune responses, are a major component in the cell wall of the cyst form of Pneumocystis In the current study, we examined whether β-1,3-glucans are masked by surface proteins in Pneumocystis and what role β-glucans play in Pneumocystis-associated inflammation. For 3 species, including Pneumocystis jirovecii, which causes Pneumocystis pneumonia in humans, Pneumocystis carinii, and Pneumocystis murina, β-1,3-glucans were masked in most organisms, as demonstrated by increased exposure following trypsin treatment. Using quantitative polymerase chain reaction and microarray techniques, we demonstrated in a mouse model of Pneumocystis pneumonia that treatment with caspofungin, an inhibitor of β-1,3-glucan synthesis, for 21 days decreased expression of a broad panel of inflammatory markers, including interferon γ, tumor necrosis factor α, interleukin 1β, interleukin 6, and multiple chemokines/chemokine ligands. Thus, β-glucans in Pneumocystis cysts are largely masked, which likely decreases innate immune activation; this mechanism presumably was developed for interactions with immunocompetent hosts, in whom organism loads are substantially lower. In immunosuppressed hosts with a high organism burden, organism death and release of glucans appears to be an important contributor to deleterious host inflammatory responses.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda
| | - A Sally Davis
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan
| | - Gabriela A Ferreyra
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda
| | - Ju Qiu
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Da Wei Huang
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Monica Sassi
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda
| | - Lisa Bishop
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda
| | - Grace Handley
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda
| | - Brad Sherman
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Richard Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda
| |
Collapse
|
18
|
Yatsu R, Miyagawa S, Kohno S, Parrott BB, Yamaguchi K, Ogino Y, Miyakawa H, Lowers RH, Shigenobu S, Guillette LJ, Iguchi T. RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation. BMC Genomics 2016; 17:77. [PMID: 26810479 PMCID: PMC4727388 DOI: 10.1186/s12864-016-2396-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2015] [Accepted: 01/14/2016] [Indexed: 11/26/2022] Open
Abstract
Background The American alligator (Alligator mississippiensis) displays temperature-dependent sex determination (TSD), in which incubation temperature during embryonic development determines the sexual fate of the individual. However, the molecular mechanisms governing this process remain a mystery, including the influence of initial environmental temperature on the comprehensive gonadal gene expression patterns occurring during TSD. Results Our characterization of transcriptomes during alligator TSD allowed us to identify novel candidate genes involved in TSD initiation. High-throughput RNA sequencing (RNA-seq) was performed on gonads collected from A. mississippiensis embryos incubated at both a male and a female producing temperature (33.5 °C and 30 °C, respectively) in a time series during sexual development. RNA-seq yielded 375.2 million paired-end reads, which were mapped and assembled, and used to characterize differential gene expression. Changes in the transcriptome occurring as a function of both development and sexual differentiation were extensively profiled. Forty-one differentially expressed genes were detected in response to incubation at male producing temperature, and included genes such as Wnt signaling factor WNT11, histone demethylase KDM6B, and transcription factor C/EBPA. Furthermore, comparative analysis of development- and sex-dependent differential gene expression revealed 230 candidate genes involved in alligator sex determination and differentiation, and early details of the suspected male-fate commitment were profiled. We also discovered sexually dimorphic expression of uncharacterized ncRNAs and other novel elements, such as unique expression patterns of HEMGN and ARX. Twenty-five of the differentially expressed genes identified in our analysis were putative transcriptional regulators, among which were MYBL2, MYCL, and HOXC10, in addition to conventional sex differentiation genes such as SOX9, and FOXL2. Inferred gene regulatory network was constructed, and the gene-gene and temperature-gene interactions were predicted. Conclusions Gonadal global gene expression kinetics during sex determination has been extensively profiled for the first time in a TSD species. These findings provide insights into the genetic framework underlying TSD, and expand our current understanding of the developmental fate pathways during vertebrate sex determination. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2396-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryohei Yatsu
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Shinichi Miyagawa
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC, 29412, USA.
| | - Benjamin B Parrott
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC, 29412, USA.
| | - Katsushi Yamaguchi
- National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Yukiko Ogino
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
| | - Russell H Lowers
- Innovative Health Applications, Kennedy Space Center, Merritt Island, FL, 32899, USA.
| | - Shuji Shigenobu
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston, SC, 29412, USA.
| | - Taisen Iguchi
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
19
|
Bishop LR, Lionakis MS, Sassi M, Murphy PM, Hu X, Huang DW, Sherman B, Qiu J, Yang J, Lempicki RA, Kovacs JA. Characterization of chemokine and chemokine receptor expression during Pneumocystis infection in healthy and immunodeficient mice. Microbes Infect 2015; 17:638-50. [PMID: 26052064 PMCID: PMC4554965 DOI: 10.1016/j.micinf.2015.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
We examined gene expression levels of multiple chemokines and chemokine receptors during Pneumocystis murina infection in wild-type and immunosuppressed mice, using microarrays and qPCR. In wild-type mice, expression of chemokines that are ligands for Ccr2, Cxcr3, Cxcr6, and Cxcr2 increased at days 32-41 post-infection, with a return to baseline by day 75-150. Concomitant increases were seen in Ccr2, Cxcr3, and Cxcr6, but not in Cxcr2 expression. Induction of these same factors also occurred in CD40-ligand and CD40 knockout mice but only at a much later time-point, during uncontrolled Pneumocystis pneumonia (PCP). Expression of CD4 Th1 markers was increased in wild-type mice during clearance of infection. Ccr2 and Cx3cr1 knockout mice cleared Pneumocystis infection with kinetics similar to wild-type mice, and all animals developed anti-Pneumocystis antibodies. Upregulation of Ccr2, Cxcr3, and Cxcr6 and their ligands supports an important role for T helper cells and mononuclear phagocytes in the clearance of Pneumocystis infection. However, based on the current and prior studies, no single chemokine receptor appears to be critical to the clearance of Pneumocystis.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Monica Sassi
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaojun Hu
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Da Wei Huang
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Brad Sherman
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju Qiu
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jun Yang
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Richard A Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Swamydas M, Break TJ, Lionakis MS. Mononuclear phagocyte-mediated antifungal immunity: the role of chemotactic receptors and ligands. Cell Mol Life Sci 2015; 72:2157-75. [PMID: 25715741 PMCID: PMC4430359 DOI: 10.1007/s00018-015-1858-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/11/2015] [Indexed: 12/12/2022]
Abstract
Over the past two decades, fungal infections have emerged as significant causes of morbidity and mortality in patients with hematological malignancies, hematopoietic stem cell or solid organ transplantation and acquired immunodeficiency syndrome. Besides neutrophils and CD4(+) T lymphocytes, which have long been known to play an indispensable role in promoting protective antifungal immunity, mononuclear phagocytes are now being increasingly recognized as critical mediators of host defense against fungi. Thus, a recent surge of research studies has focused on understanding the mechanisms by which resident and recruited monocytes, macrophages and dendritic cells accumulate and become activated at the sites of fungal infection. Herein, we critically review how a variety of G-protein coupled chemoattractant receptors and their ligands mediate mononuclear phagocyte recruitment and effector function during infection by the most common human fungal pathogens.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Timothy J. Break
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, 9000 Rockville Pike, Building 10, Room 11C102, Bethesda, MD 20892 USA
| |
Collapse
|
21
|
Kutty G, Davis AS, Ma L, Taubenberger JK, Kovacs JA. Pneumocystis encodes a functional endo-β-1,3-glucanase that is expressed exclusively in cysts. J Infect Dis 2014; 211:719-28. [PMID: 25231017 DOI: 10.1093/infdis/jiu517] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023] Open
Abstract
β-1,3-glucan is a major cell wall component of Pneumocystis cysts. We have characterized endo-β-1,3-glucanase (Eng) from 3 species of Pneumocystis. The gene eng is a single-copy gene that encodes a protein containing 786 amino acids in P. carinii and P. murina, and 788 amino acids in P. jirovecii, including a signal peptide for the former 2 but not the latter. Recombinant Eng expressed in Escherichia coli was able to solubilize the major surface glycoprotein of Pneumocystis, thus potentially facilitating switching of the expressed major surface glycoprotein (Msg) variant. Confocal immunofluorescence analysis of P. murina-infected mouse lung sections localized Eng exclusively to the cyst form of Pneumocystis. No Eng was detected after mice were treated with caspofungin, a β-1,3-glucan synthase inhibitor that is known to reduce the number of cysts. Thus, Eng is a cyst-specific protein that may play a role in Msg variant expression in Pneumocystis.
Collapse
Affiliation(s)
- Geetha Kutty
- Critical Care Medicine Department, National Institutes of Health Clinical Center
| | - A Sally Davis
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Liang Ma
- Critical Care Medicine Department, National Institutes of Health Clinical Center
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joseph A Kovacs
- Critical Care Medicine Department, National Institutes of Health Clinical Center
| |
Collapse
|
22
|
Pérez FJ, Ponce CA, Rojas DA, Iturra PA, Bustamante RI, Gallo M, Hananias K, Vargas SL. Fungal colonization with Pneumocystis correlates to increasing chloride channel accessory 1 (hCLCA1) suggesting a pathway for up-regulation of airway mucus responses, in infant lungs. RESULTS IN IMMUNOLOGY 2014; 4:58-61. [PMID: 25379375 PMCID: PMC4213842 DOI: 10.1016/j.rinim.2014.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/14/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/22/2023]
Abstract
Fungal colonization with Pneumocystis is associated with increased airway mucus in infants during their primary Pneumocystis infection, and to severity of COPD in adults. The pathogenic mechanisms are under investigation. Interestingly, increased levels of hCLCA1 – a member of the calcium-sensitive chloride conductance family of proteins that drives mucus hypersecretion – have been associated with increased mucus production in patients diagnosed with COPD and in immunocompetent rodents with Pneumocystis infection. Pneumocystis is highly prevalent in infants; therefore, the contribution of Pneumocystis to hCLCA1 expression was examined in autopsied infant lungs. Respiratory viruses that may potentially increase mucus, were also examined. hCLCA1 expression was measured using actin-normalized Western-blot, and the burden of Pneumocystis organisms was quantified by qPCR in 55 autopsied lungs from apparently healthy infants who died in the community. Respiratory viruses were diagnosed using RT-PCR for RSV, metapneumovirus, influenza, and parainfluenza viruses; and by PCR for adenovirus. hCLCA1 levels in virus positive samples were comparable to those in virus-negative samples. An association between Pneumocystis and increased hCLCA1 expression was documented (P=0.028). Additionally, increasing Pneumocystis burden correlated with increasing hCLCA1 protein expression levels (P=0.017). Results strengthen the evidence of Pneumocystis-associated up-regulation of mucus-related airway responses in infant lungs. Further characterization of this immunocompetent host-Pneumocystis-interaction, including assessment of potential clinical significance, is warranted.
Collapse
Affiliation(s)
- Francisco J Pérez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago 8380453, Chile
| | - Carolina A Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago 8380453, Chile
| | - Diego A Rojas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago 8380453, Chile
| | - Pablo A Iturra
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago 8380453, Chile
| | - Rebeca I Bustamante
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago 8380453, Chile
| | | | | | - Sergio L Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
23
|
Diagnosis of the primary infection by pneumocystis in autopsy specimens from two infants using lung impression smears (touch preps). Med Mycol Case Rep 2014; 5:28-31. [PMID: 25003025 PMCID: PMC4081978 DOI: 10.1016/j.mmcr.2014.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 11/22/2022] Open
Abstract
The primary infection by Pneumocystis of normal, healthy infants is asymptomatic and goes undiagnosed. Microscopy diagnosis of Pneumocystis was sought in lung impression smears (LIS) from two ~3-month-old infants dying unexpectedly in the community. Pneumocystis nuclei and cysts were identified using Hema-Gurr with subsequent Gomori–Grocott staining in the same spot documenting that these stains may be complementary. LIS provide for an observer–dependent, inexpensive, and ready-available method for detection of Pneumocystis in infant lungs.
Collapse
|
24
|
Ripamonti C, Bishop LR, Yang J, Lempicki RA, Kovacs JA. Clearance of Pneumocystis murina infection is not dependent on MyD88. Microbes Infect 2014; 16:522-7. [PMID: 24680862 PMCID: PMC4071138 DOI: 10.1016/j.micinf.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2013] [Revised: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 11/20/2022]
Abstract
To determine if myeloid differentiation factor 88 (MyD88), which is necessary for signaling by most TLRs and IL-1Rs, is necessary for control of Pneumocystis infection, MyD88-deficient and wild-type mice were infected with Pneumocystis by exposure to infected seeder mice and were followed for up to 106 days. MyD88-deficient mice showed clearance of Pneumocystis and development of anti-Pneumocystis antibody responses with kinetics similar to wild-type mice. Based on expression levels of select genes, MyD88-deficient mice developed immune responses similar to wild-type mice. Thus, MyD88 and the upstream pathways that rely on MyD88 signaling are not required for control of Pneumocystis infection.
Collapse
Affiliation(s)
- Chiara Ripamonti
- Critical Care Medicine Department, NIH Clinical Center, NIH, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892-1662, USA
| | - Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, NIH, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892-1662, USA
| | - Jun Yang
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Richard A Lempicki
- Laboratory of Immunopathogenesis and Bioinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Joseph A Kovacs
- Critical Care Medicine Department, NIH Clinical Center, NIH, Building 10, Room 2C145, MSC 1662, Bethesda, MD 20892-1662, USA.
| |
Collapse
|
25
|
Vargas SL, Ponce CA, Gallo M, Pérez F, Astorga JF, Bustamante R, Chabé M, Durand-Joly I, Iturra P, Miller RF, Aliouat EM, Dei-Cas E. Near-universal prevalence of Pneumocystis and associated increase in mucus in the lungs of infants with sudden unexpected death. Clin Infect Dis 2012; 56:171-9. [PMID: 23074306 PMCID: PMC3526255 DOI: 10.1093/cid/cis870] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pneumocystis without obvious accompanying pathology is occasionally reported in autopsied infant lungs. Its prevalence and significance are unknown. Interestingly, this mild infection induces a strong activation of mucus secretion-related genes in young immunocompetent rodents that has not been explored in infants. Excess mucus is induced by multiple airway offenders through nonspecific pathways and would explain a cofactor role of Pneumocystis in respiratory disease. We undertook characterization of the prevalence of Pneumocystis and associated mucus in infant lungs. METHODS Samples from 128 infants (mean age, 101 days) who died suddenly and unexpectedly in Santiago during 1999-2004 were examined for Pneumocystis using nested polymerase chain reaction (nPCR) amplification of the P. jirovecii mtLSU ribosomal RNA gene and immunofluorescence microscopy (IF). Pneumocystis-negative infants 28 days and older and their age-closest positives were studied for MUC5AC expression and Pneumocystis burden by Western blot and quantitative PCR, respectively. RESULTS Pneumocystis DNA was detected by nPCR in 105 of the 128 infants (82.0%) and Pneumocystis organisms were visualized by IF in 99 (94.3%) of the DNA-positive infants. The infection was commonest at 3-4 months with 40 of 41 (97.6%) infants of that age testing positive. MUC5AC was significantly increased in Pneumocystis-positive tissue specimens (P = .013). Death was unexplained in 113 (88.3%) infants; Pneumocystis was detected in 95 (84.0%) of them vs 10 of 15 (66.7%) with explained death (P = .28). CONCLUSIONS A highly focal Pneumocystis infection associated to increased mucus expression is almost universally present in the lungs of infants dying unexpectedly in the community regardless of autopsy diagnosis.
Collapse
Affiliation(s)
- Sergio L Vargas
- Programa de Microbiología, Instituto de Ciencias Biomédicas, Facultad de Medicina Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bishop LR, Helman D, Kovacs JA. Discordant antibody and cellular responses to Pneumocystis major surface glycoprotein variants in mice. BMC Immunol 2012; 13:39. [PMID: 22788748 PMCID: PMC3411419 DOI: 10.1186/1471-2172-13-39] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2011] [Accepted: 07/12/2012] [Indexed: 11/29/2022] Open
Abstract
Background The major surface glycoprotein (Msg) of Pneumocystis is encoded by approximately 50 to 80 unique but related genes. Msg diversity may represent a mechanism for immune escape from host T cell responses. We examined splenic T cell proliferative and cytokine as well as serum antibody responses to recombinant and native Pneumocystis antigens in immunized or Pneumocystis-infected mice. In addition, immune responses were examined in 5 healthy humans. Results Proliferative responses to each of two recombinant Msg variant proteins were seen in mice immunized with either recombinant protein, but no proliferation to these antigens was seen in mice immunized with crude Pneumocystis antigens or in mice that had cleared infection, although the latter animals demonstrated proliferative responses to crude Pneumocystis antigens and native Msg. IL-17 and MCP-3 were produced in previously infected animals in response to the same antigens, but not to recombinant antigens. Antibody responses to the recombinant P. murina Msg variant proteins were seen in all groups of animals, demonstrating that all groups were exposed to and mounted immune responses to Msg. No human PBMC samples proliferated following stimulation with P. jirovecii Msg, while antibody responses were detected in sera from 4 of 5 samples. Conclusions Cross-reactive antibody responses to Msg variants are common, while cross-reactive T cell responses are uncommon; these results support the hypothesis that Pneumocystis utilizes switching of Msg variant expression to avoid host T cell responses.
Collapse
Affiliation(s)
- Lisa R Bishop
- Critical Care Medicine Department, NIH Clinical Center, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1662, USA
| | | | | |
Collapse
|
27
|
Morgan AA, Pyrgos VJ, Nadeau KC, Williamson PR, Butte AJ. Multiplex meta-analysis of RNA expression to identify genes with variants associated with immune dysfunction. J Am Med Inform Assoc 2012; 19:284-8. [PMID: 22319178 PMCID: PMC3277634 DOI: 10.1136/amiajnl-2011-000657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
Objective We demonstrate a genome-wide method for the integration of many studies of gene expression of phenotypically similar disease processes, a method of multiplex meta-analysis. We use immune dysfunction as an example disease process. Design We use a heterogeneous collection of datasets across human and mice samples from a range of tissues and different forms of immunodeficiency. We developed a method integrating Tibshirani's modified t-test (SAM) is used to interrogate differential expression within a study and Fisher's method for omnibus meta-analysis to identify differentially expressed genes across studies. The ability of this overall gene expression profile to prioritize disease associated genes is evaluated by comparing against the results of a recent genome wide association study for common variable immunodeficiency (CVID). Results Our approach is able to prioritize genes associated with immunodeficiency in general (area under the ROC curve = 0.713) and CVID in particular (area under the ROC curve = 0.643). Conclusions This approach may be used to investigate a larger range of failures of the immune system. Our method may be extended to other disease processes, using RNA levels to prioritize genes likely to contain disease associated DNA variants.
Collapse
Affiliation(s)
- Alexander A Morgan
- Biomedical Informatics Graduate Training Program and Division of Systems Medicine, Department of Pediatrics, Stanford University, Stanford, California 94305-5415, USA
| | | | | | | | | |
Collapse
|
28
|
Henderson KS, Dole V, Parker NJ, Momtsios P, Banu L, Brouillette R, Simon MA, Albers TM, Pritchett-Corning KR, Clifford CB, Shek WR. Pneumocystis carinii causes a distinctive interstitial pneumonia in immunocompetent laboratory rats that had been attributed to "rat respiratory virus". Vet Pathol 2012; 49:440-52. [PMID: 22308234 DOI: 10.1177/0300985811432351] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
A prevalent and distinctive infectious interstitial pneumonia (IIP) of immunocompetent laboratory rats was suspected to be caused by a putative virus, termed rat respiratory virus, but this was never substantiated. To study this disease, 2 isolators were independently populated with rats from colonies with endemic disease, which was perpetuated by the regular addition of naive rats. After Pneumocystis was demonstrated by histopathology and polymerase chain reaction (PCR) in the lungs of rats from both isolators and an earlier bedding transmission study, the relationship between Pneumocystis and IIP was explored further by analyzing specimens from 3 contact transmission experiments, diagnostic submissions, and barrier room breeding colonies, including 1 with and 49 without IIP. Quantitative (q) PCR and immunofluorescence assay only detected Pneumocystis infection and serum antibodies in rats from experiments or colonies in which IIP was diagnosed by histopathology. In immunocompetent hosts, the Pneumocystis concentration in lungs corresponded to the severity and prevalence of IIP; seroconversion occurred when IIP developed and was followed by the concurrent clearance of Pneumocystis from lungs and resolution of disease. Experimentally infected immunodeficient RNU rats, by contrast, did not seroconvert to Pneumocystis or recover from infection. qPCR found Pneumocystis at significantly higher concentrations and much more often in lungs than in bronchial and nasal washes and failed to detect Pneumocystis in oral swabs. The sequences of a mitochondrial ribosomal large-subunit gene region for Pneumocystis from 11 distinct IIP sources were all identical to that of P. carinii. These data provide substantial evidence that P. carinii causes IIP in immunocompetent rats.
Collapse
Affiliation(s)
- K S Henderson
- Research Models and Services, Charles River, 251 Ballardvale St, Wilmington, MA 01887, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Adaptive immunity has long been regarded as the major player in protection against most fungal infections. Mounting evidence suggest however, that both innate and adaptive responses intricately collaborate to produce effective antifungal protection. Dendritic cells (DCs) play an important role in initiating and orchestrating antifungal immunity; neutrophils, macrophages and other phagocytes also participate in recognising and eliminating fungal pathogens. Adaptive immunity provides a wide range of effector and regulatory responses against fungal infections. Th1 responses protect against most forms of mycoses but they associate with significant inflammation and limited pathogen persistence. By contrast, Th2 responses enhance persistence of and tolerance to fungal infections thus permitting the generation of long-lasting immunological memory. Although the role of Th17 cytokines in fungal immunity is not fully understood, they can enhance proinflammatory or anti-inflammatory responses or play a regulatory role in fungal immunity all depending on the pathogen, site/phase of infection and host immunostatus. T regulatory cells balance the activities of various Th cell subsets thereby permitting inflammation and protection on the one hand and allowing for tolerance and memory on the other. Here, recent developments in fungal immunity research are reviewed as means of tracing the emergence of a refined paradigm where innate and adaptive responses are viewed in the same light.
Collapse
Affiliation(s)
- Mawieh Hamad
- Research and Development Unit, JMS Medicals, Zarqa, Jordan.
| |
Collapse
|
30
|
Rand TG, Dipenta J, Robbins C, Miller JD. Effects of low molecular weight fungal compounds on inflammatory gene transcription and expression in mouse alveolar macrophages. Chem Biol Interact 2011; 190:139-47. [PMID: 21356202 DOI: 10.1016/j.cbi.2011.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/09/2010] [Revised: 02/13/2011] [Accepted: 02/14/2011] [Indexed: 12/01/2022]
Abstract
The inflammatory potential and molecular mechanisms underscoring inflammatory responses of lung cells to compounds from fungi that grow on damp building materials is poorly understood in vitro. In this study we evaluated the effect of pure fungal compounds on potentiating acute inflammatory response in primary mouse alveolar macrophages (AMs) and tested the hypothesis that AM responses to low molecular weight fungal compounds exhibit temporal and compound specificity that mimic that observed in the whole lung. Transcriptional responses of 13 inflammation/respiratory burst-associated genes (KC=Cxcl1, Cxcl2, Cxcl5, Cxcl10, Ccl3, Ccl112, Ccl20, IL-1β, Il-6, ifi27 Tnfα, iNOS and Blvrb) were evaluated in mouse AMs exposed to a 1ml (10(-8)mol) dose of either pure atranone C, brevianimide, cladosporin, curdlan, LPS, neoechinulin A & B, sterigmatocystin or TMC-120A for 2h, 4h and 12h PE using customized reverse transcription (RT)-PCR based arrays. Multianalyte ELISA was used to measure expression of 6 pro-inflammatory cytokines common to the transcriptional assays (Cxcl1, Cxcl10, Ccl3, IL1β, Ifn-λ and Tnf-α) to determine whether gene expression corresponded to the transcription data. Compared to controls, all of these compounds induced significant (≥2.5-fold or ≤-2.5-fold change at p≤0.05) time- and compound-specific transcriptional gene alterations in treatment AMs. The highest number of transcribed genes were in LPS treatment AMs at 12h PE (12/13) followed by neoechinulin B at 4h PE (11/13). Highest fold change values (>30) were associated with KC, Cxcl2, Cxcl5 and IL1β genes in cells exposed to LPS. Compound exposures also induced significant (p≤0.05) time- and compound-specific pro-inflammatory responses manifest as differentially elevated Cxcl1, Cxcl10, Ccl3, Ifn-λ and Tnf-α concentrations in culture supernatant of treatment AMs. Dissimilarity in transcriptional responses in AMs and our in vivo model of lung disease is likely attributable to whole lung vs. isolated cell responsive and dose differences between the two studies. The results not only indicate that low molecular weight compounds from fungi that grow in damp built environments are potently pro-inflammatory in vitro, it further highlights the important role AMs play in innate lung defence, and against exposure to low molecular weight fungal compounds. These observations further support our position that exposure to low molecular weight compounds from indoor-associated fungi may provoke some of the inflammatory health effects reported from humans in damp building environments. They also open up a hypothesis building process that could explain the rise of non-atopic asthma associated with fungi.
Collapse
Affiliation(s)
- Thomas G Rand
- Department of Biology, Saint Mary's University, Halifax, NS, Canada B3H 3C3
| | | | | | | |
Collapse
|
31
|
Chen GH, Osterholzer JJ, Choe MY, McDonald RA, Olszewski MA, Huffnagle GB, Toews GB. Dual roles of CD40 on microbial containment and the development of immunopathology in response to persistent fungal infection in the lung. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2459-71. [PMID: 20864680 DOI: 10.2353/ajpath.2010.100141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Persistent pulmonary infection with Cryptococcus neoformans in C57BL/6 mice results in chronic inflammation that is characterized by an injurious Th2 immune response. In this study, we performed a comparative analysis of cryptococcal infection in wild-type versus CD40-deficient mice (in a C57BL/6 genetic background) to define two important roles of CD40 in the modulation of fungal clearance as well as Th2-mediated immunopathology. First, CD40 promoted microanatomic containment of the organism within the lung tissue. This protective effect was associated with: i) a late reduction in fungal burden within the lung; ii) a late accumulation of lung leukocytes, including macrophages, CD4+ T cells, and CD8+ T cells; iii) both early and late production of tumor necrosis factor-α and interferon-γ by lung leukocytes; and iv) early IFN-γ production at the site of T cell priming in the regional lymph nodes. In the absence of CD40, systemic cryptococcal dissemination was increased, and mice died of central nervous system infection. Second, CD40 promoted pathological changes in the airways, including intraluminal mucus production and subepithelial collagen deposition, but did not alter eosinophil recruitment or the alternative activation of lung macrophages. Collectively, these results demonstrate that CD40 helps limit progressive cryptococcal growth in the lung and protects against lethal central nervous system dissemination. CD40 also promotes some, but not all, elements of Th2-mediated immunopathology in response to persistent fungal infection in the lung.
Collapse
Affiliation(s)
- Gwo-Hsiao Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6220 MSRB III, Box 0624, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Cheng BH, Liu Y, Xuei X, Liao CP, Lu D, Lasbury ME, Durant PJ, Lee CH. Microarray studies on effects of Pneumocystis carinii infection on global gene expression in alveolar macrophages. BMC Microbiol 2010; 10:103. [PMID: 20377877 PMCID: PMC2858032 DOI: 10.1186/1471-2180-10-103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2009] [Accepted: 04/08/2010] [Indexed: 01/03/2023] Open
Abstract
Background Pneumocystis pneumonia is a common opportunistic disease in AIDS patients. The alveolar macrophage is an important effector cell in the clearance of Pneumocystis organisms by phagocytosis. However, both the number and phagocytic activity of alveolar macrophages are decreased in Pneumocystis infected hosts. To understand how Pneumocystis inactivates alveolar macrophages, Affymetrix GeneChip® RG-U34A DNA microarrays were used to study the difference in global gene expression in alveolar macrophages from uninfected and Pneumocystis carinii-infected Sprague-Dawley rats. Results Analyses of genes that were affected by Pneumocystis infection showed that many functions in the cells were affected. Antigen presentation, cell-mediated immune response, humoral immune response, and inflammatory response were most severely affected, followed by cellular movement, immune cell trafficking, immunological disease, cell-to-cell signaling and interaction, cell death, organ injury and abnormality, cell signaling, infectious disease, small molecular biochemistry, antimicrobial response, and free radical scavenging. Since rats must be immunosuppressed in order to develop Pneumocystis infection, alveolar macrophages from four rats of the same sex and age that were treated with dexamethasone for the entire eight weeks of the study period were also examined. With a filter of false-discovery rate less than 0.1 and fold change greater than 1.5, 200 genes were found to be up-regulated, and 144 genes were down-regulated by dexamethasone treatment. During Pneumocystis pneumonia, 115 genes were found to be up- and 137 were down-regulated with the same filtering criteria. The top ten genes up-regulated by Pneumocystis infection were Cxcl10, Spp1, S100A9, Rsad2, S100A8, Nos2, RT1-Bb, Lcn2, RT1-Db1, and Srgn with fold changes ranging between 12.33 and 5.34; and the top ten down-regulated ones were Lgals1, Psat1, Tbc1d23, Gsta1, Car5b, Xrcc5, Pdlim1, Alcam, Cidea, and Pkib with fold changes ranging between -4.24 and -2.25. Conclusions In order to survive in the host, Pneumocystis organisms change the expression profile of alveolar macrophages. Results of this study revealed that Pneumocystis infection affects many cellular functions leading to reduced number and activity of alveolar macrophages during Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Bi-Hua Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Miller JD, Sun M, Gilyan A, Roy J, Rand TG. Inflammation-associated gene transcription and expression in mouse lungs induced by low molecular weight compounds from fungi from the built environment. Chem Biol Interact 2010; 183:113-24. [PMID: 19818335 DOI: 10.1016/j.cbi.2009.09.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2009] [Revised: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 12/27/2022]
Abstract
Few metabolites from fungi found indoors have been tested for inflammatory mediators endpoints in primary cultures of alveolar macrophages or in vivo. In this study, mice were intratracheally instilled with a single dose comprising 4x10(-5)moletoxin/kg lung wt dose of either atranone C, brevianamide, cladosporin, mycophenolic acid, neoechinulin A & B, sterigmatocystin or TMC-120A. These toxins are from fungi common on damp building materials. The dose used was comparable to the estimated doses of possible human exposure. Hematoxylin and eosin (H&E) histology and Alcian Blue/Periodic Acid Schiff (AB/PAS) histochemistry were used to evaluate lungs for time course (4h and 12h post-exposure (PE)) inflammatory and toxic changes. Reverse-transcription (RT)-PCR based arrays were also employed to evaluate time course inflammation-associated gene transcription in lung tissues of the different toxins. Immunohistochemistry (IHC) was used to probe MIP-2 and Tnf-alpha protein expression in treatment lungs to determine whether responses correspond with gene transcription data. Both histology and histochemistry revealed that toxin exposed lungs at 12h PE showed evidence of inflammation. H&E revealed that bronchioli were lined with irregularly thickened and sometimes sloughing epithelium and bronchiolar spaces supported infiltration of leukocytes, cellular and mucus-like debris while alveolar spaces supported swollen macrophages and modest amorphous debris accumulations. All toxin-instilled lungs exhibited copious mucus production and alveolar macrophages with red stained cytoplasm on bronchiolar surfaces, especially at 12h PE. Array analysis of 83 inflammation-associated genes extracted from lung tissue demonstrated a number of patterns, compared to controls. 82 genes assayed at 4h PE and 75 genes at 12h PE were significantly altered (p< or =0.05; >or =1.5-fold or < or =-1.5-fold change) in the different treatment animal groups. Expression of transcriptionally regulated genes was confirmed using immunohistochemistry that demonstrated MIP-2 and Tnf-alpha staining in respiratory bronchiolar epithelia, alveolar macrophages and alveolar type II cells. The transcriptional regulation in these genes in the treatment groups suggests that they may serve central roles in the immunomodulation of toxin-induced pro-inflammatory lung responses. Hierarchical cluster analysis revealed significant patterns of gene transcription linking the response of the toxins at equimolar doses in three groups: (1) brevianamide, mycophenolic acid and neoechinulin B, (2) neoechinulin A and sterigmatocystin, and (3) cladosporin, atranone C and TMC-120. The results further confirm the inflammatory nature of metabolites/toxins from such fungi can contribute to the development of non-allergenic respiratory health effects.
Collapse
Affiliation(s)
- J D Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada K1S 5B6
| | | | | | | | | |
Collapse
|
34
|
Rand TG, Sun M, Gilyan A, Downey J, Miller JD. Dectin-1 and inflammation-associated gene transcription and expression in mouse lungs by a toxic (1,3)-β-d glucan. Arch Toxicol 2009; 84:205-20. [DOI: 10.1007/s00204-009-0481-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2009] [Accepted: 10/15/2009] [Indexed: 11/28/2022]
|