1
|
Huelse JM, Bhasin SS, Jacobsen KM, Yim J, Thomas BE, Branella GM, Bakhtiari M, Chimenti ML, Baxter TA, Raikar SS, Wang X, Frye SV, Henry CJ, Earp HS, Bhasin M, DeRyckere D, Graham DK. MERTK inhibition selectively activates a DC - T-cell axis to provide anti-leukemia immunity. Leukemia 2024:10.1038/s41375-024-02408-2. [PMID: 39322710 DOI: 10.1038/s41375-024-02408-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
TAM-family tyrosine kinases (TYRO3, AXL and MERTK) are potential cancer therapeutic targets. In previous studies MERTK inhibition in the immune microenvironment was therapeutically effective in a B-cell acute leukemia (B-ALL) model. Here, we probed anti-leukemia immune mechanisms and evaluated roles for TYRO3 and AXL in the leukemia microenvironment. Host Mertk knock-out or MERTK inhibitor MRX-2843 increased CD8α+ dendritic cells (DCs) with enhanced antigen-presentation capacity in the leukemia microenvironment and inhibited leukemogenesis. High MERTK or low DC gene expression were associated with poor prognosis in pediatric ALL patients, indicating the clinical relevance of these findings. MRX-2843 increased CD8+ T-cell numbers and prevented induction of exhaustion markers, implicating a DC - T-cell axis. Indeed, combined depletion of CD8α+ DCs and CD8+ T-cells was required to abrogate anti-leukemia immunity in Mertk-/- mice. Tyro3-/- mice were also protected against B-ALL, implicating TYRO3 as an immunotherapeutic target. In contrast to Mertk-/- mice, Tyro3-/- did not increase CD8α+ DCs with enhanced antigen-presentation capacity and therapeutic activity was less dependent on DCs, indicating a different immune mechanism. Axl-/- did not impact leukemogenesis. These data demonstrate differential TAM kinase roles in the leukemia microenvironment and provide rationale for development of MERTK and/or TYRO3-targeted immunotherapies.
Collapse
Affiliation(s)
- Justus M Huelse
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Swati S Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Kristen M Jacobsen
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Juhye Yim
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Beena E Thomas
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Gianna M Branella
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Madison L Chimenti
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Travon A Baxter
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Sunil S Raikar
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Curtis J Henry
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - H Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
- Departments of Medicine and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
- Cancer Immunology Program, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
- Wallace H Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, GA, 30322, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA
| | - Douglas K Graham
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Rejeski K, Blumenberg V, Iacoboni G, Lopez-Corral L, Kharboutli S, Hernani R, Petrera A, Müller N, Hildebrand F, Frölich L, Karschnia P, Schmidt C, Cordas dos Santos DM, Piñana JL, Müller F, Martin AA, Dreyling M, von Bergwelt-Baildon M, Barba P, Subklewe M, Bücklein VL. Identifying Early Infections in the Setting of CRS With Routine and Exploratory Serum Proteomics and the HT10 Score Following CD19 CAR-T for Relapsed/Refractory B-NHL. Hemasphere 2023; 7:e858. [PMID: 37038465 PMCID: PMC10082278 DOI: 10.1097/hs9.0000000000000858] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 02/06/2023] [Indexed: 04/08/2023] Open
Abstract
Early fever after chimeric antigen receptor T-cell (CAR-T) therapy can reflect both an infection or cytokine release syndrome (CRS). Identifying early infections in the setting of CRS and neutropenia represents an unresolved clinical challenge. In this retrospective observational analysis, early fever events (day 0-30) were characterized as infection versus CRS in 62 patients treated with standard-of-care CD19.CAR-T for relapsed/refractory B-cell non-Hodgkin lymphoma. Routine serum inflammatory markers (C-reactive protein [CRP], interleukin-6 [IL-6], procalcitonin [PCT]) were recorded daily. Exploratory plasma proteomics were performed longitudinally in 52 patients using a multiplex proximity extension assay (Olink proteomics). Compared with the CRSonly cohort, we noted increased event-day IL-6 (median 2243 versus 64 pg/mL, P = 0.03) and particularly high PCT levels (median 1.6 versus 0.3 µg/L, P < 0.0001) in the patients that developed severe infections. For PCT, an optimal discriminatory threshold of 1.5 µg/L was established (area under the receiver operating characteristic curve [AUCROC] = 0.78). Next, we incorporated day-of-fever PCT levels with the patient-individual CAR-HEMATOTOX score. In a multicenter validation cohort (n = 125), we confirmed the discriminatory capacity of this so-called HT10 score for early infections at first fever (AUCROC = 0.87, P < 0.0001, sens. 86%, spec. 86%). Additionally, Olink proteomics revealed pronounced immune dysregulation and endothelial dysfunction in patients with severe infections as evidenced by an increased ANGPT2/1 ratio and an altered CD40/CD40L-axis. In conclusion, the high discriminatory capacity of the HT10 score for infections highlights the advantage of dynamic risk assessment and supports the incorporation of PCT into routine inflammatory panels. Candidate markers from Olink proteomics may further refine risk-stratification. If validated prospectively, the score will enable risk-adapted decisions on antibiotic use.
Collapse
Affiliation(s)
- Kai Rejeski
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Sites Munich and Erlangen, Germany
| | - Viktoria Blumenberg
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Sites Munich and Erlangen, Germany
| | - Gloria Iacoboni
- Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma of Barcelona (UAB), Bellaterra, Spain
| | - Lucia Lopez-Corral
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC, Salamanca, Spain
| | - Soraya Kharboutli
- Bavarian Cancer Research Center (BZKF), Partner Sites Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Germany
| | - Rafael Hernani
- Hematology Department, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Agnese Petrera
- Metabolomics and Proteomics Core Facility, Helmholtz Zentrum Munich – German Research Center for Environmental Health, Munich, Germany
| | - Niklas Müller
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
| | - Friederike Hildebrand
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
| | - Lisa Frölich
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, University Hospital, LMU Munich, Germany
| | - Christian Schmidt
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
| | - David M. Cordas dos Santos
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
| | - José Luis Piñana
- Hematology Department, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Fabian Müller
- Bavarian Cancer Research Center (BZKF), Partner Sites Munich and Erlangen, Germany
- Department of Internal Medicine 5, Hematology and Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg and University Hospital Erlangen, Germany
| | - Ana Africa Martin
- Hematology Department, Hospital Clínico Universitario de Salamanca, IBSAL, CIBERONC, Salamanca, Spain
- Centro de Investigación del Cáncer-IBMCC, Salamanca, Spain
| | - Martin Dreyling
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Sites Munich and Erlangen, Germany
| | - Pere Barba
- Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), University Hospital Vall d’Hebron, Barcelona, Spain
- Department of Medicine, Universitat Autònoma of Barcelona (UAB), Bellaterra, Spain
| | - Marion Subklewe
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Sites Munich and Erlangen, Germany
| | - Veit L. Bücklein
- Department of Medicine III – Hematology/Oncology, University Hospital, LMU Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
- German Cancer Consortium (DKTK), Munich Site, and German Cancer Research Center, Heidelberg, Germany
- Bavarian Cancer Research Center (BZKF), Partner Sites Munich and Erlangen, Germany
| |
Collapse
|
3
|
Ahmed KA, Wang L, Xiang J. A new dynamic model of three cell interactions for CTL responses. Oncoimmunology 2021; 1:1430-1432. [PMID: 23243618 PMCID: PMC3518527 DOI: 10.4161/onci.21175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The exact mechanisms of CD4 help in the generation of memory cytotoxic T lymphocytes (CTLs) remain largely illusive. We propose that dendritic cells (DCs) first interact with CD4+ T cells, resulting in DC licensing and CD4+ T-cell priming. Thereafter, CD8+ T cells can receive stimulatory signals from DC-CD4+ T-cell clusters and as well as individually from licensed DCs and primed CD4+ T cells.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Research Unit; Saskatchewan Cancer Agency; Saskatoon, SK Canada ; Department of Oncology; University of Saskatchewan; Saskatoon, SK Canada
| | | | | |
Collapse
|
4
|
Jamwal DR, Marati RV, Harrison CA, Midura-Kiela MT, Figliuolo Paz VR, Besselsen DG, Ghishan FK, Kiela PR. Total CD3 T Cells Are Necessary and Sufficient to Induce Colitis in Immunodeficient Mice With Dendritic Cell-Specific Deletion of TGFbR2: A Novel IBD Model to Study CD4 and CD8 T-Cell Interaction. Inflamm Bowel Dis 2020; 26:229-241. [PMID: 31559420 PMCID: PMC7185689 DOI: 10.1093/ibd/izz191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a multifactorial disorder, with the innate and adaptive immune cells contributing to disease initiation and progression. However, the intricate cross-talk between immune cell lineages remains incompletely understood. The role of CD8+ T cells in IBD pathogenesis has been understudied, largely due to the lack of appropriate models. METHODS We previously reported spontaneous colitis in mice with impaired TGFβ signaling due to dendritic cell-specific knockout of TGFbR2 (TGFβR2ΔDC). Here, we demonstrate that crossing TGFβR2ΔDC mice with a Rag1-/- background eliminates all symptoms of colitis and that adoptive transfer of unfractionated CD3+ splenocytes is sufficient to induce progressive colitis in Rag1-/-TGFβR2ΔDC mice. RESULTS Both CD4+ and CD8+ T cells are required for the induction of colitis accompanied by activation of both T-cell lineages and DCs, increased expression of mucosal IFNγ, TNFα, IL6, IL1β, and IL12, and decreased frequencies of CD4+FoxP3+ regulatory T cells. Development of colitis required CD40L expression in CD4+ T cells, and the disease was partially ameliorated by IFNγ neutralization. CONCLUSIONS This novel model provides an important tool for studying IBD pathogenesis, in particular the complex interactions among innate and adaptive immune cells in a controlled fashion, and represents a valuable tool for preclinical evaluation of novel therapeutics.
Collapse
Affiliation(s)
| | - Raji V Marati
- Department of Pediatrics, Tucson, Arizona, USA,Present affiliation: Roche Tissue Diagnostics, Tucson, Arizona, USA
| | - Christy A Harrison
- Department of Pediatrics, Tucson, Arizona, USA,Present affiliation: New York City Department of Health & Mental Hygiene, Long Island City, New York, USA
| | | | | | | | | | - Pawel R Kiela
- Department of Pediatrics, Tucson, Arizona, USA,Department of Immunobiology, University of Arizona, Tucson, Arizona, USA,Address correspondence to: Pawel R. Kiela, DVM, PhD, University of Arizona, Steele Children’s Research Center, 1501 N. Campbell Ave, Rm. 6351, Tucson, AZ 85724 ()
| |
Collapse
|
5
|
CpG-ODN Induces a Dose-Dependent Enrichment of Immunological Niches in the Spleen and Lungs of Neonatal Chicks That Correlates with the Protective Immunity against Escherichia coli. J Immunol Res 2020; 2020:2704728. [PMID: 32411791 PMCID: PMC7201825 DOI: 10.1155/2020/2704728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/05/2019] [Indexed: 01/25/2023] Open
Abstract
Immunoprotective function of oligodeoxynucleotides containing CpG motifs (CpG-ODN) has been demonstrated in neonatal chickens against common bacterial pathogens such as E.coli and Salmonella sp. Our recent study reported that CpG-ODN administration enriches immune compartments in neonatal chicks. However, a causal relationship between CpG-ODN-induced immune enrichment and protective mechanisms remains unestablished. In this study, we investigated in ovo administered CpG-ODN-mediated immune cell recruitment in the immunological niches in lymphoid (spleen) and nonlymphoid (lungs) organs using various doses of CpG-ODN and examined whether the immunological profiles have any correlation with immunoprotection against E.coli infection. Eighteen-day-old embryonated eggs were injected with either 5, 10, 25, and 50 μg of CpG-ODN or saline (n = ~40 per group). On the day of hatch (72 hr after CpG-ODN treatment), we collected the spleen and lungs (n = 3‐4 per group) and examined the recruitment of macrophages/monocytes, their expression of MHCII and CD40, and the number of CD4+ and CD8+ T-cell subsets in the immunological niches in the spleen and lungs using flow cytometry. We observed the dose-dependent recruitment of immune cells, wherein 25 μg and 50 μg of CpG-ODN induced significant enrichment of immunological niches in both the spleen and the lungs. Four days after the CpG-ODN treatment (1-day after hatch), chicks were challenged with a virulent strain of E. coli (1 × 104 or 1 × 105 cfu, subcutaneously). Clinical outcome and mortality were monitored for 8 days postchallenge. We found that both 25 μg and 50 μg of CpG-ODN provided significant protection and reduced clinical scores compared to saline controls against E. coli infection. Overall, the present study revealed that CpG-ODNs orchestrate immunological niches in neonatal chickens in a dose-dependent manner that resulted in differential protection against E. coli infection, thus supporting a cause and effect relationship between CpG-ODN-induced immune enrichment and the antibacterial immunity.
Collapse
|
6
|
Damsky W, Jilaveanu L, Turner N, Perry C, Zito C, Tomayko M, Leventhal J, Herold K, Meffre E, Bosenberg M, Kluger HM. B cell depletion or absence does not impede anti-tumor activity of PD-1 inhibitors. J Immunother Cancer 2019; 7:153. [PMID: 31200747 PMCID: PMC6567557 DOI: 10.1186/s40425-019-0613-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/07/2019] [Indexed: 12/28/2022] Open
Abstract
Background PD-1 inhibitors are approved for multiple malignancies and function by stimulating T cells. However, the role of B cells in the anti-tumor activity of these drugs is unknown, as is their activity in patients who have received B cell depleting drugs or with immunoglobulin deficiencies. Methods We studied B cell content in 40 melanomas from patients treated with pembrolizumab or nivolumab and assessed the association with response to therapy. Murine MC38 colon cancer and YUMMER1.7 melanoma models were used to determine whether concomitant anti-CD20 antibody injections diminish the anti-tumor effects of anti-PD-1. Results were validated in muMT mice, which lack B cells. Results B cells were sparse in most melanomas and B cell content was not associated with response to anti-PD-1 or overall survival. Employing MC38 and YUMMER1.7 models, we demonstrated that anti-CD20 antibodies reduce tumor-infiltrating B cells yet had no effect on tumor growth, response to PD-1 inhibition, or survival. In muMT mice, T-cell dependent tumor rejection and anti-PD-1 responses were no different than in wildtype C57BL/6 J mice. Conclusions The degree of tumor infiltrating B cell content is not associated with response to anti-PD-1 inhibitors in melanoma. PD-1 inhibitors cause tumor shrinkage in murine cancer models even when B cells are absent or are depleted. PD-1 inhibitors are likely to be active in patients with impaired B cell function, such as patients undergoing B cell depletion with drugs including rituximab for conditions such as B cell malignancies or autoimmune disorders. Electronic supplementary material The online version of this article (10.1186/s40425-019-0613-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William Damsky
- Departments of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Lucia Jilaveanu
- Departments of Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Noel Turner
- Departments of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Curtis Perry
- Departments of Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Christopher Zito
- Departments of Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Mary Tomayko
- Departments of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.,Departments of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Jonathan Leventhal
- Departments of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Kevan Herold
- Departments of Immunbiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Eric Meffre
- Departments of Immunbiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,Departments of Immunbiology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA. .,Departments of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Harriet M Kluger
- Departments of Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
7
|
Ara A, Ahmed KA, Xiang J. Multiple effects of CD40-CD40L axis in immunity against infection and cancer. Immunotargets Ther 2018; 7:55-61. [PMID: 29988701 PMCID: PMC6029590 DOI: 10.2147/itt.s163614] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
CD8+ cytotoxic T lymphocyte (CTL) protects against infection and cancer cells. Understanding the mechanisms involved in generation and maintenance of effective CTL responses is essential for improving disease therapy and vaccine protocols. During CTL responses, immune cells encounter several tightly regulated signaling pathways; therefore, in such a dynamic process, proper integration of critical signals is necessary to orchestrate an effective immune response. In this review, we have focused on CD40-CD40L interactions (a key signal) in the regulation of dendritic cell (DC)-T cell (CD4+ T and CD8+ T) cross-talk, rescuing CTL exhaustion, and converting DC tolerization. We have also highlighted the knowledge gap and future directions to design immunotherapies.
Collapse
Affiliation(s)
- Anjuman Ara
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Khawaja Ashfaque Ahmed
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada, .,Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada,
| |
Collapse
|
8
|
Mannose-6-phosphate receptor: a novel regulator of T cell immunity. Cell Mol Immunol 2018; 15:986-988. [PMID: 29769659 DOI: 10.1038/s41423-018-0031-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
|
9
|
Xu A, Freywald A, Xiang J. Novel T-cell-based vaccines via arming polyclonal CD4 + T cells with antigen-specific exosomes. Immunotherapy 2018; 8:1265-1269. [PMID: 27993084 DOI: 10.2217/imt-2016-0094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Aizhang Xu
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
10
|
Barinov A, Galgano A, Krenn G, Tanchot C, Vasseur F, Rocha B. CD4/CD8/Dendritic cell complexes in the spleen: CD8+ T cells can directly bind CD4+ T cells and modulate their response. PLoS One 2017; 12:e0180644. [PMID: 28686740 PMCID: PMC5501581 DOI: 10.1371/journal.pone.0180644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/19/2017] [Indexed: 01/16/2023] Open
Abstract
CD4+ T cell help to CD8+ T cell responses requires that CD4+ and CD8+ T cells interact with the same antigen presenting dendritic cell (Ag+DC), but it remains controversial whether helper signals are delivered indirectly through a licensed DC and/or involve direct CD4+/CD8+ T cell contacts and/or the formation of ternary complexes. We here describe the first in vivo imaging of the intact spleen, aiming to evaluate the first interactions between antigen-specific CD4+, CD8+ T cells and Ag+DCs. We show that in contrast to CD4+ T cells which form transient contacts with Ag+DC, CD8+ T cells form immediate stable contacts and activate the Ag+DC, acquire fragments of the DC membranes by trogocytosis, leading to their acquisition of some of the DC properties. They express MHC class II, and become able to present the specific Marilyn peptide to naïve Marilyn CD4+ T cells, inducing their extensive division. In vivo, these CD8+ T cells form direct stable contacts with motile naïve CD4+ T cells, recruiting them to Ag+DC binding and to the formation of ternary complexes, where CD4+ and CD8+ T cells interact with the DC and with one another. The presence of CD8+ T cells during in vivo immune responses leads to the early activation and up-regulation of multiple functions by CD4+ T lymphocytes. Thus, while CD4+ T cell help is important to CD8+ T cell responses, CD8+ T cells can interact directly with naïve CD4+ T cells impacting their recruitment and differentiation.
Collapse
Affiliation(s)
| | - Alessia Galgano
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
| | - Gerald Krenn
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
| | - Corinne Tanchot
- INSERM, U970, Université Paris Descartes, Centre de recherche Cardiovasculaire à l’HEGP, Paris, France
| | - Florence Vasseur
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
| | - Benedita Rocha
- INSERM, U1020, Faculté de Médecine René Descartes, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Ahmed KA, Xiang J. mTORC1 regulates mannose-6-phosphate receptor transport and T-cell vulnerability to regulatory T cells by controlling kinesin KIF13A. Cell Discov 2017; 3:17011. [PMID: 28496990 PMCID: PMC5404257 DOI: 10.1038/celldisc.2017.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/05/2017] [Indexed: 12/15/2022] Open
Abstract
Mannose-6-phosphate receptor (M6PR) that facilitates cellular uptake of M6P-bearing proteins, including serine-protease granzyme-B (Gzm-B) has an important role in T-cell activation, migration and contraction. However, molecular mechanisms controlling M6PR expression in T cells remain poorly understood. Here, we show that M6PR expression on T cells is distinctively controlled by two common γ-chain cytokines interleukin-2 (IL-2) and IL-7, and the differential M6PR expression is not caused by an altered synthesis of M6PR protein, but is a result of distinct regulation of kinesin-3 motor-protein KIF13A that transport M6PR onto cell surfaces. Using signaling pathway-specific inhibitors, we determine that IL-2 and IL-7 distinctly regulate KIF13A and β1-adaptin and cell-surface M6PR by controlling a kinase mammalian target of rapamycin complex-1 (mTORC1). Inflammatory cytokine IL-2 and prosurvival cytokine IL-7 induce strong and weak activation of mTORC1, leading to up- and downregulation of motor-protein KIF13A and KIF13A-motorized M6PR on T cells, and formation of IL-2 and IL-7 effectors with M6PRhigh and M6PRlow cell-surface expression, respectively. Inhibition of mTORC1 by rapamycin reduces T-cell expression of KIF13A and cell-surface M6PR, and increases T-cell survival in Listeria monocytogenes-infected mice. Using regulatory T (Treg)-cell-enriched mouse tumor model, we determine that M6PRhigh IL-2 effectors but not M6PRlow IL-7 effectors adoptively transferred into tumors are vulnerable to Treg Gzm-B-mediated cell apoptosis. Inhibition of mTORC1 or small interfering RNA-mediated knockdown of KIF13A or M6PR renders IL-2 effectors refractory to Treg Gzm-B lethal hit. Overall, our data offer novel mechanistic insights into T-cell M6PR regulation, and Treg-resistant/Treg-susceptible phenomenon. Furthermore, regulation of T-cell fate vis-à-vis Treg suppression via the mTORC1-KIF13A-M6PR axis provides a proof of concept for therapeutic strategies to target cancer, infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- Cancer Research, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Provine NM, Larocca RA, Aid M, Penaloza-MacMaster P, Badamchi-Zadeh A, Borducchi EN, Yates KB, Abbink P, Kirilova M, Ng'ang'a D, Bramson J, Haining WN, Barouch DH. Immediate Dysfunction of Vaccine-Elicited CD8+ T Cells Primed in the Absence of CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:1809-22. [PMID: 27448585 DOI: 10.4049/jimmunol.1600591] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
Abstract
CD4(+) T cell help is critical for optimal CD8(+) T cell memory differentiation and maintenance in many experimental systems. In addition, many reports have identified reduced primary CD8(+) T cell responses in the absence of CD4(+) T cell help, which often coincides with reduced Ag or pathogen clearance. In this study, we demonstrate that absence of CD4(+) T cells at the time of adenovirus vector immunization of mice led to immediate impairments in early CD8(+) T cell functionality and differentiation. Unhelped CD8(+) T cells exhibited a reduced effector phenotype, decreased ex vivo cytotoxicity, and decreased capacity to produce cytokines. This dysfunctional state was imprinted within 3 d of immunization. Unhelped CD8(+) T cells expressed elevated levels of inhibitory receptors and exhibited transcriptomic exhaustion and anergy profiles by gene set enrichment analysis. Dysfunctional, impaired effector differentiation also occurred following immunization of CD4(+) T cell-deficient mice with a poxvirus vector. This study demonstrates that following priming with viral vectors, CD4(+) T cell help is required to promote both the expansion and acquisition of effector functions by CD8(+) T cells, which is accomplished by preventing immediate dysfunction.
Collapse
Affiliation(s)
- Nicholas M Provine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Malika Aid
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Pablo Penaloza-MacMaster
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Alexander Badamchi-Zadeh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Kathleen B Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Marinela Kirilova
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - David Ng'ang'a
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Jonathan Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S 4K1, Canada; McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215; Broad Institute of MIT and Harvard, Cambridge, MA 02142; Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02139
| |
Collapse
|
13
|
Wang R, Xu A, Zhang X, Wu J, Freywald A, Xu J, Xiang J. Novel exosome-targeted T-cell-based vaccine counteracts T-cell anergy and converts CTL exhaustion in chronic infection via CD40L signaling through the mTORC1 pathway. Cell Mol Immunol 2016; 14:529-545. [PMID: 27264687 DOI: 10.1038/cmi.2016.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022] Open
Abstract
CD8+ cytotoxic T lymphocyte (CTL) exhaustion is a chief issue for ineffective virus elimination in chronic infectious diseases. We generated novel ovalbumin (OVA)-specific OVA-Texo and HIV-specific Gag-Texo vaccines inducing therapeutic immunity. To assess their therapeutic effect in chronic infection, we developed a new chronic infection model by i.v. infecting C57BL/6 mice with the OVA-expressing adenovirus AdVova. During chronic AdVova infection, mouse CTLs were found to express the inhibitory molecules programmed cell-death protein-1 (PD-1) and lymphocyte-activation gene-3 (LAG-3) and to be functionally exhausted, showing a significant deficiency in T-cell proliferation, IFN-γ production and cytolytic effects. Naive CD8+ T cells upregulated inhibitory PD-ligand 1 (PD-L1), B- and T-lymphocyte attenuator and T-cell anergy-associated molecules (Grail and Itch) while down-regulating the proliferative response upon stimulation in mice with chronic infection. Remarkably, the OVA-Texo vaccine counteracted T-cell anergy and converted CTL exhaustion. The latter was associated with (i) the upregulation of a marker for CTL functionality, diacetylated histone-H3 (diAcH3), (ii) a fourfold increase in CTLs, occurring independent of host DCs or CD4+ T cells, and (iii) the restoration of CTL IFN-γ production and cytotoxicity. In vivo OVA-Texo-stimulated CTLs upregulated the activities of the mTORC1 pathway-related molecules Akt, S6, eIF4E and T-bet, and treatment of the CTLs with an mTORC1 inhibitor, rapamycin, significantly reduced the OVA-Texo-induced increase in CTLs. Interestingly, OVA-Texo-mediated CD40L signaling played a critical role in the observed immunological effects. Importantly, the Gag-Texo vaccine induced Gag-specific therapeutic immunity in chronic infection. Therefore, this study should have a serious impact on the development of new therapeutic vaccines for human immunodeficiency virus (HIV-1) infection.
Collapse
Affiliation(s)
- Rong Wang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Aizhang Xu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4
| | - Xueying Zhang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Jie Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - Jianqing Xu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada S7N4H4.,School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5.,Department of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| |
Collapse
|
14
|
Ahmed KA, Wang L, Griebel P, Mousseau DD, Xiang J. Differential expression of mannose-6-phosphate receptor regulates T cell contraction. J Leukoc Biol 2015; 98:313-8. [PMID: 25990242 DOI: 10.1189/jlb.2hi0215-049rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 04/09/2015] [Indexed: 11/24/2022] Open
Abstract
CD8(+) T cells provide protection against pathogens and cancer. After encountering a pathogenic antigen, CD8(+) T cells undergo a triphasic program of rapid proliferation, contraction, and memory formation. Most (∼90-95%) CD8(+) T cells die after vigorous proliferation in the T cell contraction phase, yet the mechanism that triggers apoptotic T cell death remains elusive. This study tested the hypothesis that differential cell-surface expression of M6PR, a multifunctional receptor that regulates lysozyme biogenesis, but also uptakes apoptosis-inducing serine-protease Gzm-B, critically determines life vs. death decisions in T cells. We demonstrate that M6PR-expression on CD8(+) T cell surfaces is dynamically regulated during LmOVA bacterial infection. Notably, time-lapse, confocal microscopy and flow cytometry confirms that M6PR(low) effectors, but not M6PR(high) effectors, escape Gzm-B lethal-hit derived from CD4(+)25(+) Treg cells. Adoptive cotransfer of M6PR(low) effectors and M6PR(high) effectors sorted from LmOVA-infected, congenic mice at the peak of CD8(+) T cell response, reveals that M6PR(low) effectors with the CD8(+) T cell memory precursor phenotype preferentially survive the CD8(+) T cell contraction and differentiate into functional, long-lasting memory CD8(+) T cells. Taken together, our data provide the first evidence, to our knowledge, that selective M6PR down-regulation has a critical role in CD8(+) T cell survival, and our findings have implications for efficient vaccine design and immunotherapy.
Collapse
Affiliation(s)
- Khawaja Ashfaque Ahmed
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lu Wang
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Philip Griebel
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darrell D Mousseau
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jim Xiang
- *Cancer Cluster, Saskatchewan Cancer Agency, Department of Oncology, Vaccine and Infectious Disease Organization - International Vaccine Centre, and Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
15
|
Umeshappa CS, Zhu Y, Bhanumathy KK, Omabe M, Chibbar R, Xiang J. Innate and adoptive immune cells contribute to natural resistance to systemic metastasis of B16 melanoma. Cancer Biother Radiopharm 2015; 30:72-8. [PMID: 25714591 DOI: 10.1089/cbr.2014.1736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The greatest hurdle in cancer treatment is the metastasis of primary tumors to distant organs. Our knowledge on how different immune cells, in the absence of exogenous stimulation, prevent tumor metastasis in distant organs is poorly understood. Using a highly metastatic murine lung B16 melanoma cell line BL6-10, we employed naive mice that genetically lack CD4(+) or CD8(+) T cells, or are depleted of dendritic cells (DCs) or natural killer (NK) cells to understand the relative importance of these cells in metastasis prevention. Irrespective of the presence of naïve CD4(+) T, CD8(+) T, DCs, or NK cells, lungs, which act as primary site of predilection for B16 melanoma, readily developed numerous lung BL6-10 melanoma colonies. However, their absence led to B16 melanoma metastasis in variable proportions to distant organs, particularly livers, kidneys, adrenals, ovaries, and hearts. NK cells mediate prevention of BL6-10 metastasis to various organs, especially to livers. Mechanistically, CD40L signaling, a critical factor required for DC licensing and CD8(+) cytotoxic T lymphocyte (CTL) responses, was required for CD4(+) T cell-mediated prevention of systemic BL6-10 metastasis. These results suggest that the composition and functions of different immune cells in distant tissue microenvironments (distant organs other than primary sites of predilection) robustly mediate natural resistance against melanoma metastasis. Thus, harnessing these immune cells' responses in immunotherapeutics would considerably limit organ metastasis.
Collapse
|
16
|
Abstract
Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Cancer immunotherapy seeks to recruit an effective immune response to eliminate tumor cells. To date, cancer vaccines have shown only limited effectiveness because of our incomplete understanding of the necessary effector cells and mechanisms that yield efficient tumor clearance. CD8+ T cell cytotoxic activity has long been proposed as the primary effector function necessary for tumor regression. However, there is increasing evidence that indicates that components of the immune system other than CD8+ T cells play important roles in tumor eradication and control. The following review should provide an understanding of the mechanisms involved in an effective antitumor response to guide future therapeutic designs. The information provided suggests an alternate means of effective tumor clearance in malignant glioma to the canonical CD8+ cytotoxic T cell mechanism.
Collapse
Affiliation(s)
- G. Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN. 55108
| | - Christopher A. Pennell
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN. 55445
| | - Michael R. Olin
- Department of Pediatrics, School of Medicine, University of Minnesota, Minneapolis, MN. 55445
| |
Collapse
|
17
|
Hoyer S, Prommersberger S, Pfeiffer IA, Schuler-Thurner B, Schuler G, Dörrie J, Schaft N. Concurrent interaction of DCs with CD4(+) and CD8(+) T cells improves secondary CTL expansion: It takes three to tango. Eur J Immunol 2014; 44:3543-59. [PMID: 25211552 DOI: 10.1002/eji.201444477] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 08/04/2014] [Accepted: 09/09/2014] [Indexed: 01/13/2023]
Abstract
T-cell help is essential for CTL-memory formation. Nevertheless, it is unclear whether the continuous presence of CD4(+) T-helper (Th) cells is required during dendritic cell (DC)/CD8(+) T-cell encounters, or whether a DC will remember the helper signal after the Th cell has departed. This question is relevant for the design of therapeutic cancer vaccines. Therefore, we investigated how human DCs need to interact with CD4(+) T cells to mediate efficient repetitive CTL expansion in vitro. We established an autologous antigen-specific in vitro system with monocyte-derived DCs, as these are primarily used for cancer vaccination. Contrary to common belief, a sequential interaction of licensed DCs with CD8(+) T cells barely improved CTL expansion. In sharp contrast, simultaneous encounter of Th cells and CTLs with the same DC during the first in vitro encounter is a prerequisite for optimal subsequent CTL expansion in our in vitro system. These data suggest that, in contrast to DC maturation, the activation of DCs by Th cells, which is necessary for optimal CTL stimulation, is transient. This knowledge has significant implications for the design of new and more effective DC-based vaccination strategies. Furthermore, our in vitro system could be a valuable tool for preclinical immunotherapeutical studies.
Collapse
Affiliation(s)
- Stefanie Hoyer
- Department of Dermatology, Universitätsklinikum Erlangen, Erlangen, Germany; Department of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
18
|
Olson MR, Seah SGK, Cullen J, Greyer M, Edenborough K, Doherty PC, Bedoui S, Lew AM, Turner SJ. Helping themselves: optimal virus-specific CD4 T cell responses require help via CD4 T cell licensing of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2014; 193:5420-33. [PMID: 25339661 DOI: 10.4049/jimmunol.1303359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although CD4(+) T cell help (Th) is critical for inducing optimal B cell and CD8(+) T cell responses, it remains unclear whether induction of CD4(+) Th responses postinfection are also dependent on CD4(+) T cell help. In this study, we show that activation of adoptively transferred Th cells during primary influenza A virus (IAV) infection enhances both the magnitude and functional breadth of endogenous primary IAV-specific CD4(+) T cell responses. This enhancement was dependent on CD154-CD40-dependent dendritic cell licensing and resulted in a greater recall capacity of IAV-specific CD4(+) and CD8(+) T memory responses after heterologous IAV infection. These data suggest that engaging pre-existing CD4 responses at the time of priming may be a strategy for improving cellular immunity after vaccination.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; and
| | - Jolie Cullen
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Marie Greyer
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Kathryn Edenborough
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Peter C Doherty
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia; Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Sammy Bedoui
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Andrew M Lew
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia; and
| | - Stephen J Turner
- Department of Microbiology and Immunology, University of Melbourne, Parkville 3010, Victoria, Australia;
| |
Collapse
|
19
|
Hashem AM, Gravel C, Chen Z, Yi Y, Tocchi M, Jaentschke B, Fan X, Li C, Rosu-Myles M, Pereboev A, He R, Wang J, Li X. CD40 ligand preferentially modulates immune response and enhances protection against influenza virus. THE JOURNAL OF IMMUNOLOGY 2014; 193:722-34. [PMID: 24928989 DOI: 10.4049/jimmunol.1300093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CD40L, a key regulator of the immune system, was studied as both a targeting ligand and a molecular adjuvant in nucleoprotein (NP)-based host defense against influenza in mouse models with different genetic backgrounds. Adenoviral vectors secreting NP-CD40L fusion protein (denoted as rAd-SNP40L) afforded full protection of immunocompetent and immunocompromised mice (CD40L(-/-) and CD4(-/-)) against lethal influenza infection. Mechanistically, rAd-SNP40L preferentially induced early and persistent B cell germinal center formation, and accelerated Ig isotype-switching and Th1-skewed, NP-specific Ab response. Moreover, it drastically augmented primary and memory NP-specific CTL activity and polyfunctional CD8(+) T cells. The markedly enhanced nonneutralizing Abs and CTLs significantly reduced viral burdens in the lungs of mice upon lethal virus challenge. Data generated from CD40L(-/-) and CD4(-/-) mice revealed that the protection was indeed CD40L mediated but CD4(+) T cell independent, demonstrating the viability of the fusion Ags in protecting immunodeficient hosts. Notably, a single dose of rAd-SNP40L completely protected mice from lethal viral challenge 4 mo after immunization, representing the first report, to our knowledge, on NP in conjunction with a molecular adjuvant inducing a robust and long-lasting memory immune response against influenza. This platform is characterized by an increased in vivo load of CD40-targeted Ag upon the secretion of the fusion protein from adenovirus-infected cells and may represent a promising strategy to enhance the breadth, durability, and potency of Ag-specific immune responses.
Collapse
Affiliation(s)
- Anwar M Hashem
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Caroline Gravel
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Ze Chen
- Shanghai Institute of Biological Products, Shanghai 200231, China
| | - Yinglei Yi
- Shanghai Institute of Biological Products, Shanghai 200231, China
| | - Monika Tocchi
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Bozena Jaentschke
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Xingliang Fan
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China
| | - Changgui Li
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China
| | - Michael Rosu-Myles
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| | - Alexander Pereboev
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294; Department of Pathology and Surgery, University of Alabama at Birmingham, Birmingham, AL 35294; Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Runtao He
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba R3E 3R2, Canada; and
| | - Junzhi Wang
- National Institutes for the Control of Food and Drug, Beijing 10050, People's Republic of China;
| | - Xuguang Li
- Centre for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
20
|
Siewe B, Wallace J, Rygielski S, Stapleton JT, Martin J, Deeks SG, Landay A. Regulatory B cells inhibit cytotoxic T lymphocyte (CTL) activity and elimination of infected CD4 T cells after in vitro reactivation of HIV latent reservoirs. PLoS One 2014; 9:e92934. [PMID: 24739950 PMCID: PMC3989168 DOI: 10.1371/journal.pone.0092934] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/27/2014] [Indexed: 12/24/2022] Open
Abstract
During HIV infection, IL-10/IL-10 receptor and programmed death-1 (PD-1)/programmed death-1-ligand (PD-L1) interactions have been implicated in the impairment of cytotoxic T lymphocyte (CTL) activity. Despite antiretroviral therapy (ART), attenuated anti-HIV CTL functions present a major hurdle towards curative measures requiring viral eradication. Therefore, deeper understanding of the mechanisms underlying impaired CTL is crucial before HIV viral eradication is viable. The generation of robust CTL activity necessitates interactions between antigen-presenting cells (APC), CD4+ and CD8+ T cells. We have shown that in vitro, IL-10hiPD-L1hi regulatory B cells (Bregs) directly attenuate HIV-specific CD8+-mediated CTL activity. Bregs also modulate APC and CD4+ T cell function; herein we characterize the Breg compartment in uninfected (HIVNEG), HIV-infected "elite controllers" (HIVEC), ART-treated (HIVART), and viremic (HIVvir), subjects, and in vitro, assess the impact of Bregs on anti-HIV CTL generation and activity after reactivation of HIV latent reservoirs using suberoylanilide hydroxamic acid (SAHA). We find that Bregs from HIVEC and HIVART subjects exhibit comparable IL-10 expression levels significantly higher than HIVNEG subjects, but significantly lower than HIVVIR subjects. Bregs from HIVEC and HIVART subjects exhibit comparable PD-L1 expression, significantly higher than in HIVVIR and HIVNEG subjects. SAHA-treated Breg-depleted PBMC from HIVEC and HIVART subjects, displayed enhanced CD4+ T-cell proliferation, significant upregulation of antigen-presentation molecules, increased frequency of CD107a+ and HIV-specific CD8+ T cells, associated with efficient elimination of infected CD4+ T cells, and reduction in integrated viral DNA. Finally, IL-10-R and PD-1 antibody blockade partially reversed Breg-mediated inhibition of CD4+ T-cell proliferation. Our data suggest that, possibly, via an IL-10 and PD-L1 synergistic mechanism; Bregs likely inhibit APC function and CD4+ T-cell proliferation, leading to anti-HIV CTL attenuation, hindering viral eradication.
Collapse
Affiliation(s)
- Basile Siewe
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- * E-mail:
| | - Jennillee Wallace
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Sonya Rygielski
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
| | - Jack T. Stapleton
- Iowa City Veterans Affairs Medical Center and the University of Iowa, Departments of Internal Medicine, Microbiology and Immunology, Iowa City, Iowa, United States of America
| | - Jeffrey Martin
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Division, San Francisco General Hospital, University of California San Francisco (UCSF), San Francisco, California, United States of America
| | - Alan Landay
- Rush University Medical Center, Department of Immunology and Microbiology, Chicago, Illinois, United States of America
- FC Donders Chair, Division of Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Bhanumathy KK, Zhang B, Ahmed KA, Qureshi M, Xie Y, Tao M, Tan X, Xiang J. Transgene IL-6 enhances DC-stimulated CTL responses by counteracting CD4+25+Foxp3+ regulatory T cell suppression via IL-6-induced Foxp3 downregulation. Int J Mol Sci 2014; 15:5508-21. [PMID: 24690994 PMCID: PMC4013578 DOI: 10.3390/ijms15045508] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs), the most potent antigen-presenting cells have been extensively applied in clinical trials for evaluation of antitumor immunity. However, the efficacy of DC-mediated cancer vaccines is still limited as they are unable to sufficiently break the immune tolerance. In this study, we constructed a recombinant adenoviral vector (AdVIL-6) expressing IL-6, and generated IL-6 transgene-engineered DC vaccine (DCOVA/IL-6) by transfection of murine bone marrow-derived ovalbumin (OVA)-pulsed DCs (DCOVA) with AdVIL-6. We then assessed DCOVA/IL-6-stimulated cytotoxic T-lymphocyte (CTL) responses and antitumor immunity in OVA-specific animal tumor model. We demonstrate that DCOVA/IL-6 vaccine up-regulates expression of DC maturation markers, secretes transgene-encoded IL-6, and more efficiently stimulates OVA-specific CTL responses and therapeutic immunity against OVA-expressing B16 melanoma BL6-10OVA in vivo than the control DCOVA/Null vaccine. Moreover, DCOVA/IL-6-stimulated CTL responses were relatively maintained in mice with transfer of CD4+25+Foxp3+ Tr-cells, but significantly reduced when treated with anti-IL-6 antibody. In addition, we demonstrate that IL-6 down-regulates Foxp3-expression of CD4+25+Foxp3+ Tr-cells in vitro. Taken together, our results demonstrate that AdV-mediated IL-6 transgene-engineered DC vaccine stimulates potent CTL responses and antitumor immunity by counteracting CD4+25+ Tr immunosuppression via IL-6-induced Foxp3 down-regulation. Thus, IL-6 may be a good candidate for engineering DCs for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Bei Zhang
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada.
| | | | - Mabood Qureshi
- Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.
| | - Yufeng Xie
- Department of Oncology, the First Affiliated Hospital of Soochow University, Soochow 215000, China.
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Soochow 215000, China.
| | - Xin Tan
- School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China.
| | - Jim Xiang
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
22
|
Differential requirements of cellular and humoral immune responses for Fv2-associated resistance to erythroleukemia and for regulation of retrovirus-induced myeloid leukemia development. J Virol 2013; 87:13760-74. [PMID: 24109240 DOI: 10.1128/jvi.02506-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To assess the possible contribution of host immune responses to the exertion of Fv2-associated resistance to Friend virus (FV)-induced disease development, we inoculated C57BL/6 (B6) mice that lacked various subsets of lymphocytes with FV containing no lactate dehydrogenase-elevating virus. Fv2(r) B6 mice lacking CD4(+) T cells developed early polycythemia and fatal erythroleukemia, while B6 mice lacking CD8(+) T cells remained resistant. Erythroid progenitor cells infected with spleen focus-forming virus (SFFV) were eliminated, and no polycythemia was observed in B cell-deficient B6 mice, but they later developed myeloid leukemia associated with oligoclonal integration of ecotropic Friend murine leukemia virus. Additional depletion of natural killer and/or CD8(+) T cells from B cell-deficient B6 mice resulted in the expansion of SFFV proviruses and the development of polycythemia, indicating that SFFV-infected erythroid cells are not only restricted in their growth but are actively eliminated in Fv2(r) mice through cellular immune responses.
Collapse
|
23
|
Potent CD4+ T-cell epitope P30 enhances HER2/neu-engineered dendritic cell-induced immunity against Tg1-1 breast cancer in transgenic FVBneuN mice by enhanced CD4+ T-cell-stimulated CTL responses. Cancer Gene Ther 2013; 20:590-8. [PMID: 24052129 DOI: 10.1038/cgt.2013.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/29/2022]
Abstract
One of the major obstacles in human epidermal growth factor receptor (HER)-2/neu-specific trastuzumab immunotherapy of HER2/neu-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Although dendritic cell (DC) vaccines have been extensively applied in clinical trials for cancer treatment, the vaccination efficacy is still limited, mostly because DC vaccines are not sufficient to break tumor-associated antigen-specific self-immune tolerance in cancer patients. P30 (FNNFTVSFWLRVPKVSASHLE) derived from tetanus toxin is a universally potent CD4(+) T helper epitope capable of enhancing CD8(+) cytotoxic T-lymphocyte (CTL) responses. In this study, we constructed two recombinant adenoviral vectors (AdVs), AdVOVA-P30 and AdVHER2/neu-P30, expressing ovalbumin (OVA)-P30 and HER2/neu-P30. In order to enhance DC vaccine efficacy, we transfected mouse bone marrow (BM)-derived DCs with AdVOVA-P30 and AdVHER2/neu-P30 to generate engineered DCOVA-P30 and DCHER2/neu-P30 vaccines, respectively. We, then, compared CD4(+) and CD8(+) T-cell responses and antitumor immunity derived from DCOVA-P30 and DCHER2/neu-P30 vaccination in wild-type C57BL/6 and transgenic FVBneuN mice, respectively. We demonstrate that engineered DCOVA-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses than DCOVA in C57BL/6 mice. Interestingly, the increased DCOVA-P30-induced CTL responses are mainly contributed by enhanced CD4(+) T-cell-stimulated CTL proliferation. We show that DCOVA-P30 vaccine also stimulates more efficient therapeutic immunity against OVA-expressing BL6-10OVA melanoma than DCOVA in C57BL/6 mice. In addition, we demonstrate that DCHER2/neu-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses and protective immunity against HER2/neu-expressing Tg1-1 breast cancer than DCHER2/neu in transgenic FVBneuN mice with HER2/neu-specific self-immune tolerance. Therefore, the engineered DCHER2/neu-P30 vaccine may provide a new immunotherapy alternative for women with HER2/neu(+) breast cancer, especially for trastuzumab-resistant HER2/neu(+) breast cancer patients.
Collapse
|
24
|
Exosomal pMHC-I complex targets T cell-based vaccine to directly stimulate CTL responses leading to antitumor immunity in transgenic FVBneuN and HLA-A2/HER2 mice and eradicating trastuzumab-resistant tumor in athymic nude mice. Breast Cancer Res Treat 2013; 140:273-84. [DOI: 10.1007/s10549-013-2626-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/28/2013] [Indexed: 12/23/2022]
|
25
|
Umeshappa CS, Xie Y, Xu S, Nanjundappa RH, Freywald A, Deng Y, Ma H, Xiang J. Th cells promote CTL survival and memory via acquired pMHC-I and endogenous IL-2 and CD40L signaling and by modulating apoptosis-controlling pathways. PLoS One 2013; 8:e64787. [PMID: 23785406 PMCID: PMC3681805 DOI: 10.1371/journal.pone.0064787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
Involvement of CD4+ helper T (Th) cells is crucial for CD8+ cytotoxic T lymphocyte (CTL)-mediated immunity. However, CD4+ Th’s signals that govern CTL survival and functional memory are still not completely understood. In this study, we assessed the role of CD4+ Th cells with acquired antigen-presenting machineries in determining CTL fates. We utilized an adoptive co-transfer into CD4+ T cell-sufficient or -deficient mice of OTI CTLs and OTII Th cells or Th cells with various gene deficiencies pre-stimulated in vitro by ovalbumin (OVA)-pulsed dendritic cell (DCova). CTL survival was kinetically assessed in these mice using FITC-anti-CD8 and PE-H-2Kb/OVA257-264 tetramer staining by flow cytometry. We show that by acting via endogenous CD40L and IL-2, and acquired peptide-MHC-I (pMHC-I) complex signaling, CD4+ Th cells enhance survival of transferred effector CTLs and their differentiation into the functional memory CTLs capable of protecting against highly-metastasizing tumor challenge. Moreover, RT-PCR, flow cytometry and Western blot analysis demonstrate that increased survival of CD4+ Th cell-helped CTLs is matched with enhanced Akt1/NF-κB activation, down-regulation of TRAIL, and altered expression profiles with up-regulation of prosurvival (Bcl-2) and down-regulation of proapoptotic (Bcl-10, Casp-3, Casp-4, Casp-7) molecules. Taken together, our results reveal a previously unexplored mechanistic role for CD4+ Th cells in programming CTL survival and memory recall responses. This knowledge could also aid in the development of efficient adoptive CTL cancer therapy.
Collapse
Affiliation(s)
| | - Yufeng Xie
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | - Shulin Xu
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
| | | | - Andrew Freywald
- Department of Pathology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jim Xiang
- Cancer Research Unit, Saskatchewan Cancer Agency, Saskatoon, Saskatchewan, Canada
- * E-mail:
| |
Collapse
|
26
|
Zhai YZ, Wang Y, Feng GH. Granulocyte-macrophage colony-stimulating factor genetic adjuvant enhances the immune stimulatory effects of plasmid DNA encoding the hepatitis C virus core protein. Shijie Huaren Xiaohua Zazhi 2012; 20:3424-3430. [DOI: 10.11569/wcjd.v20.i35.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) genetic adjuvant on immune response induced by plasmid DNA encoding the hepatitis C virus (HCV) core (C) protein.
METHODS: The gene encoding the HCV C protein was amplified by PCR from HCV 1b genotype and inserted into the pUC119 vector. The HCV C gene was then subcloned into the pCMH6K eukaryotic vector, and the resulting plasmid was named pCMH6K/HCV-C. The recombinant vector was confirmed by restriction enzyme analysis and DNA sequencing, and transfected into China hamster ovary (CHO) cells with Lipofectamine 2000. Distribution of the HCV C protein in transfected CHO cells was detected by immunofluorescence. Balb/c mice were vaccinated with the recombinant plasmid with or without the GM-CSF gene. HCV C-specific antibody in serum was measured by ELISA. The changes in T lymphocyte subsets and levels of Th cell intracellular cytokines interferon-γ (IFN-γ) and interleukin-4 (IL-4) in splenic cell suspension from immunized mice were evaluated by flow cytometric analysis. CTL activity was assessed by LDH assay.
RESULTS: Restrict enzyme digestion and DNA sequencing indicated that the recombinant pCMH6K/HCV-C was successfully constructed. The expression of plasmid-encoded protein was mainly distributed in membrane and scarcely in cytoplasm of transfected CHO cells. The percentage of CD4+ T cells in spleen cells in the pCMH6K/HCV-C+pGM-CSF co-vaccination group was significantly higher than those in other groups (all P < 0.05). The percentage of CD8+ T cells showed no significant differences among each group (P > 0.05). CTL activity induced by GM-CSF DNA co-vaccination was significantly higher than that immunized with the same amount of other naked DNA (P < 0.05). The ratio of IFN-γ to IL-4 in spleen cells from GM-CSF DNA co-vaccination group was significantly higher than those in other groups (all P < 0.05).
CONCLUSION: GM-CSF DNA could enhance the immune stimulatory effects of HCV DNA vaccine and induce Th1-type immune response.
Collapse
|
27
|
Seah SGK, Brady JL, Carrington EM, Ng WC, Sutherland RM, Hancock MS, La Gruta NL, Brown LE, Turner SJ, Lew AM, Zhan Y. Influenza-induced, helper-independent CD8+ T cell responses use CD40 costimulation at the late phase of the primary response. J Leukoc Biol 2012; 93:145-54. [PMID: 23108101 DOI: 10.1189/jlb.0612266] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The helper-dependent pathway of priming CD8(+) T cells involves "licensing" of DCs by CD40L on CD4(+) T cells. The helper-independent ("helpless") pathways elicited by many viruses, including influenza, are less widely understood. We have postulated that CD40L can be up-regulated on DCs by such viruses, and this promotes priming of CD8(+) T cells via CD40. Most studies on costimulation have been performed in the presence of CD4(+) T cells, and so the role of CD40L costimulation under helpless circumstances has not been fully elucidated. Here, we investigated such a role for CD40L using CD40L KO mice. Although the number of influenza-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells, it was markedly decreased in the absence of CD40L. Proliferation (the number of CD44(+)BrdU(+) influenza-specific CD8(+) T cells) in the primary response was diminished in CD40L KO mice at Day 8 but not at Day 5 after infection. MLR studies indicated that CD40L expression on DCs was critical for CD8(+) T cell activation. Adoptive transfer of CD40 KO CD8(+) T cells compared with WT cells confirmed that CD40 on such cells was critical for the generation of primary anti-influenza CD8(+) T cell responses. The late effect also corresponded with the late expression of CD40 by influenza-specific CD8(+) T cells. We suggest that costimulation via CD40L on DCs and CD40 on CD8(+) T cells is important in optimizing primary CD8(+) T cell responses during influenza infection.
Collapse
Affiliation(s)
- Shirley G K Seah
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|