1
|
Zheng S, Guo Y, Wu Z, Cheng J. Theory of Lipid Metabolism Disorders in Rhinitis and Asthma (Lipid Droplets). Cell Biochem Biophys 2024:10.1007/s12013-024-01469-5. [PMID: 39097558 DOI: 10.1007/s12013-024-01469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
Lipid droplets are important for the storage of neutral lipids in cells; moreover, they participate in a variety of activities in cells and are multifunctional organelles. In the past few decades, lipid droplets have been extensively studied and found to play important roles in cellular energy balance, signal regulation and metabolic regulation. In particular, the formation and function of lipid droplets in adipocytes and mast cells have received much attention. This article reviews the formation, structure and function of lipid droplets in mast cells and elaborates on the relationship between lipid droplets and both adipocyte metabolism and mast cell-mediated allergic inflammation, to provide ideas for the treatment of allergic inflammation by targeting lipid droplets. This study provides important evidence for the role of lipid metabolism disorders in rhinitis and asthma.
Collapse
Affiliation(s)
- Shaohua Zheng
- Public Health Service Center, Bao'an District, Shenzhen, Guangdong, China
| | - Yijia Guo
- Public Health Service Center, Bao'an District, Shenzhen, Guangdong, China
| | - Zhaoyan Wu
- Public Health Service Center, Bao'an District, Shenzhen, Guangdong, China
| | - Jing Cheng
- Otolaryngology Teaching and Research Group of Clinical Department, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Melo RCN, Silva TP. Eosinophil activation during immune responses: an ultrastructural view with an emphasis on viral diseases. J Leukoc Biol 2024; 116:321-334. [PMID: 38466831 DOI: 10.1093/jleuko/qiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
3
|
Lopez-Perez D, Prados-Lopez B, Galvez J, Leon J, Carazo A. Eosinophils in Colorectal Cancer: Emerging Insights into Anti-Tumoral Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:6098. [PMID: 38892286 PMCID: PMC11172675 DOI: 10.3390/ijms25116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Eosinophils are myeloid effector cells whose main homing is the gastrointestinal tract. There, they take part in type I and type II immune responses. They also contribute to other non-immunological homeostatic functions like mucus production, tissue regeneration, and angiogenesis. In colorectal cancer (CRC), eosinophils locate in the center of the tumor and in the front of invasion and play an anti-tumoral role. They directly kill tumor cells by releasing cytotoxic compounds and eosinophil extracellular traps or indirectly by activating other immune cells via cytokines. As CRC progresses, the number of infiltrating eosinophils decreases. Although this phenomenon is not fully understood, it is known that some changes in the microenvironmental milieu and microbiome can affect eosinophil infiltration. Importantly, a high number of intratumoral eosinophils is a favorable prognostic factor independent from the tumor stage. Moreover, after immunotherapy, responding patients usually display eosinophilia, so eosinophils could be a good biomarker candidate to monitor treatment outcomes. Finally, even though eosinophils seem to play an interesting anti-tumoral role in CRC, much more research is needed to fully understand their interactions in the CRC microenvironment. This review explores the multifaceted roles of eosinophils in colorectal cancer, highlighting their anti-tumoral effects, prognostic significance, and potential as a biomarker for treatment outcomes.
Collapse
Affiliation(s)
- David Lopez-Perez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
| | - Belen Prados-Lopez
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
| | - Julio Galvez
- Department of Pharmacology, Faculty of Pharmacy, University of Granada, 18012 Granada, Spain
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
- Centro de Investigación Biomédica en Red para Enfermedades Hepáticas y Digestivas (CIBER-EHD), Center for Biomedical Research, University of Granada, 18012 Granada, Spain
| | - Josefa Leon
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| | - Angel Carazo
- Research Unit, Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18016 Granada, Spain
- Unidad de Gestión de Microbiología, Hospital Universitario San Cecilio de Granada, 18016 Granada, Spain
| |
Collapse
|
4
|
Brandsma J, Schofield JPR, Yang X, Strazzeri F, Barber C, Goss VM, Koster G, Bakke PS, Caruso M, Chanez P, Dahlén SE, Fowler SJ, Horváth I, Krug N, Montuschi P, Sanak M, Sandström T, Shaw DE, Chung KF, Singer F, Fleming LJ, Adcock IM, Pandis I, Bansal AT, Corfield J, Sousa AR, Sterk PJ, Sánchez-García RJ, Skipp PJ, Postle AD, Djukanović R. Stratification of asthma by lipidomic profiling of induced sputum supernatant. J Allergy Clin Immunol 2023; 152:117-125. [PMID: 36918039 DOI: 10.1016/j.jaci.2023.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Asthma is a chronic respiratory disease with significant heterogeneity in its clinical presentation and pathobiology. There is need for improved understanding of respiratory lipid metabolism in asthma patients and its relation to observable clinical features. OBJECTIVE We performed a comprehensive, prospective, cross-sectional analysis of the lipid composition of induced sputum supernatant obtained from asthma patients with a range of disease severities, as well as from healthy controls. METHODS Induced sputum supernatant was collected from 211 adults with asthma and 41 healthy individuals enrolled onto the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes) study. Sputum lipidomes were characterized by semiquantitative shotgun mass spectrometry and clustered using topologic data analysis to identify lipid phenotypes. RESULTS Shotgun lipidomics of induced sputum supernatant revealed a spectrum of 9 molecular phenotypes, highlighting not just significant differences between the sputum lipidomes of asthma patients and healthy controls, but also within the asthma patient population. Matching clinical, pathobiologic, proteomic, and transcriptomic data helped inform the underlying disease processes. Sputum lipid phenotypes with higher levels of nonendogenous, cell-derived lipids were associated with significantly worse asthma severity, worse lung function, and elevated granulocyte counts. CONCLUSION We propose a novel mechanism of increased lipid loading in the epithelial lining fluid of asthma patients resulting from the secretion of extracellular vesicles by granulocytic inflammatory cells, which could reduce the ability of pulmonary surfactant to lower surface tension in asthmatic small airways, as well as compromise its role as an immune regulator.
Collapse
Affiliation(s)
- Joost Brandsma
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom.
| | - James P R Schofield
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom; Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Xian Yang
- Data Science Institute, Imperial College, London, United Kingdom
| | - Fabio Strazzeri
- Mathematical Sciences, University of Southampton, Southampton, United Kingdom
| | - Clair Barber
- National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Victoria M Goss
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Grielof Koster
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| | - Per S Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Pascal Chanez
- Department of Respiratory Diseases, Aix-Marseille University, Marseille, France
| | - Sven-Erik Dahlén
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, University of Manchester, Manchester, United Kingdom; Manchester Academic Health Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Ildikó Horváth
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Norbert Krug
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Rome, Italy; National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Marek Sanak
- Department of Medicine, Jagiellonian University, Krakow, Poland
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Dominick E Shaw
- National Institute for Health Research Biomedical Research Unit, University of Nottingham, Nottingham, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Florian Singer
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics and Adolescent Medicine, Division of Paediatric Pulmonology and Allergology, Medical University of Graz, Graz, Austria
| | - Louise J Fleming
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ioannis Pandis
- Data Science Institute, Imperial College, London, United Kingdom
| | - Aruna T Bansal
- Acclarogen Ltd, St John's Innovation Centre, Cambridge, United Kingdom
| | | | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, London, United Kingdom
| | - Peter J Sterk
- Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Paul J Skipp
- Centre for Proteomic Research, Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Anthony D Postle
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ratko Djukanović
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom; National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom
| |
Collapse
|
5
|
Identification of inflammatory markers in eosinophilic cells of the immune system: fluorescence, Raman and CARS imaging can recognize markers but differently. Cell Mol Life Sci 2021; 79:52. [PMID: 34936035 PMCID: PMC8739296 DOI: 10.1007/s00018-021-04058-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/23/2021] [Accepted: 12/21/2021] [Indexed: 11/04/2022]
Abstract
Eosinophils (Eos) play an important role in the immune system’s response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1β, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation.
Collapse
|
6
|
Lipid Droplets, Phospholipase A 2, Arachidonic Acid, and Atherosclerosis. Biomedicines 2021; 9:biomedicines9121891. [PMID: 34944707 PMCID: PMC8699036 DOI: 10.3390/biomedicines9121891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Lipid droplets, classically regarded as static storage organelles, are currently considered as dynamic structures involved in key processes of lipid metabolism, cellular homeostasis and signaling. Studies on the inflammatory state of atherosclerotic plaques suggest that circulating monocytes interact with products released by endothelial cells and may acquire a foamy phenotype before crossing the endothelial barrier and differentiating into macrophages. One such compound released in significant amounts into the bloodstream is arachidonic acid, the common precursor of eicosanoids, and a potent inducer of neutral lipid synthesis and lipid droplet formation in circulating monocytes. Members of the family of phospholipase A2, which hydrolyze the fatty acid present at the sn-2 position of phospholipids, have recently emerged as key controllers of lipid droplet homeostasis, regulating their formation and the availability of fatty acids for lipid mediator production. In this paper we discuss recent findings related to lipid droplet dynamics in immune cells and the ways these organelles are involved in regulating arachidonic acid availability and metabolism in the context of atherosclerosis.
Collapse
|
7
|
da Cunha AA, Silveira JS, Antunes GL, Abreu da Silveira K, Benedetti Gassen R, Vaz Breda R, Márcio Pitrez P. Cysteinyl leukotriene induces eosinophil extracellular trap formation via cysteinyl leukotriene 1 receptor in a murine model of asthma. Exp Lung Res 2021; 47:355-367. [PMID: 34468256 DOI: 10.1080/01902148.2021.1923864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Eosinophils are one of the main cells responsible to the inflammatory response in asthma by the release of inflammatory molecules such as cytokines, reactive oxygen species (ROS), cytotoxic granule, eosinophil extracellular trap (EET), and lipid mediators as cysteinyl leukotriene (cysLT). The interconnections between these molecules are not fully understood. Here, we attempted to investigate the cysLT participation in the mechanisms of EET formation in an asthma model of OVA challenge. MATERIALS AND METHODS Before intranasal challenge with OVA, BALB/cJ mice were treated with a 5-lipoxygenase-activating protein (FLAP) inhibitor (MK-886), or with a cysLT1 receptor antagonist (MK-571) and the lung and bronchoalveolar lavage fluid (BALF) were analyzed. RESULTS We showed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in inflammatory cells, goblet cells hyperplasia, and eosinophil peroxidase (EPO) activity in the airway. However, only OVA-challenged mice treated with MK-571 had an improvement in lung function. Also, treatments with MK-886 or MK-571 decreased Th2 cytokines levels in the airway. Moreover, we observed that OVA-challenged mice treated with MK-886 or MK-571 had a decrease in EET formation in BALF. We also verified that EET release was not due to cell death because the cell viability remained the same among the groups. CONCLUSION We revealed that the decrease in cysLT production or cysLT1 receptor inhibition by MK-886 or/and MK-571 treatments, respectively reduced EET formation in BALF, showing that cysLT regulates the activation process of EET release in asthma.
Collapse
Affiliation(s)
| | - Josiane Silva Silveira
- Laboratory of Pediatric Respirology, Infant Center, Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Géssica Luana Antunes
- Laboratory of Pediatric Respirology, Infant Center, Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Keila Abreu da Silveira
- Laboratory of Pediatric Respirology, Infant Center, Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Benedetti Gassen
- Laboratory of Cellular and Molecular Immunology, Science School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Ricardo Vaz Breda
- Institute of the Brain (BraIns), Medicine School, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | |
Collapse
|
8
|
Rodrigo-Muñoz JM, Gil-Martínez M, Sastre B, del Pozo V. Emerging Evidence for Pleiotropism of Eosinophils. Int J Mol Sci 2021; 22:ijms22137075. [PMID: 34209213 PMCID: PMC8269185 DOI: 10.3390/ijms22137075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023] Open
Abstract
Eosinophils are complex granulocytes with the capacity to react upon diverse stimuli due to their numerous and variable surface receptors, which allows them to respond in very different manners. Traditionally believed to be only part of parasitic and allergic/asthmatic immune responses, as scientific studies arise, the paradigm about these cells is continuously changing, adding layers of complexity to their roles in homeostasis and disease. Developing principally in the bone marrow by the action of IL-5 and granulocyte macrophage colony-stimulating factor GM-CSF, eosinophils migrate from the blood to very different organs, performing multiple functions in tissue homeostasis as in the gastrointestinal tract, thymus, uterus, mammary glands, liver, and skeletal muscle. In organs such as the lungs and gastrointestinal tract, eosinophils are able to act as immune regulatory cells and also to perform direct actions against parasites, and bacteria, where novel mechanisms of immune defense as extracellular DNA traps are key factors. Besides, eosinophils, are of importance in an effective response against viral pathogens by their nuclease enzymatic activity and have been lately described as involved in severe acute respiratory syndrome coronavirus SARS-CoV-2 immunity. The pleiotropic role of eosinophils is sustained because eosinophils can be also detrimental to human physiology, for example, in diseases like allergies, asthma, and eosinophilic esophagitis, where exosomes can be significant pathophysiologic units. These eosinophilic pathologies, require specific treatments by eosinophils control, such as new monoclonal antibodies like mepolizumab, reslizumab, and benralizumab. In this review, we describe the roles of eosinophils as effectors and regulatory cells and their involvement in pathological disorders and treatment.
Collapse
Affiliation(s)
- José M. Rodrigo-Muñoz
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
| | - Marta Gil-Martínez
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
| | - Beatriz Sastre
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| | - Victoria del Pozo
- Immunoallergy Laboratory, Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Avenida Reyes Católicos, 28040 Madrid, Spain; (J.M.R.-M.); (M.G.-M.)
- CIBER de Enfermedades Respiratorias (CIBERES), Av. de Monforte de Lemos, 28029 Madrid, Spain
- Medicine Department, Universidad Autónoma de Madrid, 28029 Madrid, Spain
- Correspondence: (B.S.); (V.d.P.)
| |
Collapse
|
9
|
Germic N, Hosseini A, Yousefi S, Karaulov A, Simon HU. Regulation of eosinophil functions by autophagy. Semin Immunopathol 2021; 43:347-362. [PMID: 34019141 PMCID: PMC8241657 DOI: 10.1007/s00281-021-00860-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Eosinophils are granule-containing leukocytes which develop in the bone marrow. For many years, eosinophils have been recognized as cytotoxic effector cells, but recent studies suggest that they perform additional immunomodulatory and homeostatic functions. Autophagy is a conserved intracellular process which preserves cellular homeostasis. Autophagy defects have been linked to the pathogenesis of many human disorders. Evidence for abnormal regulation of autophagy, including decreased or increased expression of autophagy-related (ATG) proteins, has been reported in several eosinophilic inflammatory disorders, such as Crohn's disease, bronchial asthma, eosinophilic esophagitis, and chronic rhinosinusitis. Despite the increasing extent of research using preclinical models of immune cell-specific autophagy deficiency, the physiological relevance of autophagic pathway in eosinophils has remained unknown until recently. Owing to the increasing evidence that eosinophils play a role in keeping organismal homeostasis, the regulation of eosinophil functions is of considerable interest. Here, we discuss the most recent advances on the role of autophagy in eosinophils, placing particular emphasis on insights obtained in mouse models of infections and malignant diseases in which autophagy has genetically dismantled in the eosinophil lineage. These studies pointed to the possibility that autophagy-deficient eosinophils exaggerate inflammation. Therefore, the pharmacological modulation of the autophagic pathway in these cells could be used for therapeutic interventions.
Collapse
Affiliation(s)
- Nina Germic
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991, Moscow, Russia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, 119991, Moscow, Russia. .,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012, Kazan, Russia.
| |
Collapse
|
10
|
Grisaru-Tal S, Itan M, Klion AD, Munitz A. A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer 2020; 20:594-607. [PMID: 32678342 DOI: 10.1038/s41568-020-0283-9] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
Eosinophils are evolutionarily conserved, pleotropic cells that display key effector functions in allergic diseases, such as asthma. Nonetheless, eosinophils infiltrate multiple tumours and are equipped to regulate tumour progression either directly by interacting with tumour cells or indirectly by shaping the tumour microenvironment (TME). Eosinophils can readily respond to diverse stimuli and are capable of synthesizing and secreting a large range of molecules, including unique granule proteins that can potentially kill tumour cells. Alternatively, they can secrete pro-angiogenic and matrix-remodelling soluble mediators that could promote tumour growth. Herein, we aim to comprehensively outline basic eosinophil biology that is directly related to their activity in the TME. We discuss the mechanisms of eosinophil homing to the TME and examine their diverse pro-tumorigenic and antitumorigenic functions. Finally, we present emerging data regarding eosinophils as predictive biomarkers and effector cells in immunotherapy, especially in response to immune checkpoint blockade therapy, and highlight outstanding questions for future basic and clinical cancer research.
Collapse
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Amy D Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
11
|
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy. Cells 2020; 9:cells9092041. [PMID: 32906767 PMCID: PMC7563840 DOI: 10.3390/cells9092041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Leukocytes are a part of the immune system that plays an important role in the host’s defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells’ types. To prove this hypothesis, UV−Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process.
Collapse
|
12
|
Hine PM. Haplosporidian host:parasite interactions. FISH & SHELLFISH IMMUNOLOGY 2020; 103:190-199. [PMID: 32437861 DOI: 10.1016/j.fsi.2020.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/06/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
The host:parasite interactions of the 3 serious haplosporidian pathogens of oysters, on which most information exists, are reviewed. They are Bonamia ostreae in Ostrea spp. and Crassostrea gigas; Bonamia exitiosa in Ostrea spp.; and Haplosporidium nelsoni in Crassostrea spp. Understanding the haemocytic response to pathogens is constrained by lack of information on haematopoiesis, haemocyte identity and development. Basal haplospridians in spot prawns are probably facultative parasites. H. nelsoni and a species infecting Haliotis iris in New Zealand (NZAP), which have large extracellular plasmodia that eject haplosporosomes or their contents, lyse surrounding cells and are essentially extracellular parasites. Bonamia spp. have small plasmodia that are phagocytosed, haplosporosomes are not ejected and they are intracellular obligate parasites. Phagocytosis by haemocytes is followed by formation of a parasitophorous vacuole, blocking of haemocyte lysosomal enzymes and the endolysosomal pathway. Reactive oxygen species (ROS) are blocked by antioxidants, and host cell apoptosis may occur. Unlike susceptible O. edulis, the destruction of B. ostreae by C. gigas may be due to higher haemolymph proteins, higher rates of granulocyte binding and phagocytosis, production of ROS, the presence of plasma β-glucosidase, antimicrobial peptides and higher levels of haemolymph and haemocyte enzymes. In B.exitiosa infection of Ostrea chilensis, cytoplasmic lipid bodies (LBs) containing lysosomal enzymes accumulate in host granulocytes and in B. exitiosa following phagocytosis. Their genesis and role in innate immunity and inflammation appears to be the same as in vertebrate granulocytes and macrophages, and other invertebrates. If so, they are probably the site of eicosanoid synthesis from arachidonic acid, and elevated numbers of LBs are probably indicative of haemocyte activation. It is probable that the molecular interaction, and role of LBs in the synthesis and storage of eicosanoids from arachidonic acid, is conserved in innate immunity in vertebrates and invertebrates. However, it seems likely that haplosporidians are more diverse than realized, and that there are many variations in host parasite interactions and life cycles.
Collapse
Affiliation(s)
- P M Hine
- 73, rue de la Fée au Bois, 17450, Fouras, France.
| |
Collapse
|
13
|
Abstract
Physicians may encounter blood or tissue eosinophilia through a routine complete blood count with differential or a tissue pathology report. In this article, the basic biology of eosinophils is reviewed and definitions of blood eosinophilia, as well as the challenges of defining tissue eosinophilia, are discussed. Conditions associated with eosinophilia are briefly discussed as well as a general approach to evaluating eosinophilia. Future challenges include determining which eosinophil-associated diseases benefit from eosinophil-targeted therapy and identifying biomarkers for disease activity and diagnosis.
Collapse
Affiliation(s)
- Fei Li Kuang
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, 4 Memorial Drive, B1-27, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Loktionov A. Eosinophils in the gastrointestinal tract and their role in the pathogenesis of major colorectal disorders. World J Gastroenterol 2019; 25:3503-3526. [PMID: 31367153 PMCID: PMC6658389 DOI: 10.3748/wjg.v25.i27.3503] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/22/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are currently regarded as versatile mobile cells controlling and regulating multiple biological pathways and responses in health and disease. These cells store in their specific granules numerous biologically active substances (cytotoxic cationic proteins, cytokines, growth factors, chemokines, enzymes) ready for rapid release. The human gut is the main destination of eosinophils that are produced and matured in the bone marrow and then transferred to target tissues through the circulation. In health the most important functions of gut-residing eosinophils comprise their participation in the maintenance of the protective mucosal barrier and interactions with other immune cells in providing immunity to microbiota of the gut lumen. Eosinophils are closely involved in the development of inflammatory bowel disease (IBD), when their cytotoxic granule proteins cause damage to host tissues. However, their roles in Crohn’s disease and ulcerative colitis appear to follow different immune response patterns. Eosinophils in IBD are especially important in altering the structure and protective functions of the mucosal barrier and modulating massive neutrophil influx to the lamina propria followed by transepithelial migration to colorectal mucus. IBD-associated inflammatory process involving eosinophils then appears to expand to the mucus overlaying the internal gut surface. The author hypothesises that immune responses within colorectal mucus as well as ETosis exerted by both neutrophils and eosinophils on the both sides of the colonic epithelial barrier act as additional pathogenetic factors in IBD. Literature analysis also shows an association between elevated eosinophil levels and better colorectal cancer (CRC) prognosis, but mechanisms behind this effect remain to be elucidated. In conclusion, the author emphasises the importance of investigating colorectal mucus in IBD and CRC patients as a previously unexplored milieu of disease-related inflammatory responses.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Eosinophils are short-lived granulocytes that contain a variety of proteins and lipids traditionally associated with host defense against parasites. The primary goal of this review is to examine more recent evidence that challenged this rather outdated role of eosinophils in the context of pulmonary infections with helminths, viruses, and bacteria. RECENT FINDINGS While eosinophil mechanisms that counter parasites, viruses, and bacteria are similar, the kinetics and impact may differ by pathogen type. Major antiparasitic responses include direct killing and immunoregulation, as well as some mechanisms by which parasite survival/growth is supported. Antiviral defenses may be as unembellished as granule protein-induced direct killing or more urbane as serving as a conduit for better adaptive immune responses to the invading virus. Although sacrificial, eosinophil DNA emitted in response to bacteria helps trap bacteria to limit dissemination. Herein, we discuss the current research redefining eosinophils as multifunctional cells that are active participants in host defense against lung pathogens. Eosinophils recognize and differentially respond to invading pathogens, allowing them to deploy innate defense mechanisms to contain and clear the infection, or modulate the immune response. Modern technology and animal models have unraveled hitherto unknown capabilities of this surreptitious cell that indubitably has more functions awaiting discovery.
Collapse
Affiliation(s)
- Kim S LeMessurier
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA
| | - Amali E Samarasinghe
- Department of Pediatrics, Division of Pulmonology, Allergy - Immunology, and Sleep, University of Tennessee Health Science Center, Memphis, TN, USA.
- Children's Foundation Research Institute, University of Tennessee Health Science Center, Memphis, TN, 38103, USA.
| |
Collapse
|
16
|
Rygula A, Fernandes RF, Grosicki M, Kukla B, Leszczenko P, Augustynska D, Cernescu A, Dorosz A, Malek K, Baranska M. Raman imaging highlights biochemical heterogeneity of human eosinophils versus human eosinophilic leukaemia cell line. Br J Haematol 2019; 186:685-694. [PMID: 31134616 DOI: 10.1111/bjh.15971] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/21/2023]
Abstract
Eosinophils are acidophilic granulocytes that develop in the bone marrow. Although their population contributes only to approximately 1-6% of all leucocytes present in the human blood, they possess a wide range of specific functions. They play a key role in inflammation-regulating processes, when their numbers can increased to above 5 × 109 /l of peripheral blood. Their characteristic feature is the presence of granules containing eosinophil peroxidase (EPO), the release of which can trigger a cascade of events promoting oxidative stress, apoptosis or necrosis, leading finally to cell death. Raman spectroscopy is a powerful technique to detect EPO, which comprises a chromophore protoporphyrin IX. Another cell structure associated with inflammation processes are lipid bodies (lipid-rich organelles), also well recognized and imaged using high resolution confocal Raman spectroscopy. In this work, eosinophils isolated from the blood of a human donor were analysed versus their model, EoL-1 human eosinophilic leukaemia cell line, by Raman spectroscopic imaging. We showed that EPO was present only in primary cells and not found in the cell line. Eosinophils were activated using phorbol 12-myristate 13-acetate, which resulted in lipid bodies formation. An effect of cells stimulation was studied and compared for eosinophils and EoL-1.
Collapse
Affiliation(s)
- Anna Rygula
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Rafaella F Fernandes
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland.,Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Bozena Kukla
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | | | - Dominika Augustynska
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | | | - Aleksandra Dorosz
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland.,Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
17
|
Grace JO, Malik A, Reichman H, Munitz A, Barski A, Fulkerson PC. Reuse of public, genome-wide, murine eosinophil expression data for hypotheses development. J Leukoc Biol 2018; 104:185-193. [PMID: 29758095 DOI: 10.1002/jlb.1ma1117-444r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/12/2018] [Accepted: 03/18/2018] [Indexed: 12/12/2022] Open
Abstract
The eosinophil (Eos) surface phenotype and activation state is altered after recruitment into tissues and after exposure to pro-inflammatory cytokines. In addition, distinct Eos functional subsets have been described, suggesting that tissue-specific responses for Eos contribute to organ homeostasis. Understanding the mechanisms by which Eos subsets achieve their tissue-specific identity is currently an unmet goal for the eosinophil research community. Publicly archived expression data can be used to answer original questions, test and generate new hypotheses, and serve as a launching point for experimental design. With these goals in mind, we investigated the effect of genetic background, culture methods, and tissue residency on murine Eos gene expression using publicly available, genome-wide expression data. Eos differentiated from cultures have a gene expression profile that is distinct from that of native homeostatic Eos; thus, researchers can repurpose published expression data to aid in selecting the appropriate culture method to study their gene of interest. In addition, we identified Eos lung- and gastrointestinal-specific transcriptomes, highlighting the profound effect of local tissue environment on gene expression in a terminally differentiated granulocyte even at homeostasis. Expanding the "toolbox" of Eos researchers to include public-data reuse can reduce redundancy, increase research efficiency, and lead to new biological insights.
Collapse
Affiliation(s)
- Jillian O Grace
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Astha Malik
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hadar Reichman
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, The Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Artem Barski
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Patricia C Fulkerson
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Thompson-Souza GA, Gropillo I, Neves JS. Cysteinyl Leukotrienes in Eosinophil Biology: Functional Roles and Therapeutic Perspectives in Eosinophilic Disorders. Front Med (Lausanne) 2017; 4:106. [PMID: 28770202 PMCID: PMC5515036 DOI: 10.3389/fmed.2017.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Cysteinyl leukotrienes (cysLTs), LTC4, and its extracellular metabolites, LTD4 and LTE4, have varied and multiple roles in mediating eosinophilic disorders including host defense against parasitic helminthes and allergic inflammation, especially in the lung and in asthma. CysLTs are known to act through at least 2 receptors termed cysLT1 receptor (CysLT1R) and cysLT2 receptor (CysLT2R). Eosinophils contain a dominant population of cytoplasmic crystalloid granules that store various preformed proteins. Human eosinophils are sources of cysLTs and are known to express the two known cysLTs receptors (CysLTRs). CysLTs can have varied functions on eosinophils, ranging from intracrine regulators of secretion of granule-derived proteins to paracrine/autocrine roles in eosinophil chemotaxis, differentiation, and survival. Lately, it has been recognized the expression of CysLTRs in the membranes of eosinophil granules. Moreover, cysLTs have been shown to evoke secretion from isolated cell-free eosinophil granules operating through their receptors expressed on granule membranes. In this work, we review the functional roles of cysLTs in eosinophil biology. We review cysLTs biosynthesis, their receptors, and argue the intracrine and paracrine/autocrine responses induced by cysLTs in eosinophils and in isolated free extracellular eosinophil granules. We also examine and speculate on the therapeutic relevance of targeting CysLTRs in the treatment of eosinophilic disorders.
Collapse
Affiliation(s)
| | - Isabella Gropillo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism. PLoS One 2016; 11:e0160433. [PMID: 27490663 PMCID: PMC4973985 DOI: 10.1371/journal.pone.0160433] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host.
Collapse
|
20
|
Abstract
Elevated levels of cholesteryl ester (CE)-enriched apoB containing plasma lipoproteins lead to increased foam cell formation, the first step in the development of atherosclerosis. Unregulated uptake of low-density lipoprotein cholesterol by circulating monocytes and other peripheral blood cells takes place through scavenger receptors and over time causes disruption in cellular cholesterol homeostasis. As lipoproteins are taken up, their CE core is hydrolyzed by liposomal lipases to generate free cholesterol (FC). FC can be either re-esterified and stored as CE droplets or shuttled to the plasma membrane for ATP-binding cassette transporter A1-mediated efflux. Because cholesterol is an essential component of all cellular membranes, some FC may be incorporated into microdomains or lipid rafts. These platforms are essential for receptor signaling and transduction, requiring rapid assembly and disassembly. ATP-binding cassette transporter A1 plays a major role in regulating microdomain cholesterol and is most efficient when lipid-poor apolipoprotein AI (apoAI) packages raft cholesterol into soluble particles that are eventually catabolized by the liver. If FC is not effluxed from the cell, it becomes esterified, CE droplets accumulate and microdomain cholesterol content becomes poorly regulated. This dysregulation leads to prolonged activation of immune cell signaling pathways, resulting in receptor oversensitization. The availability of apoAI or other amphipathic α-helix-rich apoproteins relieves the burden of excess microdomain cholesterol in immune cells allowing a reduction in immune cell proliferation and infiltration, thereby stimulating regression of foam cells in the artery. Therefore, cellular balance between FC and CE is essential for proper immune cell function and prevents chronic immune cell overstimulation and proliferation.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI.
| | - Michael J Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
Toledo DAM, D'Avila H, Melo RCN. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites. Front Immunol 2016; 7:174. [PMID: 27199996 PMCID: PMC4853369 DOI: 10.3389/fimmu.2016.00174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host–parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival.
Collapse
Affiliation(s)
- Daniel A M Toledo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF) , Juiz de Fora, Minas Gerais , Brazil
| | - Heloísa D'Avila
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF) , Juiz de Fora, Minas Gerais , Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF) , Juiz de Fora, Minas Gerais , Brazil
| |
Collapse
|
22
|
Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JRL, Lydic TA, Jones AD, Atshaves BP. Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G726-38. [PMID: 26968211 PMCID: PMC4867327 DOI: 10.1152/ajpgi.00436.2015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/08/2016] [Indexed: 01/31/2023]
Abstract
Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
Collapse
Affiliation(s)
- Charles P. Najt
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | | | - Mohammad B. Aljazi
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Kelly A. Fader
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Sandra D. Olenic
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Julienne R. L. Brock
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Todd A. Lydic
- 2Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - A. Daniel Jones
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan; ,3Department of Chemistry, Michigan State University, East Lansing, Michigan
| | - Barbara P. Atshaves
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
23
|
Varricchi G, Bagnasco D, Borriello F, Heffler E, Canonica GW. Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol 2016; 16:186-200. [PMID: 26859368 PMCID: PMC4768650 DOI: 10.1097/aci.0000000000000251] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Human eosinophils were first identified and named by Paul Ehrlich in 1879 on the basis of the cell's granular uptake of eosin. Although eosinophils represent approximately 1% of peripheral blood leukocytes, they have the propensity to leave the blood stream and migrate into inflamed tissues. Eosinophils and their mediators are critical effectors to asthma and eosinophilic granulomatosis with polyangiitis (EGPA). Eosinophils are equipped with a large number of cell-surface receptors and produce specific cytokines and chemokines. RECENT FINDINGS Eosinophils are the major source of interleukin-5 and highly express the interleukin-5Rα on their surface. Clinical trials evaluating monoclonal antibodies to interleukin-5 (mepolizumab and reslizumab) and its receptor interleukin-5Rα (benralizumab) have been or are underway in patients with eosinophilic asthma, EGPA and chronic obstructive pulmonary disease (COPD). Overall, targeting interleukin-5/interleukin-5Rα is associated with a marked decrease in blood and sputum eosinophilia, the number of exacerbations and improvement of some clinical parameters in adult patients with severe eosinophilic asthma. Pilot studies suggest that mepolizumab might be a glucocorticoid-sparing treatment in patients with EGPA. A preliminary study found that benralizumab did not reduce the exacerbations and did modify lung function in patients with eosinophilic COPD. SUMMARY The review examines recent advances in the biology of eosinophils and how targeting the interleukin-5 pathway might offer benefit to some patients with severe asthma, EGPA, and COPD. Interleukin-5/interleukin-5Rα-targeted treatments offer promises to patients with eosinophilic respiratory disorders.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples
| | - Diego Bagnasco
- Respiratory Diseases and Allergy Clinic, DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S. Martino Genoa, Genoa
| | - Francesco Borriello
- Department of Translational Medical Sciences, University of Naples Federico II, Naples
| | - Enrico Heffler
- Department of Clinical and Experimental Medicine, Respiratory Disease and Allergology, University of Catania, Catania, Italy
| | - Giorgio W. Canonica
- Respiratory Diseases and Allergy Clinic, DIMI-Department of Internal Medicine, Respiratory Diseases and Allergy Clinic, University of Genoa, IRCCS AOU S. Martino Genoa, Genoa
| |
Collapse
|
24
|
WELLER PETERF. LEUKOCYTE LIPID BODIES - STRUCTURE AND FUNCTION AS "EICOSASOMES". TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2016; 127:328-340. [PMID: 28066068 PMCID: PMC5216467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipid bodies are cytoplasmic inclusions that develop within leukocytes, including eosinophils and neutrophils, associated with inflammation. Our investigations of the formation and function of lipid bodies have revealed that they are distinct, inducible endoplasmic reticulum-derived, membrane- and ribosome-containing organelles with diverse functional roles in inflammatory responses of leukocytes. Leukocyte lipid bodies contain all enzymes required for synthesizing cyclo-oxygenase- and lipoxygenase-derived eicosanoids. Lipid body formation, rapidly inducible in vitro and in vivo by specific intracellular signaling pathways, enhances leukocyte formation of cyclo-oxygenase- and lipoxygenase-derived eicosanoids. Lipid bodies are discrete sites of eicosanoid synthesis, as documented for immunolocalized leukotriene C4, leukotriene B4, and prostaglandin E2. Lipid body-derived eicosanoids function as both paracrine and intracrine mediators of inflammation. Based on combined proteomic and ultrastructural studies, leukocyte lipid bodies are complex organelles with internal membranes and ribosomes. Structurally and functionally leukocyte lipid bodes are distinct from lipid droplets in adipocytes.
Collapse
|
25
|
Abstract
Abstract
Eosinophilia is associated with a wide variety of allergic, rheumatologic, infectious, neoplastic, and rare idiopathic disorders. Clinical manifestations range from benign asymptomatic presentations to life-threatening complications, including endomyocardial fibrosis and thromboembolism. The prognosis and choice of treatment depend not only on the degree of eosinophilia and severity of organ involvement, but also on the etiology of the eosinophilia. Unfortunately, despite recent advances in molecular and immunologic techniques, the etiology remains unproven in the overwhelming majority of cases. This review presents a practical approach to the diagnosis and treatment of patients presenting with unexplained marked eosinophilia. A brief overview of the mechanisms of eosinophilia and eosinophil pathogenesis is also provided.
Collapse
|
26
|
Melo RCN, Weller PF. Lipid droplets in leukocytes: Organelles linked to inflammatory responses. Exp Cell Res 2015; 340:193-7. [PMID: 26515551 DOI: 10.1016/j.yexcr.2015.10.028] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/23/2015] [Indexed: 01/21/2023]
Abstract
Studies on lipid droplets (LDs) in leukocytes have attracted attention due to their association with human diseases. In these cells, LDs are rapidly formed in response to inflammatory stimuli or allergic/inflammatory diseases including infections with parasites and bacteria. Leukocyte LDs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). In this mini review, we summarize current knowledge on the composition, structure and function of leukocyte LDs, organelles now considered as structural markers of inflammation.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, ICB, Federal University of Juiz de Fora, UFJF, Rua José Lourenço Kelmer, Juiz de Fora, MG 36036-900, Brazil; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215, USA.
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215, USA.
| |
Collapse
|