1
|
Shakhpazyan NK, Mikhaleva LM, Bedzhanyan AL, Gioeva ZV, Mikhalev AI, Midiber KY, Pechnikova VV, Biryukov AE. Exploring the Role of the Gut Microbiota in Modulating Colorectal Cancer Immunity. Cells 2024; 13:1437. [PMID: 39273009 PMCID: PMC11394638 DOI: 10.3390/cells13171437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota plays an essential role in maintaining immune homeostasis and influencing the immune landscape within the tumor microenvironment. This review aims to elucidate the interactions between gut microbiota and tumor immune dynamics, with a focus on colorectal cancer (CRC). The review spans foundational concepts of immuno-microbial interplay, factors influencing microbiome composition, and evidence linking gut microbiota to cancer immunotherapy outcomes. Gut microbiota modulates anti-cancer immunity through several mechanisms, including enhancement of immune surveillance and modulation of inflammatory responses. Specific microbial species and their metabolic byproducts can significantly influence the efficacy of cancer immunotherapies. Furthermore, microbial diversity within the gut microbiota correlates with clinical outcomes in CRC, suggesting potential as a valuable biomarker for predicting response to immunotherapy. Conclusions: Understanding the relationship between gut microbiota and tumor immune responses offers potential for novel therapeutic strategies and biomarker development. The gut microbiota not only influences the natural history and treatment response of CRC but also serves as a critical modulator of immune homeostasis and anti-cancer activity. Further exploration into the microbiome's role could enhance the effectiveness of existing treatments and guide the development of new therapeutic modalities.
Collapse
Affiliation(s)
- Nikolay K Shakhpazyan
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia
| | - Liudmila M Mikhaleva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia
| | - Arkady L Bedzhanyan
- Department of Abdominal Surgery and Oncology II (Coloproctology and Uro-Gynecology), Petrovsky National Research Center of Surgery, 119435 Moscow, Russia
| | - Zarina V Gioeva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia
| | - Alexander I Mikhalev
- Department of Hospital Surgery No. 2, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Konstantin Y Midiber
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia
- Institute of Medicine, Peoples' Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Valentina V Pechnikova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia
| | - Andrey E Biryukov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 119435 Moscow, Russia
| |
Collapse
|
2
|
Decourcey MA, Davis WC, de Souza C. Use of RNA-seq to identify genes encoding cytokines and chemokines activated following uptake and processing a candidate peptide vaccine developed against Mycobacterium avium subsp. paratuberculosis. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2024; 46:e002723. [PMID: 38282832 PMCID: PMC10811724 DOI: 10.29374/2527-2179.bjvm002723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
Analysis of the primary and recall responses to a membrane molecule (MMP), encoded by MAP2121c demonstrated that tri-directional signaling between the antigen-presenting cell (APC), CD4 and CD8 is essential for eliciting a CD8 cytotoxic T cell (CTL) response against Mycobacterium avium subsp. paratuberculosis. As reported here, RNA-sequencing was used to initiate the characterization of the signaling pathways involved in eliciting the development of CD8 CTL, starting with the characterization of the activation status of genes in monocyte-derived macrophages (MoMΦ) following uptake and processing MMP for the presentation of antigenic epitopes to CD4 and CD8 T cells. Activation status was compared with the uptake and processing of LPS, a nonspecific stimulator of macrophages. 1609 genes were identified that were upregulated, and 1277 were downregulated three hours after uptake and processing MMP. No significant difference was observed in the cytokine genes selected for analysis of the signaling that must occur between APC, CD4, and CD8 for the development of CTL. The initial observations indicate screening of the transcriptome should include genes involved in signaling between APC and CD4, and CD8 regardless of their activation status. Four genes of interest in this study, IL12A, IL12B, IL15, and IL23A, were not significantly different from control values. The initial studies also indicate MoMΦ can be included with dendritic cells and monocyte-derived dendritic cells for further analysis of the tri-directional signaling required for the development of CTL.
Collapse
Affiliation(s)
- Michelle Athena Decourcey
- Veterinarian, Veterinary Medical Diagnostic Laboratory, University of Missouri College of Veterinary Medicine, Columbia, CO, USA
| | - William Charles Davis
- Veterinarian, PhD, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Cleverson de Souza
- Veterinarian Department of Comparative, Diagnostic & Population Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Labiod N, Luczkowiak J, Tapia MM, Lasala F, Delgado R. The role of DC-SIGN as a trans-receptor in infection by MERS-CoV. Front Cell Infect Microbiol 2023; 13:1177270. [PMID: 37808906 PMCID: PMC10552186 DOI: 10.3389/fcimb.2023.1177270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
DC-SIGN is a C-type lectin expressed in myeloid cells such as immature dendritic cells and macrophages. Through glycan recognition in viral envelope glycoproteins, DC-SIGN has been shown to act as a receptor for a number of viral agents such as HIV, Ebola virus, SARS-CoV, and SARS-CoV-2. Using a system of Vesicular Stomatitis Virus pseudotyped with MERS-CoV spike protein, here, we show that DC-SIGN is partially responsible for MERS-CoV infection of dendritic cells and that DC-SIGN efficiently mediates trans-infection of MERS-CoV from dendritic cells to susceptible cells, indicating a potential role of DC-SIGN in MERS-CoV dissemination and pathogenesis.
Collapse
Affiliation(s)
- Nuria Labiod
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - Joanna Luczkowiak
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - María M. Tapia
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - Fátima Lasala
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
| | - Rafael Delgado
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (Imas12), Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Shen K, Wang Q, Wang L, Yang Y, Ren M, Li Y, Gao Z, Zheng S, Ding Y, Ji J, Wei C, Zhang T, Zhu Y, Feng J, Qin F, Yang Y, Wei C, Gu J. Prediction of survival and immunotherapy response by the combined classifier of G protein-coupled receptors and tumor microenvironment in melanoma. Eur J Med Res 2023; 28:352. [PMID: 37716991 PMCID: PMC10504724 DOI: 10.1186/s40001-023-01346-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Melanoma is the deadliest form of skin tumor, and G protein-coupled receptors (GPCRs) play crucial roles in its carcinogenesis. Furthermore, the tumor microenvironment (TME) affects the overall survival (OS) and the response to immunotherapy. The combination of GPCRs and TME from a multi-omics perspective may help to predict the survival of the melanoma patients and their response to immunotherapy. METHODS Bulk-seq, single-cell RNA sequencing (scRNA-seq), gene mutations, immunotherapy responses, and clinicopathologic feature data were downloaded from public databases, and prognostic GPCRs and immune cells were screened using multiple machine learning algorithms. The expression levels of GPCRs were detected using real-time quantitative polymerase chain reaction (qPCR) in A375 and HaCaT cell lines. The GPCR-TME classifier was constructed and verified using different cohorts and multi-omics. Gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and tracking tumor immunophenotype (TIP) were used to identify the key biological pathways among the GPCR-TME subgroups. Then, tumor mutational burden (TMB), vital mutant genes, antigen presentation genes, and immune checkpoints were compared among the subgroups. Finally, the differences in immunotherapy response rates among the GPCR-TME subgroups were investigated. RESULTS A total of 12 GPCRs and five immune cell types were screened to establish the GPCR-TME classifier. No significant differences in the expression levels of the 12 GPCRs were found in the two cell lines. Patients with high GPCR score or low TME score had a poor OS; thus, the GPCRlow/TMEhigh subgroup had the most favorable OS. The scRNA-seq result revealed that immune cells had a higher GPCR score than tumor and stromal cells. The GPCR-TME classifier acted as an independent prognostic factor for melanoma. GSEA, WGCNA, and TIP demonstrated that the GPCRlow/TMEhigh subgroup was related to the activation and recruitment of anti-tumor immune cells and the positive regulation of the immune response. From a genomic perspective, the GPCRlow/TMEhigh subgroup had higher TMB, and different mutant genes. Ultimately, higher expression levels of antigen presentation genes and immune checkpoints were observed in the GPCRlow/TMEhigh subgroup, and the melanoma immunotherapy cohorts confirmed that the response rate was highest in the GPCRlow/TMEhigh cohort. CONCLUSIONS We have developed a GPCR-TME classifier that could predict the OS and immunotherapy response of patients with melanoma highly effectively based on multi-omics analysis.
Collapse
Affiliation(s)
- Kangjie Shen
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Qiangcheng Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yang Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Min Ren
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yanlin Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
| | - Yiteng Ding
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jiani Ji
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Chenlu Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Tianyi Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yu Zhu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Jia Feng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Feng Qin
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Yanwen Yang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
| | - Jianying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, China.
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China.
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China.
| |
Collapse
|
5
|
Quintana JI, Atxabal U, Unione L, Ardá A, Jiménez-Barbero J. Exploring multivalent carbohydrate-protein interactions by NMR. Chem Soc Rev 2023; 52:1591-1613. [PMID: 36753338 PMCID: PMC9987413 DOI: 10.1039/d2cs00983h] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Indexed: 02/09/2023]
Abstract
Nuclear Magnetic Resonance (NMR) has been widely employed to assess diverse features of glycan-protein molecular recognition events. Different types of qualitative and quantitative information at different degrees of resolution and complexity can be extracted from the proper application of the available NMR-techniques. In fact, affinity, structural, kinetic, conformational, and dynamic characteristics of the binding process are available. Nevertheless, except in particular cases, the affinity of lectin-sugar interactions is weak, mostly at the low mM range. This feature is overcome in biological processes by using multivalency, thus augmenting the strength of the binding. However, the application of NMR methods to monitor multivalent lectin-glycan interactions is intrinsically challenging. It is well known that when large macromolecular complexes are formed, the NMR signals disappear from the NMR spectrum, due to the existence of fast transverse relaxation, related to the large size and exchange features. Indeed, at the heart of the molecular recognition event, the associated free-bound chemical exchange process for both partners takes place in a particular timescale. Thus, these factors have to be considered and overcome. In this review article, we have distinguished, in a subjective manner, the existence of multivalent presentations in the glycan or in the lectin. From the glycan perspective, we have also considered whether multiple epitopes of a given ligand are presented in the same linear chain of a saccharide (i.e., poly-LacNAc oligosaccharides) or decorating different arms of a multiantennae scaffold, either natural (as in multiantennae N-glycans) or synthetic (of dendrimer or polymer nature). From the lectin perspective, the presence of an individual binding site at every monomer of a multimeric lectin may also have key consequences for the binding event at different levels of complexity.
Collapse
Affiliation(s)
- Jon I Quintana
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Unai Atxabal
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
| | - Luca Unione
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160 Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Bizkaia, Spain
- Department of Organic Chemistry, II Faculty of Science and Technology, EHU-UPV, 48940 Leioa, Spain
- Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
6
|
Bonafé GA, dos Santos JS, Ziegler JV, Marson FAL, Rocha T, Ortega MM. Dipotassium Glycyrrhizinate on Melanoma Cell Line: Inhibition of Cerebral Metastases Formation by Targeting NF-kB Genes-Mediating MicroRNA-4443 and MicroRNA-3620-Dipotassium Glycyrrhizinate Effect on Melanoma. Int J Mol Sci 2022; 23:ijms23137251. [PMID: 35806253 PMCID: PMC9266887 DOI: 10.3390/ijms23137251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 02/01/2023] Open
Abstract
Glycyrrhizic acid (GA), a natural compound isolated from licorice (Glycyrrhiza glabra), has exhibited anti-inflammatory and anti-tumor effects in vitro. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, also has shown an anti-tumor effect on glioblastoma cell lines, U87MG and T98G. The study investigated the DPG effects in the melanoma cell line (SK-MEL-28). MTT assay demonstrated that the viability of the cells was significantly decreased in a time- and dose-dependent manner after DPG (IC50 = 36 mM; 24 h). DNA fragmentation suggested that DPG (IC50) induced cellular apoptosis, which was confirmed by a significant number of TUNEL-positive cells (p-value = 0.048) and by PARP-1 [0.55 vs. 1.02 arbitrary units (AUs), p-value = 0.001], BAX (1.91 vs. 1.05 AUs, p-value = 0.09), and BCL-2 (0.51 vs. 1.07 AUs, p-value = 0.0018) mRNA compared to control cells. The proliferation and wound-healing assays showed an anti-proliferative effect on DPG-IC50-treated cells, also indicating an inhibitory effect on cell migration (p-values < 0.001). Moreover, it was observed that DPG promoted a 100% reduction in melanospheres formation (p-value = 0.008). Our previous microRNAs (miRs) global analysis has revealed that DPG might increase miR-4443 and miR-3620 expression levels. Thus, qPCR showed that after DPG treatment, SK-MEL-28 cells presented significantly high miR-4443 (1.77 vs. 1.04 AUs, p-value = 0.02) and miR-3620 (2.30 vs. 1.00 AUs, p-value = 0.01) expression compared to control cells, which are predicted to target the NF-kB, CD209 and TNC genes, respectively. Both genes are responsible for cell attachment and migration, and qPCR revealed significantly decreased CD209 (1.01 vs. 0.54 AUs, p-value = 0.018) and TNC (1.00 vs. 0.31 AUs, p-value = 2.38 × 10−6) mRNA expression levels after DPG compared to untreated cells. Furthermore, the migration of SK-MEL-28 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) was attenuated by adding DPG by wound-healing assay (48 h: p-value = 0.004; 72 h: p-value = 7.0 × 10−4). In addition, the MMP-9 expression level was inhibited by DPG in melanoma cells stimulated by TPA and compared to TPA-treated cells (3.56 vs. 0.99 AUs, p-value = 0.0016) after 24 h of treatment. Our results suggested that DPG has an apoptotic, anti-proliferative, and anti-migratory effect on SK-MEL-28 cells. DPG was also able to inhibit cancer stem-like cells that may cause cerebral tumor formation.
Collapse
Affiliation(s)
- Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Jéssica Silva dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
| | | | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, Sorocaba 05014-901, São Paulo, Brazil;
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, São Francisco University (USF), Avenida São Francisco de Assis, 218, Bragança Paulista 12916-900, São Paulo, Brazil; (G.A.B.); (J.S.d.S.); (F.A.L.M.)
- Laboratory of Human and Medical Genetics, Post Graduate Program in Health Science, USF, Bragança Paulista 12916-900, São Paulo, Brazil
- Correspondence: ; Tel.: +55-11-2454-8471
| |
Collapse
|
7
|
Villar J, Salazar ML, Jiménez JM, Campo MD, Manubens A, Gleisner MA, Ávalos I, Salazar-Onfray F, Salazar F, Mitchell DA, Alshahrani MY, Martínez-Pomares L, Becker MI. C-type lectin receptors MR and DC-SIGN are involved in recognition of hemocyanins, shaping their immunostimulatory effects on human dendritic cells. Eur J Immunol 2021; 51:1715-1731. [PMID: 33891704 DOI: 10.1002/eji.202149225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Hemocyanins are used as immunomodulators in clinical applications because they induce a strong Th1-biased cell-mediated immunity, which has beneficial effects. They are multiligand glycosylated molecules with abundant and complex mannose-rich structures. It remains unclear whether these structures influence hemocyanin-induced immunostimulatory processes in human APCs. We have previously shown that hemocyanin glycans from Concholepas concholepas (CCH), Fissurella latimarginata (FLH), and Megathura crenulata (KLH), participate in their immune recognition and immunogenicity in mice, interacting with murine C-type lectin receptors (CLRs). Here, we studied the interactions of these hemocyanins with two major mannose-binding CLRs on monocyte-derived human DCs: MR (mannose receptor) and DC-SIGN (DC-specific ICAM-3-grabbing nonintegrin). Diverse analyses showed that hemocyanins are internalized by a mannose-sensitive mechanism. This process was calcium dependent. Moreover, hemocyanins colocalized with MR and DC-SIGN, and were partly internalized through clathrin-mediated endocytosis. The hemocyanin-mediated proinflammatory cytokine response was impaired when using deglycosylated FLH and KLH compared to CCH. We further showed that hemocyanins bind to human MR and DC-SIGN in a carbohydrate-dependent manner with affinity constants in the physiological concentration range. Overall, we showed that these three clinically valuable hemocyanins interact with human mannose-sensitive CLRs, initiating an immune response and promoting a Th1 cell-driving potential.
Collapse
Affiliation(s)
- Javiera Villar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Michelle L Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - José M Jiménez
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Miguel Del Campo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Ignacio Ávalos
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Medical Research Council (MRC) Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Daniel A Mitchell
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago, Chile.,Biosonda Corporation, Santiago, Chile
| |
Collapse
|
8
|
Teodorowicz M, Hendriks WH, Wichers HJ, Savelkoul HFJ. Immunomodulation by Processed Animal Feed: The Role of Maillard Reaction Products and Advanced Glycation End-Products (AGEs). Front Immunol 2018; 9:2088. [PMID: 30271411 PMCID: PMC6146089 DOI: 10.3389/fimmu.2018.02088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/24/2018] [Indexed: 12/23/2022] Open
Abstract
The immune system provides host protection to infection with pathogenic organisms, while at the same time providing tolerance upon exposure to harmless antigens. Thus, an impaired immune function is associated with increased susceptibility to infections with increased disease severity and thereby necessitating the therapeutic use of antibiotics. Livestock performance and feed efficiency, in addition to their health status, are dependent on the microbial load of their gut, the barrier function of the intestinal epithelium and the activity of the mucosal immune system, all of which can be modulated by dietary components. The majority of feeds that are consumed in pets and livestock have been processed. Processing promotes a non-enzymatic reaction between proteins and sugars called Maillard reaction (MR). Maillard reaction products (MRPs) and advanced Maillard reaction products (AGEs) determine taste, smell, and color of many food products therefore the MR is highly relevant for the feed industry. MRPs interact with different types of immune receptors, including the receptor for advanced glycation end products (RAGE) and immunomodulatory potential of feed proteins can be modified by Maillard reaction. This MR has become an important concern since MRPs/AGEs have been shown to contribute to increasing prevalence of diet-related chronic inflammatory states in the gut with negative health consequences and performance. The immunomodulatory effects of dietary MRPs and AGEs in livestock and pet animals are far less well-described, but widely considered to be similar to the relevant concepts and mechanisms obtained in the human field. This review will highlight immunological mechanisms underlying initiation of the innate and adaptive immune responses by MRPs/AGEs present in animal feeds, which are currently not completely understood. Bridging this knowledge gap, and taking advantage of progress in the human field, will significantly improve nutritional quality of feed and increase the prevention of diet-mediated inflammation in animals.
Collapse
Affiliation(s)
- Malgorzata Teodorowicz
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Wouter H. Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
- Department of Nutrition, Faculty of Veterinary Sciences, Utrecht University, Utrecht, Netherlands
| | - Harry J. Wichers
- Food and Biobased Research, Wageningen University & Research, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|