1
|
Chen Y, Zhao J, Sun P, Cheng M, Xiong Y, Sun Z, Zhang Y, Li K, Ye Y, Shuai P, Huang H, Li X, Liu Y, Wan Z. Estimates of the global burden of non-Hodgkin lymphoma attributable to HIV: a population attributable modeling study. EClinicalMedicine 2024; 67:102370. [PMID: 38130708 PMCID: PMC10733638 DOI: 10.1016/j.eclinm.2023.102370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Background Human immunodeficiency virus (HIV) significantly increases the risk of non-Hodgkin lymphoma (NHL) development, yet the population-level impact on NHL burden is unquantified. We aim to quantify this association and estimate the global burden of HIV-associated NHL. Methods In this meta-analysis, we searched five databases (PubMed, EMBASE, Cochrane Library, Web of Science, Scopus) from database inception up to September 13, 2023, identifying cohort, case-control, or cross-sectional studies with an effective control group to assess NHL risk among individuals with HIV infection, with two authors extracting summary data from reports. Global and regional HIV-associated population attributable fraction (PAF) and NHL disease burden were calculated based on the pooled risk ratio (RR). HIV prevalence and NHL incidence were obtained from the Joint United Nations Programme on HIV/AIDS (UNAIDS) and Global Burden of Diseases, Injuries, and Risk Factors Study 2019. Trends in NHL incidence due to HIV were assessed using age-standardised incidence rate (ASIR) and estimated annual percentage change (EAPC). This study was registered with PROSPERO (CRD42023404150). Findings Out of 14,929 literature sources, 39 articles met our inclusion criteria. The risk of NHL was significantly increased in the population living with HIV (pooled RR 23.51, 95% CI 17.62-31.37; I2 = 100%, p < 0.0001), without publication bias. Globally, 6.92% (95% CI 2.18%-11.57%) of NHL new cases in 2019 were attributable to HIV infection (30,503, 95% CI 9585-52,209), which marked a more than three-fold increase from 1990 (8340, 95% CI 3346-13,799). The UNAIDS region of Eastern and Southern Africa was the highest affected region, with 44.46% (95% CI 19.62%-58.57%) of NHL new cases attributed to HIV infection. The Eastern Europe and Central Asia region experienced the highest increase in ASIR of NHL due to HIV in the past thirty years, wherein the EAPC was 8.74% (95% CI 7.66%-9.84%), from 2010 to 2019. Interpretation People with HIV infection face a significantly increased risk of NHL. Targeted prevention and control policies are especially crucial for countries in Eastern and Southern Africa, Eastern Europe and Central Asia, to achieve the UNAIDS's '90-90-90' Fast-Track targets. Limited studies across diverse regions and heterogeneity between research have hindered precise estimations for specific periods and regions. Funding Sichuan Provincial People's Hospital, Chengdu, China; Health Care for Cadres of Sichuan Province, Chengdu, China; Science and Technology Department of Sichuan Province, Chengdu, China.
Collapse
Affiliation(s)
- Yan Chen
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Jianhui Zhao
- Department of School of Public Health, Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Sun
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengli Cheng
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory of Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumour Institute, Beijing, China
| | - Yiquan Xiong
- Chinese Evidence-based Medicine Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Zhaochen Sun
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Yixuan Zhang
- Department of School of Public Health, Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, China
| | - Kangning Li
- Department of School of Public Health, Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunli Ye
- School of Public Health, Southwest Medical University, Luzhou, China
| | - Ping Shuai
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hairong Huang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory of Drug-Resistant Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumour Institute, Beijing, China
| | - Xue Li
- Department of School of Public Health, Epidemiology and Biostatistics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuping Liu
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengwei Wan
- Department of Health Management Centre & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
2
|
Gopal J, Muthu M, Sivanesan I. A Comprehensive Survey on the Expediated Anti-COVID-19 Options Enabled by Metal Complexes-Tasks and Trials. Molecules 2023; 28:molecules28083354. [PMID: 37110587 PMCID: PMC10143858 DOI: 10.3390/molecules28083354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Contemporary pharmacology dating back to the late 19th/early 20th centuries has benefitted largely from the incorporation of metal complexes. Various biological attributes have been successfully realized using metal/metal complex-based drugs. Among anticancer, antimicrobial, and antiviral applications, anticancer applications have extracted the maximum benefit from the metal complex, Cisplatin. The following review has compiled the various antiviral benefits harnessed through inputs from metal complexes. As a result of exploiting the pharmacological aspects of metal complexes, the anti-COVID-19 deliverables have been summarized. The challenges ahead, the gaps in this research area, the need to improvise incorporating nanoaspects in metal complexes, and the need to test metal complex-based drugs in clinical trials have been discussed and deliberated. The pandemic shook the entire world and claimed quite a percentage of the global population. Metal complex-based drugs are already established for their antiviral property with respect to enveloped viruses and extrapolating them for COVID-19 can be an effective way to manipulate drug resistance and mutant issues that the current anti-COVID-19 drugs are facing.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Gandhi L, Maisnam D, Rathore D, Chauhan P, Bonagiri A, Venkataramana M. Respiratory illness virus infections with special emphasis on COVID-19. Eur J Med Res 2022; 27:236. [PMID: 36348452 PMCID: PMC9641310 DOI: 10.1186/s40001-022-00874-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses that emerge pose challenges for treatment options as their uniqueness would not know completely. Hence, many viruses are causing high morbidity and mortality for a long time. Despite large diversity, viruses share common characteristics for infection. At least 12 different respiratory-borne viruses are reported belonging to various virus taxonomic families. Many of these viruses multiply and cause damage to the upper and lower respiratory tracts. The description of these viruses in comparison with each other concerning their epidemiology, molecular characteristics, disease manifestations, diagnosis and treatment is lacking. Such information helps diagnose, differentiate, and formulate the control measures faster. The leading cause of acute illness worldwide is acute respiratory infections (ARIs) and are responsible for nearly 4 million deaths every year, mostly in young children and infants. Lower respiratory tract infections are the fourth most common cause of death globally, after non-infectious chronic conditions. This review aims to present the characteristics of different viruses causing respiratory infections, highlighting the uniqueness of SARS-CoV-2. We expect this review to help understand the similarities and differences among the closely related viruses causing respiratory infections and formulate specific preventive or control measures.
Collapse
Affiliation(s)
- Lekha Gandhi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepti Maisnam
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Deepika Rathore
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Preeti Chauhan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Anvesh Bonagiri
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Musturi Venkataramana
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
4
|
Sun HY, Su YL, Li PH, He JY, Chen HJ, Wang G, Wang SW, Huang XH, Huang YH, Qin QW. The Roles of Epinephelus coioides miR-122 in SGIV Infection and Replication. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:294-307. [PMID: 33570690 PMCID: PMC8032594 DOI: 10.1007/s10126-021-10023-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
In mammals, mature miR-122 is 22 nucleotides long and can be involved in regulating a variety of physiological and biological pathways. In this study, the expression profile and effects of grouper Epinephelus coioides miR-122 response to Singapore grouper iridovirus (SGIV) infection were investigated. The sequences of mature microRNAs (miRNAs) from different organisms are highly conserved, and miR-122 from E. coioides exhibits high similarity to that from mammals and other fish. The expression of miR-122 was up-regulated during SGIV infection. Up-regulation of miR-122 could significantly enhance the cytopathic effects (CPE) induced by SGIV, the transcription levels of viral genes (MCP, VP19, LITAF and ICP18), and viral replication; reduce the expression of inflammatory factors (TNF-a, IL-6, and IL-8), and the activity of AP-1 and NF-κB, and miR-122 can bind the target gene p38α MAPK to regulate the SGIV-induced cell apoptosis and the protease activity of caspase-3. The results indicated that SGIV infection can up-regulate the expression of E. coioides miR-122, and up-regulation of miR-122 can affect the activation of inflammatory factors, the activity of AP-1 and NF-κB, and cell apoptosis to regulate viral replication and proliferation.
Collapse
Affiliation(s)
- Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Jia-Yang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - He-Jia Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Gang Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Shao-Wen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - Xiao-Hong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China
| | - You-Hua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China.
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangdong Province, 510642, Guangzhou, People's Republic of China.
| |
Collapse
|
5
|
Lidbury BA. Ross River Virus Immune Evasion Strategies and the Relevance to Post-viral Fatigue, and Myalgic Encephalomyelitis Onset. Front Med (Lausanne) 2021; 8:662513. [PMID: 33842517 PMCID: PMC8024622 DOI: 10.3389/fmed.2021.662513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 01/06/2023] Open
Abstract
Ross River virus (RRV) is an endemic Australian arbovirus, and member of the Alphavirus family that also includes Chikungunya virus (CHIK). RRV is responsible for the highest prevalence of human disease cases associated with mosquito-borne transmission in Australia, and has long been a leading suspect in cases of post-viral fatigue syndromes, with extrapolation of this link to Myalgic Encephalomyelitis (ME). Research into RRV pathogenesis has revealed a number of immune evasion strategies, impressive for a virus with a genome size of 12 kb (plus strand RNA), which resonate with insights into viral pathogenesis broadly. Drawing from observations on RRV immune evasion, mechanisms of relevance to long term idiopathic fatigue are featured as a perspective on infection and eventual ME symptoms, which include considerations of; (1) selective pro-inflammatory gene suppression post antibody-dependent enhancement (ADE) of RRV infection, (2) Evidence from other virus families of immune disruption and evasion post-ADE, and (3) how virally-driven immune evasion may impact on mitochondrial function via target of rapamycin (TOR) complexes. In light of these RRV measures to counter the host immune - inflammatory responses, links to recent discoveries explaining cellular, immune and metabolomic markers of ME will be explored and discussed, with the implications for long-COVID post SARS-CoV-2 also considered. Compelling issues on the connections between virally-induced alterations in cytokine expression, for example, will be of particular interest in light of energy pathways, and how these perturbations manifest clinically.
Collapse
Affiliation(s)
- Brett A Lidbury
- National Centre for Epidemiology and Population Health, Research School of Population Health, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Teles F, Wang Y, Hajishengallis G, Hasturk H, Marchesan JT. Impact of systemic factors in shaping the periodontal microbiome. Periodontol 2000 2020; 85:126-160. [PMID: 33226693 DOI: 10.1111/prd.12356] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since 2010, next-generation sequencing platforms have laid the foundation to an exciting phase of discovery in oral microbiology as it relates to oral and systemic health and disease. Next-generation sequencing has allowed large-scale oral microbial surveys, based on informative marker genes, such as 16S ribosomal RNA, community gene inventories (metagenomics), and functional analyses (metatranscriptomics), to be undertaken. More specifically, the availability of next-generation sequencing has also paved the way for studying, in greater depth and breadth, the effect of systemic factors on the periodontal microbiome. It was natural to investigate systemic diseases, such as diabetes, in such studies, along with systemic conditions or states, , pregnancy, menopause, stress, rheumatoid arthritis, and systemic lupus erythematosus. In addition, in recent years, the relevance of systemic "variables" (ie, factors that are not necessarily diseases or conditions, but may modulate the periodontal microbiome) has been explored in detail. These include ethnicity and genetics. In the present manuscript, we describe and elaborate on the new and confirmatory findings unveiled by next-generation sequencing as it pertains to systemic factors that may shape the periodontal microbiome. We also explore the systemic and mechanistic basis for such modulation and highlight the importance of those relationships in the management and treatment of patients.
Collapse
Affiliation(s)
- Flavia Teles
- Department of Basic and Translational Sciences, Center for Innovation & Precision Dentistry, School of Dental Medicine & School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatice Hasturk
- Center for Clinical and Translational Research, The Forsyth Institute, Cambridge, MA, USA
| | - Julie T Marchesan
- Department of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|