1
|
Ponticelli M, Lela L, Moles M, Mangieri C, Bisaccia D, Faraone I, Falabella R, Milella L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. PHYTOCHEMISTRY 2023; 206:113518. [PMID: 36423749 DOI: 10.1016/j.phytochem.2022.113518] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Mariapia Moles
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Bisaccia
- Italian National Research Council-Water Research Institute, Viale F. De Blasio 5, 70123, Bari, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy; Spinoff Bioactiplant Srl Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
2
|
Zhou M, Chen JY, Chao ML, Zhang C, Shi ZG, Zhou XC, Xie LP, Sun SX, Huang ZR, Luo SS, Ji Y. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin 2022; 43:602-612. [PMID: 34011968 PMCID: PMC8888706 DOI: 10.1038/s41401-021-00674-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/31/2021] [Indexed: 02/04/2023] Open
Abstract
Cardiac fibrosis (CF) is an irreversible pathological process that occurs in almost all kinds of cardiovascular diseases. Phosphorylation-dependent activation of c-Jun N-terminal kinase (JNK) induces cardiac fibrosis. However, whether S-nitrosylation of JNK mediates cardiac fibrosis remains an open question. A biotin-switch assay confirmed that S-nitrosylation of JNK (SNO-JNK) increased significantly in the heart tissues of hypertrophic patients, transverse aortic constriction (TAC) mice, spontaneously hypertensive rats (SHRs), and neonatal rat cardiac fibroblasts (NRCFs) stimulated with angiotensin II (Ang II). Site to site substitution of alanine for cysteine in JNK was applied to determine the S-nitrosylated site. S-Nitrosylation occurred at both Cys116 and Cys163 and substitution of alanine for cysteine 116 and cysteine 163 (C116/163A) inhibited Ang II-induced myofibroblast transformation. We further confirmed that the source of S-nitrosylation was inducible nitric oxide synthase (iNOS). 1400 W, an inhibitor of iNOS, abrogated the profibrotic effects of Ang II in NRCFs. Mechanistically, SNO-JNK facilitated the nuclear translocation of JNK, increased the phosphorylation of c-Jun, and induced the transcriptional activity of AP-1 as determined by chromatin immunoprecipitation and EMSA. Finally, WT and iNOS-/- mice were subjected to TAC and iNOS knockout reduced SNO-JNK and alleviated cardiac fibrosis. Our findings demonstrate an alternative mechanism by which iNOS-induced SNO-JNK increases JNK pathway activity and accelerates cardiac fibrosis. Targeting SNO-JNK might be a novel therapeutic strategy against cardiac fibrosis.
Collapse
Affiliation(s)
- Miao Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Ji-yu Chen
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Meng-Lin Chao
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Chao Zhang
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zhi-guang Shi
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Xue-chun Zhou
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Li-ping Xie
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China ,grid.89957.3a0000 0000 9255 8984Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Shi-xiu Sun
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Zheng-rong Huang
- grid.412625.6Department of Cardiology, the First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Shan-shan Luo
- grid.89957.3a0000 0000 9255 8984Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203 China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, 201203, China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 201203, China. .,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 201203, China.
| |
Collapse
|
3
|
Dyballa-Rukes N, Jakobs P, Eckers A, Ale-Agha N, Serbulea V, Aufenvenne K, Zschauer TC, Rabanter LL, Jakob S, von Ameln F, Eckermann O, Leitinger N, Goy C, Altschmied J, Haendeler J. The Anti-Apoptotic Properties of APEX1 in the Endothelium Require the First 20 Amino Acids and Converge on Thioredoxin-1. Antioxid Redox Signal 2017; 26:616-629. [PMID: 27835927 PMCID: PMC5397250 DOI: 10.1089/ars.2016.6799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED The APEX nuclease (multifunctional DNA repair enzyme) 1 (APEX1) has a disordered N-terminus, a redox, and a DNA repair domain. APEX1 has anti-apoptotic properties, which have been linked to both domains depending on cell type and experimental conditions. AIMS As protection against apoptosis is a hallmark of vessel integrity, we wanted to elucidate whether APEX1 acts anti-apoptotic in primary human endothelial cells and, if so, what the underlying mechanisms are. RESULTS APEX1 inhibits apoptosis in endothelial cells by reducing Cathepsin D (CatD) cleavage, potentially by binding to the unprocessed form. Diminished CatD activation results in increased Thioredoxin-1 protein levels leading to reduced Caspase 3 activation. Consequently, apoptosis rates are decreased. This depends on the first twenty amino acids in APEX1, because APEX1 (21-318) induces CatD activity, decreases Thioredoxin-1 protein levels, and, thus, increases Caspase 3 activity and apoptosis. Along the same lines, APEX1 (1-20) inhibits Caspase 3 cleavage and apoptosis. Furthermore, re-expression of Thioredoxin-1 via lentiviral transduction rescues endothelial cells from APEX1 (21-318)-induced apoptosis. In an in vivo model of restenosis, which is characterized by oxidative stress, endothelial activation, and smooth muscle cell proliferation, Thioredoxin-1 protein levels are reduced in the endothelium of the carotids. INNOVATION APEX1 acts anti-apoptotic in endothelial cells. This anti-apoptotic effect depends on the first 20 amino acids of APEX1. CONCLUSION As proper function of the endothelium during life span is a hallmark for individual health span, a detailed characterization of the functions of the APEX1N-terminus is required to understand all its cellular properties. Antioxid. Redox Signal. 26, 616-629.
Collapse
Affiliation(s)
- Nadine Dyballa-Rukes
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Philipp Jakobs
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Anna Eckers
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Niloofar Ale-Agha
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Vlad Serbulea
- 2 Department of Pharmacology, University of Virginia , Charlottesville, Virginia
| | - Karin Aufenvenne
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | | | - Lothar L Rabanter
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Sascha Jakob
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Florian von Ameln
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Olaf Eckermann
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Norbert Leitinger
- 2 Department of Pharmacology, University of Virginia , Charlottesville, Virginia.,3 Cardiovascular Research Center, University of Virginia , Charlottesville, Virginia
| | - Christine Goy
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Joachim Altschmied
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany
| | - Judith Haendeler
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Duesseldorf, Germany .,4 Medical Faculty, Central Institute of Clinical Chemistry and Laboratory Medicine, University of Duesseldorf , Duesseldorf, Germany
| |
Collapse
|
4
|
Inhibition of vascular smooth muscle cell proliferation by Gentiana lutea root extracts. PLoS One 2013; 8:e61393. [PMID: 23637826 PMCID: PMC3630200 DOI: 10.1371/journal.pone.0061393] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/08/2013] [Indexed: 12/27/2022] Open
Abstract
Gentiana lutea belonging to the Gentianaceae family of flowering plants are routinely used in traditional Serbian medicine for their beneficial gastro-intestinal and anti-inflammatory properties. The aim of the study was to determine whether aqueous root extracts of Gentiana lutea consisting of gentiopicroside, gentisin, bellidifolin-8-O-glucoside, demethylbellidifolin-8-O-glucoside, isovitexin, swertiamarin and amarogentin prevents proliferation of aortic smooth muscle cells in response to PDGF-BB. Cell proliferation and cell cycle analysis were performed based on alamar blue assay and propidium iodide labeling respectively. In primary cultures of rat aortic smooth muscle cells (RASMCs), PDGF-BB (20 ng/ml) induced a two-fold increase in cell proliferation which was significantly blocked by the root extract (1 mg/ml). The root extract also prevented the S-phase entry of synchronized cells in response to PDGF. Furthermore, PDGF-BB induced ERK1/2 activation and consequent increase in cellular nitric oxide (NO) levels were also blocked by the extract. These effects of extract were due to blockade of PDGF-BB induced expression of iNOS, cyclin D1 and proliferating cell nuclear antigen (PCNA). Docking analysis of the extract components on MEK1, the upstream ERK1/2 activating kinase using AutoDock4, indicated a likely binding of isovitexin to the inhibitor binding site of MEK1. Experiments performed with purified isovitexin demonstrated that it successfully blocks PDGF-induced ERK1/2 activation and proliferation of RASMCs in cell culture. Thus, Gentiana lutea can provide novel candidates for prevention and treatment of atherosclerosis.
Collapse
|
5
|
Abstract
Intimal hyperplasia is the leading cause of long-term failure in coronary artery bypass vein grafting, coronary artery stenting, angioplasty, arteriovenous fistula for dialysis, and allograft transplantation. Intimal hyperplasia is a product of vascular smooth muscle cell proliferation, migration through the internal elastic lamina, and deposition of extracellular matrix proteins driven by growth factors in the vasculature. This vascular pathology results in a progressive diminution of the vessel lumen and serves as a site for thrombosis and atherosclerotic lesions. A key cell type in the initiation of intimal hyperplasia is the vascular endothelial cell, which appears to have down-stream effects on the vascular smooth muscle proliferation and migration. Currently, the only means available for prevention of intimal hyperplasia is through inhibition of mammalian target of rapamycin (mTOR) with the immunosuppressant rapamycin. mTOR integrates up-stream signals from growth factors such as IL-2 and senses the cellular nutrient and energy levels and redox status. This presentation will discuss the potential means of preserving the vascular endothelial cell and, thereby, reducing the development of intimal hyperplasia in our open-heart surgical patients.
Collapse
Affiliation(s)
- B Mills
- Circulatory Sciences Graduate Perfusion Program, The University of Arizona, Tucson, AZ, USA
| | - T Robb
- Circulatory Sciences Graduate Perfusion Program, The University of Arizona, Tucson, AZ, USA
| | - DF Larson
- Circulatory Sciences Graduate Perfusion Program, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Ban K, Santora R, Kozar RA. Enteral arginine modulates inhibition of AP-1/c-Jun by SP600125 in the postischemic gut. Mol Cell Biochem 2010; 347:191-9. [PMID: 21046201 DOI: 10.1007/s11010-010-0628-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 10/18/2010] [Indexed: 12/21/2022]
Abstract
We previously demonstrated that enteral arginine increased c-Jun/activator protein-1 (AP-1) DNA-binding activity and iNOS expression in a rodent model of mesenteric ischemia/reperfusion (I/R). The objective of this study was to specifically investigate the role of AP-1 in arginine's deleterious effect on the postischemic gut. We hypothesized that AP-1 inhibition would mitigate the effects of arginine. Using a rodent model of mesenteric I/R we demonstrated that gut neutrophil infiltration, activity of c-Jun/AP-1, as well as iNOS expression were increased by I/R and further increased by arginine while lessened by inhibition of c-Jun using the pharmacologic c-Jun N-terminal kinase inhibitor, SP600125. Similar results were demonstrated using a cell culture model of oxidant stress in IEC-6 cells. Importantly, effects of SP600125 were comparable to those of c-Jun silencing. Lastly, the specific iNOS inhibitor, 1400W, had no effect on either AP-1 or c-Jun. In conclusion, SP600125 attenuated the activity of c-Jun/AP-1, iNOS expression, and neutrophil infiltration induced by arginine following mesenteric I/R. Our data suggest that AP-1 inhibition mitigates the injurious inflammatory effects of arginine in the postischemic gut. Further investigation into the pathologic role of enteral arginine in the postischemic gut is warranted.
Collapse
Affiliation(s)
- Kechen Ban
- Department of Surgery, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 4.284, Houston, TX 77030, USA
| | | | | |
Collapse
|
7
|
Abstract
Cellular senescence is a specialized form of growth arrest, confined to mitotic cells, induced by various stressful stimuli and characterized by a permanent growth arrest, resistance to apoptosis, an altered pattern of gene expression and the expression of some markers that are characteristic, although not exclusive, to the senescent state. Senescent cells profoundly modify neighboring and remote cells through the production of an altered secretome, eventually leading to inflammation, fibrosis and possibly growth of neoplastic cells. Mammalian aging has been defined as a reduction in the capacity to adequately maintain tissue homeostasis or to repair tissues after injury. Tissue homeostasis and regenerative capacity are nowadays considered to be related to the stem cell pool present in every tissue. For this reason, pathological and patho-physiological conditions characterized by altered tissue homeostasis and impaired regenerative capacity can be viewed as a consequence of the reduction in stem cell number and/or function. Last, cellular senescence is a double-edged sword, since it may inhibit the growth of transformed cells, preventing the occurrence of cancer, while it may facilitate growth of preneoplastic lesions in a paracrine fashion; therefore, interventions targeting this cell response to stress may have a profound impact on many age-related pathologies, ranging from cardiovascular disease to oncology. Aim of this review is to discuss both molecular mechanisms associated with stem cell senescence and interventions that may attenuate or reverse this process.
Collapse
|
8
|
Altschmied J, Haendeler J. Thioredoxin-1 and endothelial cell aging: role in cardiovascular diseases. Antioxid Redox Signal 2009; 11:1733-40. [PMID: 19187002 DOI: 10.1089/ars.2008.2379] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The thioredoxin-1 (Trx-1) system consists of two oxidoreductases, thioredoxin reductase and Trx-1. Trx-1 is a ubiquitously expressed oxidoreductase. The cellular functions of Trx-1 are wide range. They include protein disulfide reduction, DNA synthesis, protection from apoptosis, redox regulation of a variety of proteins, transcription factors and reduction of H(2)O(2), respectively. This review will first focus on the essential role for Trx-1 in different cardiovascular cells, namely smooth muscle cells, endothelial cells, and cardiomyocytes. Thereby, the review will demonstrate the predominant role of Trx-1 to limit oxidative stress directly due to reactive oxygen species scavenging and by protein-protein interaction with key signaling molecules. Second, this review will highlight the role of Trx-1 in cardiovascular aging, focusing on its importance on shear stress and the profound changes with age. Finally, the review will focus on important in vivo studies showing a protective role of Trx-1 in different cardiovascular diseases. Thus, the Trx system and Trx-1 could be important future targets to develop clinical therapies for cardiovascular disorders.
Collapse
Affiliation(s)
- Joachim Altschmied
- Cell Biology and Molecular Aging Research, Institute for Molecular Preventive Medicine, University of Duesseldorf, Duesseldorf, Germany
| | | |
Collapse
|
9
|
Yang Z, Yang S, Misner BJ, Chiu R, Liu F, Meyskens FL. Nitric oxide initiates progression of human melanoma via a feedback loop mediated by apurinic/apyrimidinic endonuclease-1/redox factor-1, which is inhibited by resveratrol. Mol Cancer Ther 2009; 7:3751-60. [PMID: 19074850 DOI: 10.1158/1535-7163.mct-08-0562] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well recognized that nitric oxide (NO) is involved in tumor progression, including melanoma. Measurement of proliferative and metastatic capacity by MTS and Matrigel invasion assays, respectively, was done and showed that NO-treated melanoma cells exhibited a higher capacity compared with control, especially metastatic Lu1205 cells. Apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) is a multifunctional protein and its role in tumor biology has attracted considerable attention. To determine whether APE/Ref-1 plays a role in mediating NO stimulation of melanoma progression, we investigated the effect of DETA/NO on levels of APE/Ref-1 and related downstream targets [activator protein-1 (AP-1)/JunD, matrix metalloproteinase-1 (MMP-1), Bcl-2, and inducible nitric oxide synthase (iNOS)] by Western blot and reverse transcription-PCR analysis. Following DETA/NO treatment, APE/Ref-1 and other downstream molecules were induced. Knockdown of APE/Ref-1 or AP-1/JunD by specific small interfering RNA markedly reversed the induction by NO stress of target proteins. These results present evidence for the existence of a functional feedback loop contributing to progression and metastasis of melanoma cells. Resveratrol has been shown to be an APE/Ref-1 inhibitor and significant decreases in AP-1/JunD, MMP-1, Bcl-2, and iNOS protein levels occurred after exposure to resveratrol. This phenolic antioxidant may be an appropriate choice for combining with other compounds that develop resistance by up-regulation of these molecules.
Collapse
Affiliation(s)
- Zhen Yang
- Chao Family Comprehensive Cancer Center, University of California-Irvine School of Medicine, Orange, California, USA
| | | | | | | | | | | |
Collapse
|
10
|
Deck LM, Hunsaker LA, Gonzales AM, Orlando RA, Vander Jagt DL. Substituted trans-stilbenes can inhibit or enhance the TPA-induced up-regulation of activator protein-1. BMC Pharmacol 2008; 8:19. [PMID: 19000313 PMCID: PMC2632638 DOI: 10.1186/1471-2210-8-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 11/10/2008] [Indexed: 11/25/2022] Open
Abstract
Background The activator protein-1 (AP-1) family of transcription factors contributes to regulation of numerous genes involved in proliferation, apoptosis, and tumorigenesis. A wide array of stimuli can activate AP-1, including pro-inflammatory cytokines, growth factors, tumor promoters and stress. Numerous plant polyphenols have been shown to inhibit the activation of AP-1, which often is ascribed to the anti-oxidant properties of these natural products. Methods In the present study, a library of substituted trans-stilbenes, including polyphenols, was screened for activity against the TPA-induced activation of AP-1 using the Panomics AP-1 Reporter 293 Stable Cell Line, which is designed for screening potential inhibitors or activators. Results Several trans-stilbenes were identified that inhibit TPA-induced activation of AP-1, with IC50 values as low as 0.5 μM. Moreover, some other trans-stilbenes were able to enhance the effects of TPA 2 to 3-fold. Many of the trans-stilbenes identified as inhibitors or enhancers are devoid of anti-oxidant properties. Conclusion The ability of trans-stilbenes to inhibit or enhance the effects of TPA does not depend upon their anti-oxidant properties.
Collapse
Affiliation(s)
- Lorraine M Deck
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | |
Collapse
|
11
|
Weber WM, Hunsaker LA, Gonzales AM, Heynekamp JJ, Orlando RA, Deck LM, Vander Jagt DL. TPA-induced up-regulation of activator protein-1 can be inhibited or enhanced by analogs of the natural product curcumin. Biochem Pharmacol 2006; 72:928-40. [PMID: 16934760 DOI: 10.1016/j.bcp.2006.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 07/13/2006] [Accepted: 07/14/2006] [Indexed: 12/16/2022]
Abstract
The activator protein-1 (AP-1) family of transcription factors, including the most common member c-Jun-c-Fos, participates in regulation of expression of numerous genes involved in proliferation, apoptosis, and tumorigenesis in response to a wide array of stimuli including pro-inflammatory cytokines, growth factors, stress, and tumor promoters. A number of plant polyphenols including curcumin, a yellow compound in the spice turmeric, have been shown to inhibit the activation of AP-1. Curcumin is a polyphenolic dienone that is potentially reactive as a Michael acceptor and also is a strong anti-oxidant. Multiple activities reported for curcumin, including inhibition of the stress-induced activation of AP-1, have been suggested to involve the anti-oxidant properties of curcumin. In the present study, a library of analogs of curcumin was screened for activity against the TPA-induced activation of AP-1 using the Panomics AP-1 Reporter 293 stable cell line which is designed for screening potential inhibitors. Numerous analogs were identified that were more active than curcumin, including analogs that were not anti-oxidants and analogs that were not Michael acceptors. Clearly, anti-oxidant activity or reactivity as a Michael acceptor is not an essential feature of active compounds. In addition, a number of analogs were identified that enhanced the TPA-induced activation of AP-1. The results from screening were confirmed using BV-2 microglial cells where curcumin and analogs were shown to inhibit LPS-induced COX-2 expression; analogs identified as more potent than curcumin in the screening assay were also more potent than curcumin in preventing COX-2 expression.
Collapse
Affiliation(s)
- Waylon M Weber
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Basi DL, Adhikari N, Mariash A, Li Q, Kao E, Mullegama SV, Hall JL. Femoral artery neointimal hyperplasia is reduced after wire injury in Ref-1+/- mice. Am J Physiol Heart Circ Physiol 2006; 292:H516-21. [PMID: 16936011 DOI: 10.1152/ajpheart.00246.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox factor-1 (Ref-1) is a multifunctional protein that regulates redox, DNA repair, and the response to cell stress. We previously demonstrated that Ref-1(+/-) mice exhibit a significantly reduced Ref-1 mRNA and protein levels within the vasculature, which are associated with increased oxidative stress. The goal of this study was to test the hypothesis that partial loss of Ref-1 altered the cellular response to vascular injury. Fourteen days after femoral artery wire injury, we found that vessel intima-to-media ratio was significantly reduced in Ref-1(+/-) mice compared with that in wild-type mice (P < 0.01). Bromodeoxyuridine labeling and transferase-mediated dUTP nick-end labeling staining at 14 days did not differ in the Ref-1(+/-) mice. In vitro studies found no significant changes in either serum-induced proliferation or baseline apoptosis in Ref-1(+/-) vascular smooth muscle cells. Exposure to Fas ligand; however, did result in increased susceptibility of Ref-1(+/-) vascular smooth muscle cells to apoptosis (P < 0.001). Ref-1(+/-) mice exhibited an increase in circulating baseline levels of IL-10, IL-1alpha, and VEGF compared with those in wild-type mice but a marked impairment in these pathways in response to injury. In sum, loss of a single allele of Ref-1 is sufficient to reduce intimal lesion formation and to alter circulating cytokine and growth factor expression.
Collapse
Affiliation(s)
- David L Basi
- Lillehei Heart Institute, Univ. of Minnesota, 420 Delaware St., Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Dimayuga PC, Li H, Chyu KY, Fredrikson GN, Nilsson J, Fishbein MC, Shah PK, Cercek B. T Cell Modulation of Intimal Thickening After Vascular Injury. Arterioscler Thromb Vasc Biol 2005; 25:2528-34. [PMID: 16224059 DOI: 10.1161/01.atv.0000190606.41121.00] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Immune deficiency results in exuberant intimal thickening after arterial injury. The mechanisms involved are not well defined. We investigated the role of T cells and IFN-gamma in the response to injury in normal and immune-deficient Rag-1KO mice. METHODS AND RESULTS Carotid arterial injury was induced in wild-type (WT), Rag-1KO mice, and Rag-1KO mice reconstituted with T cell-enriched splenocytes. The exuberant intimal thickening in Rag-1KO mice compared with WT mice 21 days after injury was reduced by T cell transfer (P<0.01). Exogenous IFN-gamma starting on the day of injury inhibited intimal thickening in Rag-1KO mice. However, antibody neutralization of endogenous IFN-gamma in Rag-1KO mice starting 7 days after injury decreased intimal thickening, indicating that late presence of IFN-gamma promoted intimal thickening in Rag-1KO mice. Results further suggest that the effect of late IFN-gamma in Rag-1KO mice is mediated in part by increased IRF-1 and iNOS expression, coupled with low SOCS1 expression. CONCLUSIONS T cells inhibit intimal thickening in the early stages of the response to injury through basal IFN-gamma secretion. In the Rag-1KO mice, late IFN-gamma expression promotes intimal thickening. These findings add novel insight to conditions of immune deficiency that affect intimal thickening.
Collapse
Affiliation(s)
- Paul C Dimayuga
- Atherosclerosis Research Center, Division of Cardiology, Department of Medicine, Cedars-Sinai Medical Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|