1
|
Chen YH, Liang SC, Sun CK, Cheng YS, Tzang RF, Chiu HJ, Wang MY, Cheng YC, Hung KC. A meta-analysis on the therapeutic efficacy of repetitive transcranial magnetic stimulation for cognitive functions in attention-deficit/hyperactivity disorders. BMC Psychiatry 2023; 23:756. [PMID: 37845676 PMCID: PMC10580630 DOI: 10.1186/s12888-023-05261-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Therapeutic efficacies of repetitive transcranial magnetic stimulation (rTMS) for improving cognitive functions in patients with deficit/hyperactivity disorder (ADHD) remained unclear. The aim of this meta-analysis was to investigate the therapeutic efficacy of rTMS focusing on different cognitive performances. METHODS Major databases were searched electronically from inception to February 2023 by using keywords mainly "rTMS" and "ADHD" to identify randomized controlled trials (RCTs) that investigated the therapeutic efficacy of rTMS for improving cognitive functions assessed by standardized tasks in patients with ADHD. The overall effect size (ES) was calculated as standardized mean difference (SMD) based on a random effects model. RESULTS Meta-analysis of five RCTs with 189 participants (mean age of 32.78 and 8.53 years in adult and child/adolescent populations, respectively) demonstrated that rTMS was more effective for improving sustained attention in patients with ADHD compared with the control groups (SMD = 0.54, p = 0.001).Our secondary analysis also showed that rTMS was more effective for improving processing speed than the control groups (SMD = 0.59, p = 0.002) but not for enhancing memory or executive function. CONCLUSIONS Our results supported the therapeutic efficacy of rTMS for improving sustained attention and processing speed. However, the limitation of available data warrants further studies to verify these findings.
Collapse
Affiliation(s)
- Ying-Hsin Chen
- Department of Emergency Medicine, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Shun-Chin Liang
- Department of Management Center, Jianan Psychiatric Center, Ministry Of Health and Welfare, Tainan, Taiwan
- Department of Center for General Education, University of Kun Shan, Tainan, Taiwan
- Department of Optometry, University of Chung Hwa of Medical Technology, Tainan, Taiwan
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung City, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, Taiwan
| | - Yu-Shian Cheng
- Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung City, Taiwan
| | - Ruu-Fen Tzang
- Department of Psychiatry, Mackay Memorial Hospital, Taipei City, Taiwan
| | - Hsien-Jane Chiu
- Taoyuan Psychiatric Center, Ministry of Health and Welfare, Taoyuan City, Taiwan
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei City, Taiwan
| | - Ming-Yu Wang
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Ying-Chih Cheng
- Department of Psychiatry, China Medical University Hsinchu Hospital, China Medical University, Hsinchu, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan.
| |
Collapse
|
2
|
Sabé M, Sulstarova A, Chen C, Hyde J, Poulet E, Aleman A, Downar J, Brandt V, Mallet L, Sentissi O, Nitsche MA, Bikson M, Brunoni AR, Cortese S, Solmi M. A century of research on neuromodulation interventions: A scientometric analysis of trends and knowledge maps. Neurosci Biobehav Rev 2023; 152:105300. [PMID: 37392815 DOI: 10.1016/j.neubiorev.2023.105300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/24/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Interest in neurostimulation interventions has significantly grown in recent decades, yet a scientometric analysis objectively mapping scientific knowledge and recent trends remains unpublished. Using relevant keywords, we conducted a search in the Web of Science Core Collection on September 23, 2022, retrieving a total of 47,681 documents with 987,979 references. We identified two prominent research trends: 'noninvasive brain stimulation' and 'invasive brain stimulation.' These methods have interconnected over time, forming a cluster focused on evidence synthesis. Noteworthy emerging research trends encompassed 'transcutaneous auricular vagus nerve stimulation,' 'DBS/epilepsy in the pediatric population,' 'spinal cord stimulation,' and 'brain-machine interface.' While progress has been made for various neurostimulation interventions, their approval as adjuvant treatments remains limited, and optimal stimulation parameters lack consensus. Enhancing communication between experts of both neurostimulation types and encouraging novel translational research could foster further development. These findings offer valuable insights for funding agencies and research groups, guiding future directions in the field.
Collapse
Affiliation(s)
- Michel Sabé
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland.
| | - Adi Sulstarova
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland
| | - Chaomei Chen
- College of Computing & Informatics, Drexel University, Philadelphia, PA, USA
| | - Joshua Hyde
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK
| | - Emmanuel Poulet
- Centre Hospitalier Le Vinatier, Bron, France; INSERM, U1028, CNRS, UMR5292, France; University Lyon 1, F-69000 Villeurbanne, France; Lyon Neuroscience Research Center, PSYR2 Team, F-69000 Lyon, France; Université Jean Monnet Saint Etienne, F-42000, France; Psychiatric Emergency Service, Hospices Civils de Lyon, F-69005 Lyon, France
| | - André Aleman
- University of Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Jonathan Downar
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; MRI-Guided rTMS Clinic, University Health Network, Toronto, ON, Canada; Centre for Mental Health, University Health Network, Toronto, ON, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Valerie Brandt
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinic of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Luc Mallet
- Univ Paris-Est Créteil, DMU IMPACT, Département Médical-Universitaire de Psychiatrie et d'Addictologie, Hôpitaux Universitaires Henri Mondor, Albert Chenevier, Assistance Publique-Hôpitaux de Paris, Créteil, France; Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, Paris, France; Department of Mental Health and Psychiatry, Global Health Institute, University of Geneva, Geneva, Switzerland
| | - Othman Sentissi
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, 2, Chemin du Petit-Bel-Air, CH-1226 Thonex, Switzerland
| | - Michael A Nitsche
- Dept. Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Germany; Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Germany
| | - Marom Bikson
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - André Russowsky Brunoni
- Departamento de Clínica Médica da Faculdade de Medicina da Universidade de São Paulo, Universidade de São Paulo, São Paulo, Brazil; Instituto de Psiquiatria do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brazil
| | - Samuele Cortese
- Centre for Innovation in Mental Health, School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK; Solent NHS Trust, Southampton, UK; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA; Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, Canada; Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
3
|
Elias GJB, Boutet A, Parmar R, Wong EHY, Germann J, Loh A, Paff M, Pancholi A, Gwun D, Chow CT, Gouveia FV, Harmsen IE, Beyn ME, Santarnecchi E, Fasano A, Blumberger DM, Kennedy SH, Lozano AM, Bhat V. Neuromodulatory treatments for psychiatric disease: A comprehensive survey of the clinical trial landscape. Brain Stimul 2021; 14:1393-1403. [PMID: 34461326 DOI: 10.1016/j.brs.2021.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Numerous neuromodulatory therapies are currently under investigation or in clinical use for the treatment of psychiatric conditions. OBJECTIVE/HYPOTHESIS We sought to catalogue past and present human research studies on psychiatric neuromodulation and identify relevant trends in this field. METHODS ClinicalTrials.gov (https://www.clinicaltrials.gov/) and the International Clinical Trials Registry Platform (https://www.who.int/ictrp/en/) were queried in March 2020 for trials assessing the outcome of neuromodulation for psychiatric disorders. Relevant trials were categorized by variables such as neuromodulation modality, country, brain target, publication status, design, and funding source. RESULTS From 72,086 initial search results, 1252 unique trials were identified. The number of trials registered annually has consistently increased. Half of all trials were active and a quarter have translated to publications. The largest proportion of trials involved depression (45%), schizophrenia (18%), and substance use disorders (14%). Trials spanned 37 countries; China, the second largest contributor (13%) after the United States (28%), has increased its output substantially in recent years. Over 75% of trials involved non-convulsive non-invasive modalities (e.g., transcranial magnetic stimulation), while convulsive (e.g., electroconvulsive therapy) and invasive modalities (e.g., deep brain stimulation) were less represented. 72% of trials featured approved or cleared interventions. Characteristic inter-modality differences were observed with respect to enrollment size, trial design/phase, and funding. Dorsolateral prefrontal cortex accounted for over half of focal neuromodulation trial targets. The proportion of trials examining biological correlates of neuromodulation has increased. CONCLUSION(S) These results provide a comprehensive overview of the state of psychiatric neuromodulation research, revealing the growing scope and internationalism of this field.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada; Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada; Krembil Research Institute, University of Toronto, Toronto, Canada; Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Roohie Parmar
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada
| | - Emily H Y Wong
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada; Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada; Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Michelle Paff
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada
| | - Dave Gwun
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada
| | - Flavia Venetucci Gouveia
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre & University of Toronto, Toronto, Canada
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada; Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Alfonso Fasano
- Krembil Research Institute, University of Toronto, Toronto, Canada; Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto, Canada; Center for Advancing Neurotechnological Innovation to Application, Toronto, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University Health Network & University of Toronto, Toronto, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Psychiatry, University Health Network & University of Toronto, Toronto, Canada; Centre for Depression & Suicide Studies, St. Michael's Hospital & University of Toronto, Toronto, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network & University of Toronto, Toronto, Canada; Krembil Research Institute, University of Toronto, Toronto, Canada
| | - Venkat Bhat
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Psychiatry, University Health Network & University of Toronto, Toronto, Canada; Centre for Depression & Suicide Studies, St. Michael's Hospital & University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Elias GJB, Germann J, Boutet A, Pancholi A, Beyn ME, Bhatia K, Neudorfer C, Loh A, Rizvi SJ, Bhat V, Giacobbe P, Woodside DB, Kennedy SH, Lozano AM. Structuro-functional surrogates of response to subcallosal cingulate deep brain stimulation for depression. Brain 2021; 145:362-377. [PMID: 34324658 DOI: 10.1093/brain/awab284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/14/2022] Open
Abstract
Subcallosal cingulate deep brain stimulation (SCC-DBS) produces long-term clinical improvement in approximately half of patients with severe treatment-resistant depression (TRD). We hypothesized that both structural and functional brain attributes may be important in determining responsiveness to this therapy. In a TRD SCC-DBS cohort, we retrospectively examined baseline and longitudinal differences in MRI-derived brain volume (n = 65) and 18F-fluorodeoxyglucose-PET glucose metabolism (n = 21) between responders and non-responders. Support-vector machines (SVMs) were subsequently trained to classify patients' response status based on extracted baseline imaging features. A machine learning model incorporating pre-operative frontopolar, precentral/frontal opercular, and orbitofrontal local volume values classified binary response status (12 months) with 83% accuracy (leave-one-out cross-validation (LOOCV): 80% accuracy) and explained 32% of the variance in continuous clinical improvement. It was also predictive in an out-of-sample SCC-DBS cohort (n = 21) with differing primary indications (bipolar disorder/anorexia nervosa) (76% accuracy). Adding pre-operative glucose metabolism information from rostral anterior cingulate cortex and temporal pole improved model performance, enabling it to predict response status in the TRD cohort with 86% accuracy (LOOCV: 81% accuracy) and explain 67% of clinical variance. Response-related patterns of metabolic and structural post-DBS change were also observed, especially in anterior cingulate cortex and neighbouring white matter. Areas where responders differed from non-responders - both at baseline and longitudinally - largely overlapped with depression-implicated white matter tracts, namely uncinate fasciculus, cingulum bundle, and forceps minor/rostrum of corpus callosum. The extent of patient-specific engagement of these same tracts (according to electrode location and stimulation parameters) also served as a predictor of TRD response status (72% accuracy; LOOCV: 70% accuracy) and augmented performance of the volume-based (88% accuracy; LOOCV: 82% accuracy) and combined volume/metabolism-based SVMs (100% accuracy; LOOCV: 94% accuracy). Taken together, these results indicate that responders and non-responders to SCC-DBS exhibit differences in brain volume and metabolism, both pre- and post-surgery. Baseline imaging features moreover predict response to treatment (particularly when combined with information about local tract engagement) and could inform future patient selection and other clinical decisions.
Collapse
Affiliation(s)
- Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Aditya Pancholi
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Kartik Bhatia
- Joint Department of Medical Imaging, University of Toronto, Toronto, M5T 1W7, Canada
| | - Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| | - Sakina J Rizvi
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Venkat Bhat
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Peter Giacobbe
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, M4N 3M5, Canada
| | - D Blake Woodside
- ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada
| | - Sidney H Kennedy
- Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada.,ASR Suicide and Depression Studies Unit, St. Michael's Hospital, University of Toronto, M5B 1M8, Canada.,Department of Psychiatry, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, M5T 2S8, Canada.,Krembil Research Institute, University of Toronto, Toronto, M5T 0S8, Canada
| |
Collapse
|
5
|
Singh L, Espinosa L, Ji JL, Moulds ML, Holmes EA. Developing thinking around mental health science: the example of intrusive, emotional mental imagery after psychological trauma. Cogn Neuropsychiatry 2020; 25:348-363. [PMID: 32847486 DOI: 10.1080/13546805.2020.1804845] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION One route to advancing psychological treatments is to harness mental health science, a multidisciplinary approach including individuals with lived experience and end users (e.g., Holmes, E. A., Craske, M. G., & Graybiel, A. M. (2014). Psychological treatments: A call for mental-health science. Nature, 511(7509), 287-289. doi:10.1038/511287a). While early days, we here illustrate a line of research explored by our group-intrusive imagery-based memories after trauma. METHOD/RESULTS We illustrate three possible approaches through which mental health science may stimulate thinking around psychological treatment innovation. First, focusing on single/specific target symptoms rather than full, multifaceted psychiatric diagnoses (e.g., intrusive trauma memories rather than all of posttraumatic stress disorder). Second, investigating mechanisms that can be modified in treatment (treatment mechanisms), rather than those which cannot (e.g., processes only linked to aetiology). Finally, exploring novel ways of delivering psychological treatment (peer-/self-administration), given the prevalence of mental health problems globally, and the corresponding need for effective interventions that can be delivered at scale and remotely for example at times of crisis (e.g., current COVID-19 pandemic). CONCLUSIONS These three approaches suggest options for potential innovative avenues through which mental health science may be harnessed to recouple basic and applied research and transform treatment development.
Collapse
Affiliation(s)
- Laura Singh
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Lisa Espinosa
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julie L Ji
- School of Psychological Science, The University of Western Australia, UWA Perth, Australia
| | - Michelle L Moulds
- School of Psychology, The University of New South Wales, UNSW Sydney, Australia
| | - Emily A Holmes
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Kinfe TM, Hurlemann R. Is Molecular Inflammatory Profiling a Useful Tool for Personalized Brain Stimulation in Psychiatric Disorders? Neuromodulation 2018; 21:826-827. [PMID: 30394619 DOI: 10.1111/ner.12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Thomas M Kinfe
- Department of Psychiatry, Division of Medical Psychology, University of Bonn Medical Center, Bonn, Germany
| | - Rene Hurlemann
- Department of Psychiatry, Division of Medical Psychology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
7
|
Beck RW, Laugharne J, Laugharne R, Woldman W, McLean B, Mastropasqua C, Jorge R, Shankar R. Abnormal cortical asymmetry as a target for neuromodulation in neuropsychiatric disorders: A narrative review and concept proposal. Neurosci Biobehav Rev 2017; 83:21-31. [PMID: 28958599 DOI: 10.1016/j.neubiorev.2017.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Recent advances in knowledge relating to the organization of neural circuitry in the human brain have increased understanding of disorders involving brain circuit asymmetry. These asymmetries, which can be measured and identified utilizing EEG and LORETA analysis techniques, may be a factor in mental disorders. New treatments involving non-invasive brain stimulation (NIBS), including trans-cranial magnetic stimulation, direct current stimulation and vagal nerve stimulation, have emerged in recent years. We propose that EEG identification of circuit asymmetry geometries can direct non-invasive brain stimulation more specifically for treatments of mental disorders. We describe as a narrative review new NIBS therapies that have been developed and delivered, and suggest that they are proving effective in certain patient groups. A brief narrative of influence of classical and operant conditioning of neurofeedback on EEG coherence, phase, abnormalities and Loreta's significance is provided. We also discuss the role of Heart rate variability and biofeedback in influencing EEG co-relates. Clinical evidence is at an early stage, but the basic science evidence and early case studies suggest that this may be a promising new modality for treating mental disorders and merits further research.
Collapse
Affiliation(s)
- Randy W Beck
- Institute of Functional Neuroscience, Perth, Australia
| | - Jonathan Laugharne
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Perth, Australia
| | - Richard Laugharne
- Cornwall Partnership NHS Foundation Trust and Hon, University of Exeter Medical School, Exeter, United Kingdom
| | - Wessel Woldman
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter EX4 4QD, United Kingdom; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Brendan McLean
- The Royal Cornwall Hospitals NHS Trust, Treliske, Truro, Cornwall, United Kingdom
| | - Chiara Mastropasqua
- Institute of Functional Neuroscience, Sydney, Australia; Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy
| | - Ricardo Jorge
- Institute of Functional Neuroscience, Perth, Australia
| | - Rohit Shankar
- Cornwall Partnership NHS Foundation Trust, University of Exeter Medical School, Exeter, United Kingdom.
| |
Collapse
|
8
|
Lage C, Wiles K, Shergill SS, Tracy DK. A systematic review of the effects of low-frequency repetitive transcranial magnetic stimulation on cognition. J Neural Transm (Vienna) 2016; 123:1479-1490. [PMID: 27503083 PMCID: PMC5110586 DOI: 10.1007/s00702-016-1592-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/29/2016] [Indexed: 01/18/2023]
Abstract
rTMS is increasingly used for a variety of neuropsychiatric conditions. There are data to support 'fast' rTMS (≥10 Hz) having some positive effects on cognitive functioning, but a dearth of research looking at any such effects of 'slow' rTMS. This question is important as cognitive dysfunction accompanies many neuropsychiatric conditions and neuromodulation that potentially enhances or hinders such functioning has important clinical consequences. To determine cognitive effects of slow (≤1 Hz) rTMS, a systematic review of randomized control trials assayed cognition in neurological, psychiatric, and healthy volunteer ≤1 Hz rTMS paradigms. Both active (fast rTMS) and placebo comparators were included. 497 Records were initially obtained; 20 met inclusion criteria for evaluation. Four major categories emerged: mood disorders; psychotic disorders; cerebrovascular accidents; and 'other' (PTSD, OCD, epilepsy, anxiety, and tinnitus). Cognitive effects were measured across several domains: attention, executive functioning, learning, and psychomotor speed. Variability of study paradigms and reporting precluded meta-analytical analysis. No statistically significant improvement or deterioration was consistently found in any cognitive domain or illness category. These data support the overall safety of rTMS in not adversely affecting cognitive functioning. There are some data indicating that rTMS might have cognitive enhancing potential, but these are too limited at this time to make any firm conclusions, and the literature is marked by considerable heterogeneity in study parameters that hinder interpretation. Greater consensus is required in future studies in cognitive markers, and particularly in reporting of protocols. Future work should evaluate the effects of rTMS on cognitive training.
Collapse
Affiliation(s)
- Claudia Lage
- Cognition, Schizophrenia and Imaging Laboratory, The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | | | - Sukhwinder S. Shergill
- Cognition, Schizophrenia and Imaging Laboratory, The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Derek K. Tracy
- Cognition, Schizophrenia and Imaging Laboratory, The Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Oxleas NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Tracy DK, Shergill SS, David AS, Fonagy P, Zaman R, Downar J, Eliott E, Bhui K. Self-harm and suicidal acts: a suitable case for treatment of impulsivity-driven behaviour with repetitive transcranial magnetic stimulation (rTMS). BJPsych Open 2015; 1:87-91. [PMID: 27703728 PMCID: PMC4995566 DOI: 10.1192/bjpo.bp.115.000315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/11/2022] Open
Abstract
SUMMARY Suicidal thinking, self-harm and suicidal acts are common, although determining their precise prevalence is complex. Epidemiological work has identified a number of associated demographic and clinical factors, though, with the exception of past acts of self-harm, these are non-specific and weak future predictors. There is a critical need shift focus from managing 'suicidality-by-proxy' through general mental health treatments, to better understand the neuropsychology and neurophysiology of such behaviour to guide targeted interventions. The model of the cognitive control of emotion (MCCE) offers such a paradigm, with an underlying pan-diagnostic pathophysiology of a hypoactive prefrontal cortex failing to suitably inhibit an overactive threat-responding limbic system. The result is a phenotype - from any number of causative gene-environment interactions - primed to impulsively self-harm. We argue that such neural dysconnectivity is open to potential therapeutic modification from repetitive transcranial magnetic stimulation (rTMS). The current evidence base for this is undoubtedly extremely limited, but the societal and clinical burden self-harm and suicide pose warrants such investigation. DECLARATION OF INTEREST K.B. is the Editor of BJPsych Open, but had no editorial involvement in the review or decision process regarding this paper. COPYRIGHT AND USAGE © The Royal College of Psychiatrists 2015. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) licence.
Collapse
Affiliation(s)
- Derek K Tracy
- , Oxleas NHS Foundation Trust, London, and Cognition, Schizophrenia & Imaging Laboratory, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sukhwinder S Shergill
- , Cognition, Schizophrenia & Imaging Laboratory, the Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Anthony S David
- , Department of Psychosis Studies, the Institute of Psychiatry, Psychology, and Neuroscience, King's College London, and South London and Maudsley NHS Foundation Trust, London, UK
| | - Peter Fonagy
- , Research Department of Clinical, Educational, and Health Psychology, University College London, London, UK
| | - Rashid Zaman
- , Department of Psychiatry, University of Cambridge, and East London NHS Foundation Trust, London, UK
| | - Jonathan Downar
- , Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Emma Eliott
- , Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Kamaldeep Bhui
- , Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|