1
|
Kao HT, Mürner-Lavanchy I, Lerch S, von Stosch E, Berger T, Koenig J, Kaess M. Longitudinal associations between beta-endorphin, nonsuicidal self-injury and comorbid psychopathology. Psychiatry Res 2024; 340:116142. [PMID: 39182317 DOI: 10.1016/j.psychres.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/27/2024]
Abstract
Homeostasis models posit that nonsuicidal self-injury (NSSI) serves, in part, to upregulate the endogenous opioid system in order to compensate for an opioid deficiency. A few studies have demonstrated lower basal levels of beta-endorphin (BE), an endogenous opioid, in individuals with NSSI. However, longitudinal studies are missing. Hence, the present study aimed to investigate the longitudinal associations between NSSI, comorbid psychopathology (i.e., borderline personality disorder and depressive symptoms), pain sensitivity and basal BE levels in adolescents with NSSI. N = 53 adolescents with NSSI disorder undergoing specialized treatment participated in baseline and one-year follow-up assessments. BE was measured in plasma; pain sensitivity was assessed with a heat pain stimulation paradigm. Associations between BE and change in NSSI, borderline personality disorder and depressive symptoms as well as pain sensitivity were examined using negative binomial and linear regression analyses. We found that an increase in basal BE was significantly associated with a decrease in depressive symptoms. No associations between BE and NSSI, borderline personality disorder symptoms or pain sensitivity were observed. Our findings may confirm a role of plasma BE in the etiology of depressive symptoms but challenge current models of endogenous opioid homeostasis in NSSI.
Collapse
Affiliation(s)
- Han-Tin Kao
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Ines Mürner-Lavanchy
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Faculty of Psychology, University of Basel, Basel, Switzerland
| | - Stefan Lerch
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Elisabeth von Stosch
- Section for Experimental Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Thomas Berger
- Department of Clinical Psychology and Psychotherapy, University of Bern, Bern, Switzerland
| | - Julian Koenig
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Cologne, Germany
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Section for Translational Psychobiology in Child and Adolescent Psychiatry, Department of Child and Adolescent Psychiatry, Centre for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
2
|
Vu T, Smith JA. The pathophysiology and management of depression in cardiac surgery patients. Front Psychiatry 2023; 14:1195028. [PMID: 37928924 PMCID: PMC10623009 DOI: 10.3389/fpsyt.2023.1195028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background Depression is common in the cardiac surgery population. This contemporary narrative review aims to explore the main pathophysiological disturbances underpinning depression specifically within the cardiac surgery population. The common non-pharmacological and pharmacological management strategies used to manage depression within the cardiac surgery patient population are also explored. Methods A total of 1291 articles were identified through Ovid Medline and Embase. The findings from 39 studies were included for qualitative analysis in this narrative review. Results Depression is associated with several pathophysiological and behavioral factors which increase the likelihood of developing coronary heart disease which may ultimately require surgical intervention. The main pathophysiological factors contributing to depression are well characterized and include autonomic nervous system dysregulation, excessive inflammation and disruption of the hypothalamic-pituitary-adrenal axis. There are also several behavioral factors in depressed patients associated with the development of coronary heart disease including poor diet, insufficient exercise, poor compliance with medications and reduced adherence to cardiac rehabilitation. The common preventative and management modalities used for depression following cardiac surgery include preoperative and peri-operative education, cardiac rehabilitation, cognitive behavioral therapy, religion/prayer/spirituality, biobehavioral feedback, anti-depressant medications, and statins. Conclusion This contemporary review explores the pathophysiological mechanisms leading to depression following cardiac surgery and the current management modalities. Further studies on the preventative and management strategies for postoperative depression in the cardiac surgery patient population are warranted.
Collapse
Affiliation(s)
- Tony Vu
- Department of Cardiothoracic Surgery, The Alfred Hospital, Melbourne, VIC, Australia
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Julian A. Smith
- Department of Surgery, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
- Department of Cardiothoracic Surgery, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Kritzer MD, Peterchev AV, Camprodon JA. Electroconvulsive Therapy: Mechanisms of Action, Clinical Considerations, and Future Directions. Harv Rev Psychiatry 2023; 31:101-113. [PMID: 37171471 PMCID: PMC10198476 DOI: 10.1097/hrp.0000000000000365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
LEARNING OBJECTIVES • Outline and discuss the fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes• Summarize the overview of ECT, its efficacy in treating depression, the known effects on cognition, evidence of mechanisms, and future directions. ABSTRACT Electroconvulsive therapy (ECT) is the most effective treatment for a variety of psychiatric illnesses, including treatment-resistant depression, bipolar depression, mania, catatonia, and clozapine-resistant schizophrenia. ECT is a medical and psychiatric procedure whereby electrical current is delivered to the brain under general anesthesia to induce a generalized seizure. ECT has evolved a great deal since the 1930s. Though it has been optimized for safety and to reduce adverse effects on cognition, issues persist. There is a need to understand fundamental physiologic, cellular, and molecular mechanisms of ECT to devise strategies to optimize therapeutic outcomes. Clinical trials that set out to adjust parameters, electrode placement, adjunctive medications, and patient selection are critical steps towards the goal of improving outcomes with ECT. This narrative review provides an overview of ECT, its efficacy in treating depression, its known effects on cognition, evidence of its mechanisms, and future directions.
Collapse
Affiliation(s)
- Michael D Kritzer
- From the Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA (Drs. Kritzer, Camprodon); Department of Psychiatry and Behavioral Sciences, Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Department of Neurosurgery, Duke University, Durham, NC (Dr. Peterchev)
| | | | | |
Collapse
|
4
|
Exploring the role of neuropeptides in depression and anxiety. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110478. [PMID: 34801611 DOI: 10.1016/j.pnpbp.2021.110478] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/13/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022]
Abstract
Depression is one of the most prevalent forms of mental disorders and is the most common cause of disability in the Western world. Besides, the harmful effects of stress-related mood disorders on the patients themselves, they challenge the health care system with enormous social and economic impacts. Due to the high proportion of patients not responding to existing drugs, finding new treatment strategies has become an important topic in neurobiology, and there is much evidence that neuropeptides are not only involved in the physiology of stress but may also be clinically important. Based on preclinical trial data, new neuropharmaceutical candidates may target neuropeptides and their receptors and are expected to be essential and valuable tools in the treatment of psychiatric disorders. In the current article, we have summarized data obtained from animal models of depressive disorder and transgenic mouse models. We also focus on previously published research data of clinical studies on corticotropin-releasing hormone (CRH), galanin (GAL), neuropeptide Y (NPY), neuropeptide S (NPS), Oxytocin (OXT), vasopressin (VP), cholecystokinin (CCK), and melanin-concentrating hormone (MCH) stress research fields.
Collapse
|
5
|
Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 2021; 22:674-684. [PMID: 34545241 DOI: 10.1038/s41583-021-00513-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Collapse
|
6
|
Ding Y, Wei Z, Yan H, Guo W. Efficacy of Treatments Targeting Hypothalamic-Pituitary-Adrenal Systems for Major Depressive Disorder: A Meta-Analysis. Front Pharmacol 2021; 12:732157. [PMID: 34566653 PMCID: PMC8461240 DOI: 10.3389/fphar.2021.732157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal hypothalamic-pituitary-adrenal (HPA) axis has been implicated in major depressive disorder (MDD). A number of studies have attempted to use HPA-modulating medications to treat depression. However, their results are inconsistent. The efficacy of these drugs for MDD remains uncertain. The aims of this meta-analysis were to determine the effect and safety profile of HPA-targeting medications for MDD. World of Science and PubMed databases were comprehensively searched up to March 2021. All randomized controlled trials (RCTs) and open-label trials exploring antiglucocorticoid and related medications in patients with depression were included. Standardized mean differences (SMDs) and risk ratios (RRs) with 95% confidence intervals (CIs) were calculated for continuous or dichotomous outcomes, respectively. In the meta-analysis, we identified 16 RCTs and seven open-label studies that included 2972 subjects. Pooling the change data that assessed the efficacy across all included HPA-targeting medications for depression showed a significant difference between interventions and controls with very small heterogeneity after influence analysis (SMD = 0.138, 95%CI = 0.052, 0.224, p = 0.002; I2 = 20.7%, p = 0.212). No obvious publication bias was observed (p = 0.127). Effectiveness remained significant in patients with MDD (SMD = 0.136, 95%CI = 0.049, 0.223, p = 0.002). Subgroup analysis showed a significant difference favoring mifepristone and vasopressin 1B (V1B) receptor antagonist treatment. Adverse events were reported by 14 studies and our analysis of high-quality studies showed a significant difference in favor of controls (RR = 1.283, 95%CI = 1.134, 1.452, p = 0). Our study suggested that patients with MDD may benefit from mifepristone and V1B receptor antagonist treatments that have tolerable side effects. HPA-based medications are promising for depression treatment. However, additional high-quality RCTs, including head-to-head trials, are needed. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/, identifier registration number: CRD42021247279
Collapse
Affiliation(s)
- Yudan Ding
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zirou Wei
- Mental Health Center, The Second Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Haohao Yan
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
7
|
Ding H, Cui SY, Cui XY, Liu YT, Hu X, Zhao HL, Qin Y, Kurban N, Zhang YH. Anti-stress effects of combined block of glucocorticoid and mineralocorticoid receptors in the paraventricular nucleus of the hypothalamus. Br J Pharmacol 2021; 178:3696-3707. [PMID: 33908038 DOI: 10.1111/bph.15511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Mineralocorticoid receptors (MRs), glucocorticoid receptors (GRs) and corticotropin-releasing factor (CRF) in the paraventricular nucleus of hypothalamus (PVN) are involved in the response to stress. The present study investigated the role of GRs and MRs in the PVN in regulating depressive and anxiety-like behaviours. EXPERIMENTAL APPROACH To model chronic stress, rats were exposed to corticosterone treatment via drinking water for 21 days, and GR antagonist RU486 and MR antagonist spironolactone, alone and combined, were directly injected in the PVN daily for the last 7 days of corticosterone treatment. Behavioural tests were run on days 22 and 23. Depressive- and anxiety-like behaviours were evaluated in forced swim test, sucrose preference test, novelty-suppressed feeding test and social interaction test. The expression of GRs, MRs and CRF were detected by western blot. KEY RESULTS Rats exposed to corticosterone exhibited depressive- and anxiety-like behaviours. The expression of GRs and MRs decreased, and CRF levels increased in the PVN. The intra-PVN administration of RU486 increased the levels of GRs and CRF without influencing depressive- or anxiety-like behaviours. The spironolactone-treated group exhibited an increase in MRs without influencing GRs and CRF in the PVN and improved anxiety-like behaviours. Interestingly, the intra-PVN administration of RU486 and spironolactone combined restored expression of GRs, MRs and CRF and improved depressive- and anxiety-like behaviours. CONCLUSION AND IMPLICATIONS In this rat model of stress, the simultaneous restoration of GRs, MRs and CRF in the PVN might play an important role in the treatment of depression and anxiety.
Collapse
Affiliation(s)
- Hui Ding
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Su-Ying Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xiang-Yu Cui
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yu-Tong Liu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Xiao Hu
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Hui-Ling Zhao
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yu Qin
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Nurhumar Kurban
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| | - Yong-He Zhang
- Department of Pharmacology, Peking University, School of Basic Medical Science, Beijing, China
| |
Collapse
|
8
|
Dwyer JB, Aftab A, Radhakrishnan R, Widge A, Rodriguez CI, Carpenter LL, Nemeroff CB, McDonald WM, Kalin NH. Hormonal Treatments for Major Depressive Disorder: State of the Art. Am J Psychiatry 2020; 177:686-705. [PMID: 32456504 PMCID: PMC7841732 DOI: 10.1176/appi.ajp.2020.19080848] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is a common psychiatric disorder associated with marked suffering, morbidity, mortality, and cost. The World Health Organization projects that by 2030, major depression will be the leading cause of disease burden worldwide. While numerous treatments for major depression exist, many patients do not respond adequately to traditional antidepressants. Thus, more effective treatments for major depression are needed, and targeting certain hormonal systems is a conceptually based approach that has shown promise in the treatment of this disorder. A number of hormones and hormone-manipulating compounds have been evaluated as monotherapies or adjunctive treatments for major depression, with therapeutic actions attributable not only to the modulation of endocrine systems in the periphery but also to the CNS effects of hormones on non-endocrine brain circuitry. The authors describe the physiology of the hypothalamic-pituitary-adrenal (HPA), hypothalamic-pituitary thyroid (HPT), and hypothalamic-pituitary-gonadal (HPG) axes and review the evidence for selected hormone-based interventions for the treatment of depression in order to provide an update on the state of this field for clinicians and researchers. The review focuses on the HPA axis-based interventions of corticotropin-releasing factor antagonists and the glucocorticoid receptor antagonist mifepristone, the HPT axis-based treatments of thyroid hormones (T3 and T4), and the HPG axis-based treatments of estrogen replacement therapy, the progesterone derivative allopregnanolone, and testosterone. While some treatments have largely failed to translate from preclinical studies, others have shown promising initial results and represent active fields of study in the search for novel effective treatments for major depression.
Collapse
Affiliation(s)
| | | | | | - Alik Widge
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and VA Palo Alto Health Care System, Palo Alto, Calif
| | - Linda L. Carpenter
- Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I
| | | | - William M. McDonald
- Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta
| | - Ned H. Kalin
- Department of Psychiatry, University of Wisconsin–Madison
| | -
- Child Study Center and Department of Radiology and Biomedical Imaging, Yale University, New Haven, Conn. (Dwyer); Department of Psychiatry, Case Western Reserve University, Cleveland, and Northcoast Behavioral Healthcare Hospital, Northfield, Ohio (Aftab); Yale School of Medicine, New Haven, Conn. (Radhakrishnan); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, Calif., and VA Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Human Behavior, Butler Hospital, Brown University, Providence, R.I. (Carpenter); Department of Psychiatry, University of Texas at Austin (Nemeroff); Department of Psychiatry and Human Behavior, Emory University School of Medicine, Atlanta (McDonald); and Department of Psychiatry, University of Wisconsin-Madison (Kalin)
| |
Collapse
|
9
|
Wiersielis KR, Samuels BA, Roepke TA. Perinatal exposure to bisphenol A at the intersection of stress, anxiety, and depression. Neurotoxicol Teratol 2020; 79:106884. [PMID: 32289443 DOI: 10.1016/j.ntt.2020.106884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Endocrine-disrupting compounds (EDCs) are common contaminants in our environment that interfere with typical endocrine function. EDCs can act on steroid and nuclear receptors or alter hormone production. One particular EDC of critical concern is bisphenol A (BPA) due to its potential harm during the perinatal period of development. Previous studies suggest that perinatal exposure to BPA alters several neurotransmitter systems and disrupts behaviors associated with depression and anxiety in the rodent offspring later in life. Thus, dysregulation in neurotransmission may translate to behavioral phenotypes observed in mood and arousal. Many of the systems disrupted by BPA also overlap with the stress system, although little evidence exists on the effects of perinatal BPA exposure in relation to stress and behavior. The purpose of this review is to explore studies involved in perinatal BPA exposure and the stress response at neurochemical and behavioral endpoints. Although more research is needed, we suggest that perinatal BPA exposure is likely inducing variations in behavioral phenotypes that modulate their action through dysregulation of neurotransmitter systems sensitive to stress and endocrine disruption.
Collapse
Affiliation(s)
- Kimberly R Wiersielis
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA.
| | - Benjamin A Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ. USA
| |
Collapse
|
10
|
Miles OW, Maren S. Role of the Bed Nucleus of the Stria Terminalis in PTSD: Insights From Preclinical Models. Front Behav Neurosci 2019; 13:68. [PMID: 31024271 PMCID: PMC6461014 DOI: 10.3389/fnbeh.2019.00068] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) afflicts approximately 8% of the United States population and represents a significant public health burden, but the underlying neural mechanisms of this and other anxiety- and stressor-related disorders are largely unknown. Within the last few decades, several preclinical models of PSTD have been developed to help elucidate the mechanisms underlying dysregulated fear states. One brain area that has emerged as a critical mediator of stress-related behavioral processing in both clinical and laboratory settings is the bed nucleus of the stria terminalis (BNST). The BNST is interconnected with essential emotional processing regions, including prefrontal cortex, hippocampus and amygdala. It is activated by stressor exposure and undergoes neurochemical and morphological alterations as a result of stressor exposure. Stress-related neuro-peptides including corticotropin-releasing factor (CRF) and pituitary adenylate cyclase activating peptide (PACAP) are also abundant in the BNST, further implicating an involvement of BNST in stress responses. Behaviorally, the BNST is critical for acquisition and expression of fear and is well positioned to regulate fear relapse after periods of extinction. Here, we consider the role of the BNST in stress and memory processes in the context of preclinical models of PTSD.
Collapse
Affiliation(s)
- Olivia W. Miles
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
11
|
Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019; 44:129-139. [PMID: 30022063 PMCID: PMC6235989 DOI: 10.1038/s41386-018-0137-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Women are more likely than men to suffer from psychiatric disorders with hyperarousal symptoms, including posttraumatic stress disorder (PTSD) and major depression. In contrast, women are less likely than men to be diagnosed with schizophrenia and attention deficit hyperactivity disorder (ADHD), which share attentional impairments as a feature. Stressful events exacerbate symptoms of the aforementioned disorders. Thus, researchers are examining whether sex differences in stress responses bias women and men towards different psychopathology. Here we review the preclinical literature suggesting that, compared to males, females are more vulnerable to stress-induced hyperarousal, while they are more resilient to stress-induced attention deficits. Specifically described are sex differences in receptors for the stress neuropeptide, corticotropin-releasing factor (CRF), that render the locus coeruleus arousal system of females more vulnerable to stress and less adaptable to CRF hypersecretion, a condition found in patients with PTSD and depression. Studies on the protective effects of ovarian hormones against CRF-induced deficits in sustained attention are also detailed. Importantly, we highlight how comparing males and females in preclinical studies can lead to the development of novel therapeutics to improve treatments for psychiatric disorders in both women and men.
Collapse
|
12
|
Nandam LS, Brazel M, Zhou M, Jhaveri DJ. Cortisol and Major Depressive Disorder-Translating Findings From Humans to Animal Models and Back. Front Psychiatry 2019; 10:974. [PMID: 32038323 PMCID: PMC6987444 DOI: 10.3389/fpsyt.2019.00974] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Major depressive disorder (MDD) is a global problem for which current pharmacotherapies are not completely effective. Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has long been associated with MDD; however, the value of assessing cortisol as a biological benchmark of the pathophysiology or treatment of MDD is still debated. In this review, we critically evaluate the relationship between HPA axis dysfunction and cortisol level in relation to MDD subtype, stress, gender and treatment regime, as well as in rodent models. We find that an elevated cortisol response to stress is associated with acute and severe, but not mild or atypical, forms of MDD. Furthermore, the increased incidence of MDD in females is associated with greater cortisol response variability rather than higher baseline levels of cortisol. Despite almost all current MDD treatments influencing cortisol levels, we could find no convincing relationship between cortisol level and therapeutic response in either a clinical or preclinical setting. Thus, we argue that the absolute level of cortisol is unreliable for predicting the efficacy of antidepressant treatment. We propose that future preclinical models should reliably produce exaggerated HPA axis responses to acute or chronic stress a priori, which may, or may not, alter baseline cortisol levels, while also modelling the core symptoms of MDD that can be targeted for reversal. Combining genetic and environmental risk factors in such a model, together with the interrogation of the resultant molecular, cellular, and behavioral changes, promises a new mechanistic understanding of MDD and focused therapeutic strategies.
Collapse
Affiliation(s)
- L. Sanjay Nandam
- Mental Health Unit, Prince Charles Hospital, Brisbane, QLD, Australia
- *Correspondence: L. Sanjay Nandam, ; Dhanisha J. Jhaveri,
| | - Matthew Brazel
- Mental Health Unit, Prince Charles Hospital, Brisbane, QLD, Australia
- Department of Psychiatry, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Mei Zhou
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dhanisha J. Jhaveri
- Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: L. Sanjay Nandam, ; Dhanisha J. Jhaveri,
| |
Collapse
|
13
|
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) Signaling and the Dark Side of Addiction. J Mol Neurosci 2018; 68:453-464. [PMID: 30074172 DOI: 10.1007/s12031-018-1147-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
While addiction to drugs of abuse represents a significant health problem worldwide, the behavioral and neural mechanisms that underlie addiction and relapse are largely unclear. The concept of the dark side of addiction, developed and explored by George Koob and colleagues, describes a systematic decrease in reward-related processing following drug self-administration and subsequent recruitment of anti-reward (i.e., stress) systems. Indeed, the activation of central nervous system (CNS) stress-response systems by drugs of abuse is contributory not only to mood and anxiety-related disorders but critical to both the maintenance of addiction and relapse following abstinence. In both human and animal studies, compounds that activate the bed nucleus of the stria terminalis (BNST) have roles in stress-related behaviors and addiction processes. The activation of pituitary adenylate cyclase-activating peptide (PACAP) systems in the BNST mediates many consequences of chronic stressor exposure that may engage in part downstream corticotropin-releasing hormone (CRH) signaling. Similar to footshock stress, the BNST administration of PACAP or the PAC1 receptor-specific agonist maxadilan can facilitate relapse following extinction of cocaine-seeking behavior. Further, in the same paradigm, the footshock-induced relapse could be attenuated following BNST pretreatment with PAC1 receptor antagonist PACAP6-38, implicating PACAP systems as critical components underlying stress-induced reinstatement. In congruence with previous work, the PAC1 receptor internalization and endosomal MEK/ERK signaling appear contributory mechanisms to the addiction processes. The studies offer new insights and approaches to addiction and relapse therapeutics.
Collapse
|
14
|
Differential plastic changes in synthesis and binding in the mouse somatostatin system after electroconvulsive stimulation. Acta Neuropsychiatr 2018; 30:192-202. [PMID: 29559016 DOI: 10.1017/neu.2018.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is regularly used to treat patients with severe major depression, but the mechanisms underlying the beneficial effects remain uncertain. Electroconvulsive stimulation (ECS) regulates diverse neurotransmitter systems and induces anticonvulsant effects, properties implicated in mediating therapeutic effects of ECT. Somatostatin (SST) is a candidate for mediating these effects because it is upregulated by ECS and exerts seizure-suppressant effects. However, little is known about how ECS might affect the SST receptor system. The present study examined effects of single and repeated ECS on the synthesis of SST receptors (SSTR1-4) and SST, and SST receptor binding ([125I]LTT-SST28) in mouse hippocampal regions and piriform/parietal cortices. RESULTS A complex pattern of plastic changes was observed. In the dentate gyrus, SST and SSTR1 expression and the number of hilar SST immunoreactive cells were significantly increased at 1 week after repeated ECS while SSTR2 expression was downregulated by single ECS, and SSTR3 mRNA and SST binding were elevated 24 h after repeated ECS. In hippocampal CA1 and parietal/piriform cortices, we found elevated SST mRNA levels 1 week after repeated ECS and elevated SST binding after single ECS and 24 h after repeated ECS. In hippocampal CA3, repeated ECS increased SST expression 1 week after and SST binding 24 h after. In the parietal cortex, SSTR2 mRNA expression was downregulated after single ECS while SSTR4 mRNA expression was upregulated 24 h after repeated ECS. CONCLUSION Considering the known anticonvulsant effects of SST, it is likely that these ECS-induced neuroplastic changes in the SST system could participate in modulating neuronal excitability and potentially contribute to therapeutic effects of ECT.
Collapse
|
15
|
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2017; 341:79-90. [PMID: 29284108 DOI: 10.1016/j.bbr.2017.12.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
A number of factors (biogenic amine deficiency, genetic, environmental, immunologic, endocrine factors and neurogenesis) have been identified as mechanisms which provide unitary explanations for the pathophysiology of depression. Rather than a unitary construct, the combination and linkage of these factors have been implicated in the pathogenesis of depression. That is, environmental stressors and heritable genetic factors acting through immunologic and endocrine responses initiate structural and functional changes in many brain regions, resulting in dysfunctional neurogenesis and neurotransmission which then manifest as a constellation of symptoms which present as depression.
Collapse
Affiliation(s)
- Emmanuel Jesulola
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia.
| | - Peter Micalos
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia
| | - Ian J Baguley
- Brain Injury Rehabilitation Service, Westmead Hospital, Hawkesbury Rd, Wentworthville, NSW Australia
| |
Collapse
|
16
|
Valentino RJ, Bangasser DA. Sex-biased cellular signaling: molecular basis for sex differences in neuropsychiatric diseases. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28179810 PMCID: PMC5286724 DOI: 10.31887/dcns.2016.18.4/rvalentino] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recognition that there are fundamental biological sex differences that extend beyond those that define sexual behavior and reproductive function has inspired the drive toward inclusion of both sexes in research design. This is supported by an underlying clinical rationale that studying both sexes is necessary to elucidate pathophysiology and develop treatments for the entire population. However, at a more basic level, sex differences, like genetic differences, can be exploited to better understand biology. Here, we discuss how sex differences at the molecular level of cell signaling and protein trafficking are amplified to create a state of vulnerability that under the right conditions can result in symptoms of neuropsychiatry disease. Although this dialogue focuses on the specific example of corticotropin-releasing factor, the potential for analogous sex differences in signaling and/or trafficking of receptors for other neuromodulators has broad biological and therapeutic implications.
Collapse
Affiliation(s)
- Rita J Valentino
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, USA
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, USA
| |
Collapse
|
17
|
Teleb M, Kuppast B, Spyridaki K, Liapakis G, Fahmy H. Synthesis of 2-imino and 2-hydrazono thiazolo[4,5- d ]pyrimidines as corticotropin releasing factor (CRF) antagonists. Eur J Med Chem 2017; 138:900-908. [DOI: 10.1016/j.ejmech.2017.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022]
|
18
|
Gollan JK, Dong H, Bruno D, Nierenberg J, Nobrega JN, Grothe MJ, Pollock BG, Marmar CR, Teipel S, Csernansky JG, Pomara N. Basal forebrain mediated increase in brain CRF is associated with increased cholinergic tone and depression. Psychiatry Res Neuroimaging 2017; 264:76-81. [PMID: 28477491 DOI: 10.1016/j.pscychresns.2017.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/20/2017] [Accepted: 04/21/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Jackie K Gollan
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 676 North St Clair Street, Suite 1000, Chicago, IL 60611, USA.
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave, Chicago, IL 60611, USA.
| | - Davide Bruno
- Department of Psychology, Liverpool Hope University, Hope Park, Liverpool L16 9JD, UK; School of Natural Sciences and Psychology, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool L3 3AF, UK.
| | - Jay Nierenberg
- Nathan S. Kline Institute Department of Psychiatry, New York University School of Medicine, Orangeburg, NY, 10962 USA.
| | - José N Nobrega
- Center for Addiction and Mental Health, University of Toronto, College Street Site, 250 College Street, Ste. 271, Toronto, ON, Canada M5T 1R8.
| | - Michel J Grothe
- German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | - Bruce G Pollock
- Campbell Family Mental Health Research Institute, Center for Addiction and Mental Health, University of Toronto, 33 Russell Street, Ste. T109, Toronto, ON, Canada M5S 2S1.
| | - Charles R Marmar
- Department of Psychiatry, Steven and Alexandra Cohen Veterans Center, New York University Langone Medical Center, New York, 10962 USA.
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Gehlsheimer Str. 20, 18147 Rostock, Germany.
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, 446 E Ontario St, Suite 7-100, Chicago, IL 60611, USA.
| | - Nunzio Pomara
- Department of Psychiatry, Steven and Alexandra Cohen Veterans Center, New York University Langone Medical Center, New York, 10962 USA; Geriatric Psychiatry Division, Nathan S. Kline Institute, 40 Old Orangeburg Road, Bldg 35, Orangeburg, NY 10962, USA.
| |
Collapse
|
19
|
Heit S, Owens MJ, Plotsky P, Nemeroff CB. ■ REVIEW : Corticotropin-releasing Factor, Stress, and Depression. Neuroscientist 2016. [DOI: 10.1177/107385849700300312] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Corticotropin-releasing factor (CRF), a 41 amino acid-containing neuropeptide, acts both as a hypothalamic releasing factor, controlling ACTH and corticosteroid secretion, and at extrahypothalamic CNS sites to mod ulate mammalian organisms' responses to stress. In this article, the evidence that CRF-containing neurons within the CNS are hyperactive in patients with depression is reviewed. The evidence, taken together, suggests that during depressive episodes, CRF is hypersecreted, resulting in both pituitary-adrenal axis hyperactivity and certain of the signs and symptoms of depression, including decreased appetite, decreased libido and disturbed sleep. There is also evidence that treatments for depression, including antidepressant medications and electroconvulsive therapy, reduce CRF hypersecretion within the CNS. Finally, evidence suggests that alterations in CRF-containing neurons and receptors are responsible for the widely held ob servation that early untoward life events increase an individual's vulnerability for affective disorders. These findings have a number of implications for treatment of the mood disorders, including the suggestion that the pharmacological manipulation of CRF receptors may provide a novel avenue for the treatment of de pression. NEUROSCIENTIST 3:186-194, 1997
Collapse
Affiliation(s)
- Stacey Heit
- Department of Psychiatry and Behavioral Sciences
| | | | - Paul Plotsky
- Department of Psychiatry and Behavioral Sciences, Department of Anatomy and Cell Biology Emory University
School of Medicine Atlanta, Georgia
| | | |
Collapse
|
20
|
Early life adversity and serotonin transporter gene variation interact to affect DNA methylation of the corticotropin-releasing factor gene promoter region in the adult rat brain. Dev Psychopathol 2016; 27:123-35. [PMID: 25640835 DOI: 10.1017/s0954579414001345] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The interaction between childhood maltreatment and the serotonin transporter (5-HTT) gene linked polymorphic region has been associated with increased risk to develop major depression. This Gene × Environment interaction has furthermore been linked with increased levels of anxiety and glucocorticoid release upon exposure to stress. Both endophenotypes are regulated by the neuropeptide corticotropin-releasing factor (CRF) or hormone, which is expressed by the paraventricular nucleus of the hypothalamus, the bed nucleus of the stria terminalis, and the central amygdala (CeA). Therefore, we hypothesized that altered regulation of the expression of CRF in these areas represents a major neurobiological mechanism underlying the interaction of early life stress and 5-HTT gene variation. The programming of gene transcription by Gene × Environment interactions has been proposed to involve epigenetic mechanisms such as DNA methylation. In this study, we report that early life stress and 5-HTT genotype interact to affect DNA methylation of the Crf gene promoter in the CeA of adult male rats. Furthermore, we found that DNA methylation of a specific site in the Crf promoter significantly correlated with CRF mRNA levels in the CeA. Moreover, CeA CRF mRNA levels correlated with stress coping behavior in a learned helplessness paradigm. Together, our findings warrant further investigation of the link of Crf promoter methylation and CRF expression in the CeA with behavioral changes that are relevant for psychopathology.
Collapse
|
21
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
22
|
Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK, Holsboer F, Summers CH. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev 2015; 58:63-78. [PMID: 26271720 DOI: 10.1016/j.neubiorev.2015.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/24/2015] [Accepted: 07/24/2015] [Indexed: 01/05/2023]
Abstract
Major depressive disorder (MDD) is a devastating disease affecting over 300 million people worldwide, and costing an estimated 380 billion Euros in lost productivity and health care in the European Union alone. Although a wealth of research has been directed toward understanding and treating MDD, still no therapy has proved to be consistently and reliably effective in interrupting the symptoms of this disease. Recent clinical and preclinical studies, using genetic screening and transgenic rodents, respectively, suggest a major role of the CRF1 gene, and the central expression of CRF1 receptor protein in determining an individual's risk of developing MDD. This gene is widely expressed in brain tissue, and regulates an organism's immediate and long-term responses to social and environmental stressors, which are primary contributors to MDD. This review presents the current state of knowledge on CRF physiology, and how it may influence the occurrence of symptoms associated with MDD. Additionally, this review presents findings from multiple laboratories that were presented as part of a symposium on this topic at the annual 2014 meeting of the International Behavioral Neuroscience Society (IBNS). The ideas and data presented in this review demonstrate the great progress that has been made over the past few decades in our understanding of MDD, and provide a pathway forward toward developing novel treatments and detection methods for this disorder.
Collapse
Affiliation(s)
| | | | | | - J M Deussing
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - S K Wood
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany; HMNC GmbH, Munich, Germany
| | - Cliff H Summers
- University of South Dakota, Vermillion, SD, USA; Sanford School of Medicine, Vermillion, SD, USA.
| |
Collapse
|
23
|
Chang HS, Won E, Lee HY, Ham BJ, Lee MS. Association analysis for corticotropin releasing hormone polymorphisms with the risk of major depressive disorder and the response to antidepressants. Behav Brain Res 2015; 292:116-24. [PMID: 26055202 DOI: 10.1016/j.bbr.2015.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 01/02/2023]
Abstract
Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent neuroendocrine abnormalities observed in patients with major depressive disorder (MDD). The peptide corticotropin-releasing hormone (CRH) is a key mediator for HPA axis function during stress. This study evaluated the associations of CRH polymorphisms with susceptibility to MDD and response to antidepressant treatment, and the gene-environment interaction with stressful life events (SLEs). After screening 31 polymorphisms in the gene encoding CRH, we evaluated the association of polymorphisms with MDD susceptibility in 149 patients with MDD and 193 control subjects; in patients, we also evaluated the response to treatment with antidepressants. Although genotypes and haplotypes were not significantly associated with the risk of MDD, non-remitters were more likely to carry haplotype 1 (ht1) than were remitters (P = 0.019-0.038), when only patients without SLE were included; however, the association was not significant after correction for multiple comparisons. Additionally, after 4 and 8 weeks of treatment in patients who experienced no SLEs, significantly higher 21-item Hamilton Depression Rating scores were found in MDD subjects who were CRH ht1 homozygotes compared to patients carrying one or no ht1 alleles (P = 0.007 and 0.027 at 4 and 8 weeks, respectively). Although these preliminary observations require further confirmation in future studies, these results on the interaction between CRH haplotypes and SLEs, suggest that CRH ht1 which is moderated by SLEs, may be associated with antidepressant treatment outcomes in patients with MDD.
Collapse
Affiliation(s)
- Hun Soo Chang
- Department of Medical Bioscience, Graduated School, Soonchunhyang University, Bucheon 420-767, Republic of Korea
| | - Eunsoo Won
- Phamacogenetic Research Center for Psychotropic Drugs, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, Korea University Anam Hospital, Seoul 136-705, Republic of Korea
| | - Hwa-Young Lee
- Department of Psychiatry, College of Medicine, Soonchunhyang University, Cheonan 330-721, Republic of Korea
| | - Byung-Joo Ham
- Phamacogenetic Research Center for Psychotropic Drugs, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, Korea University Anam Hospital, Seoul 136-705, Republic of Korea
| | - Min-Soo Lee
- Phamacogenetic Research Center for Psychotropic Drugs, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Department of Psychiatry, Korea University Anam Hospital, Seoul 136-705, Republic of Korea.
| |
Collapse
|
24
|
Goldstein JM, Holsen L, Handa R, Tobet S. Fetal hormonal programming of sex differences in depression: linking women's mental health with sex differences in the brain across the lifespan. Front Neurosci 2014; 8:247. [PMID: 25249929 PMCID: PMC4157606 DOI: 10.3389/fnins.2014.00247] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/24/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jill M Goldstein
- Division of Women's Health, Departments of Psychiatry and Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital Boston, MA, USA ; Departments of Psychiatry and Medicine, Harvard Medical School Boston, MA, USA ; Division of Psychiatric Neuroscience, Department of Psychiatry, Massachusetts General Hospital Boston, MA, USA
| | - Laura Holsen
- Division of Women's Health, Departments of Psychiatry and Medicine, Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital Boston, MA, USA ; Departments of Psychiatry and Medicine, Harvard Medical School Boston, MA, USA
| | - Robert Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, AZ, USA
| | - Stuart Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, College of Veterinary Medicine and Biomedical Sciences, Colorado State University Fort Collins, CO, USA
| |
Collapse
|
25
|
Sheikh HI, Joanisse MF, Mackrell SM, Kryski KR, Smith HJ, Singh SM, Hayden EP. Links between white matter microstructure and cortisol reactivity to stress in early childhood: evidence for moderation by parenting. NEUROIMAGE-CLINICAL 2014; 6:77-85. [PMID: 25379418 PMCID: PMC4215465 DOI: 10.1016/j.nicl.2014.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/13/2014] [Accepted: 08/18/2014] [Indexed: 12/22/2022]
Abstract
Activity of the hypothalamic–pituitary–adrenal axis (measured via cortisol reactivity) may be a biological marker of risk for depression and anxiety, possibly even early in development. However, the structural neural correlates of early cortisol reactivity are not well known, although these would potentially inform broader models of mechanisms of risk, especially if the early environment further shapes these relationships. Therefore, we examined links between white matter architecture and young girls' cortisol reactivity and whether early caregiving moderated these links. We recruited 45 6-year-old girls based on whether they had previously shown high or low cortisol reactivity to a stress task at age 3. White matter integrity was assessed by calculating fractional anisotropy (FA) of diffusion-weighted magnetic resonance imaging scans. Parenting styles were measured via a standardized parent–child interaction task. Significant associations were found between FA in white matter regions adjacent to the left thalamus, the right anterior cingulate cortex, and the right superior frontal gyrus (all ps < .001). Further, positive early caregiving moderated the effect of high cortisol reactivity on white matter FA (all ps ≤ .05), with high stress reactive girls who received greater parent positive affect showing white matter structure more similar to that of low stress reactive girls. Results show associations between white matter integrity of various limbic regions of the brain and early cortisol reactivity to stress and provide preliminary support for the notion that parenting may moderate associations. We examined neural correlates of cortisol reactivity to stress in young girls. DTI was performed in young girls to examine white matter fractional anisotropy (FA). Lower FA was linked to high cortisol reactivity to stress. Differences in neuronal fiber projections were linked to cortisol reactivity. Parenting style buffered the effect of high cortisol reactivity on white matter FA.
Collapse
Affiliation(s)
- Haroon I Sheikh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Marc F Joanisse
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Sarah M Mackrell
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Katie R Kryski
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Heather J Smith
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| | - Elizabeth P Hayden
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
26
|
Schüle C, Baghai TC, Eser D, Rupprecht R. Hypothalamic–pituitary–adrenocortical system dysregulation and new treatment strategies in depression. Expert Rev Neurother 2014; 9:1005-19. [DOI: 10.1586/ern.09.52] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Corticotropin-releasing hormone and the hypothalamic–pituitary–adrenal axis in psychiatric disease. HANDBOOK OF CLINICAL NEUROLOGY 2014; 124:69-91. [DOI: 10.1016/b978-0-444-59602-4.00005-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Beurel E, Nemeroff CB. Interaction of stress, corticotropin-releasing factor, arginine vasopressin and behaviour. Curr Top Behav Neurosci 2014; 18:67-80. [PMID: 24659554 DOI: 10.1007/7854_2014_306] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stress mediates the activation of a variety of systems ranging from inflammatory to behavioral responses. In this review we focus on two neuropeptide systems, corticotropin-releasing factor (CRF) and arginine vasopressin (AVP), and their roles in regulating stress responses. Both peptides have been demonstrated to be involved in anxiogenic and depressive effects, actions mediated in part through their regulation of the hypothalamic-pituitary-adrenal axis and the release of adrenocorticotropic hormone. Because of the depressive effects of CRF and AVP, drugs modifying the stress-associated detrimental actions of CRF and AVP are under development, particularly drugs antagonizing CRF and AVP receptors for therapy in depression.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | | |
Collapse
|
29
|
Goldstein JM, Handa RJ, Tobet SA. Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease. Front Neuroendocrinol 2014; 35:140-58. [PMID: 24355523 PMCID: PMC3917309 DOI: 10.1016/j.yfrne.2013.12.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Abstract
Comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) represents the fourth leading cause of morbidity and mortality worldwide, and women have a two times greater risk than men. Thus understanding the pathophysiology has widespread implications for attenuation and prevention of disease burden. We suggest that sex-dependent MDD-CVD comorbidity may result from alterations in fetal programming consequent to the prenatal maternal environments that produce excess glucocorticoids, which then drive sex-dependent developmental alterations of the fetal hypothalamic-pituitary-adrenal (HPA) axis circuitry impacting mood, stress regulation, autonomic nervous system (ANS), and the vasculature in adulthood. Evidence is consistent with the hypothesis that disruptions of pathways associated with gamma aminobutyric acid (GABA) in neuronal and vascular development and growth factors have critical roles in key developmental periods and adult responses to injury in heart and brain. Understanding the potential fetal origins of these sex differences will contribute to development of novel sex-dependent therapeutics.
Collapse
Affiliation(s)
- J M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital (BWH), Connors Center for Women's Health & Gender Biology, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA; BWH, Departments of Psychiatry and Medicine, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA.
| | - R J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth Street, Phoenix, AZ 85004, USA
| | - S A Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
30
|
Li SX, Yan SY, Bao YP, Lian Z, Qu Z, Wu YP, Liu ZM. Depression and alterations in hypothalamic-pituitary-adrenal and hypothalamic-pituitary-thyroid axis function in male abstinent methamphetamine abusers. Hum Psychopharmacol 2013; 28:477-83. [PMID: 23913817 DOI: 10.1002/hup.2335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/22/2013] [Indexed: 02/02/2023]
Abstract
The present study was to investigate depression and alterations in the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-thyroid (HPT) axis function in methamphetamine (METH) abusers after abstinence. Depression was assessed using the 13-item Beck Depression Inventory (BDI-13) scale; blood samples from in-patients who were METH abusers and age-matched and sex-matched healthy controls were collected. The demographic characteristics and history of METH abuse also was assessed. We found that serum levels of adrenocorticotropic hormone (ACTH) and thyroxine were increased; and serum levels of cortisol, triiodothyronine, and thyroid-stimulating hormone were decreased; and the BDI score was higher in METH abusers compared with control. In addition, there was no correlation between the BDI-13 score and any of hormones of HPA and HPT axis was found. Particularly, we found abnormally higher ACTH level and mismatched with lower cortisol level in abstinent METH abusers. These results indicate that METH abusers and that their HPA and HPT functions are all altered after abstinence. Chronically using METH may destroy the regulatory function of the HPA axis, especially the feedback regulation of cortisol to ACTH.
Collapse
Affiliation(s)
- Su-Xia Li
- National Institute on Drug Dependence, Peking University, Beijing, 100191, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Fosse R, Read J. Electroconvulsive Treatment: Hypotheses about Mechanisms of Action. Front Psychiatry 2013; 4:94. [PMID: 23986724 PMCID: PMC3753611 DOI: 10.3389/fpsyt.2013.00094] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/10/2013] [Indexed: 12/11/2022] Open
Abstract
No consensus has been reached on the mode of action of electroconvulsive treatment (ECT). We suggest that two features may aid in the delineation of the involved mechanisms. First, when effective, ECT would be likely to affect brain functions that are typically altered in its primary recipient group, people with severe depression. Central among these are the frontal and temporal lobes, the hypothalamus-pituitary-adrenal (HPA) stress axis, and the mesocorticolimbic dopamine system. Second, the involved mechanisms should be affected for a time period that matches the average endurance of clinical effects, which is indicated to be several days to a few weeks. To identify effects upon frontal and temporal lobe functioning we reviewed human studies using EEG, PET, SPECT, and fMRI. Effects upon the HPA axis and the dopamine system were assessed by reviewing both human and animal studies. The EEG studies indicate that ECT decelerates neural activity in the frontal and temporal lobes (increased delta and theta wave activity) for weeks to months. Comparable findings are reported from PET and SPECT studies, with reduced cerebral blood flow (functional deactivation) for weeks to months after treatment. The EEG deceleration and functional deactivation following ECT are statistically associated with reduced depression scores. FMRI studies indicate that ECT flattens the pattern of activation and deactivation that is associated with cognitive task performance and alters cortical functional connectivity in the ultra slow frequency range. A common finding from human and animal studies is that ECT acutely activates both the HPA axis and the dopamine system. In considering this evidence, we hypothesize that ECT affects the brain in a similar manner as severe stress or brain trauma which activates the HPA axis and the dopamine system and may compromise frontotemporal functions.
Collapse
Affiliation(s)
- Roar Fosse
- Division of Mental Health and Addiction, Vestre Viken State Hospital Trust, Lier, Norway
| | - John Read
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| |
Collapse
|
32
|
Serafini G, Pompili M, Lindqvist D, Dwivedi Y, Girardi P. The role of neuropeptides in suicidal behavior: a systematic review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:687575. [PMID: 23986909 PMCID: PMC3748411 DOI: 10.1155/2013/687575] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
There is a growing evidence that neuropeptides may be involved in the pathophysiology of suicidal behavior. A critical review of the literature was conducted to investigate the association between neuropeptides and suicidal behavior. Only articles from peer-reviewed journals were selected for the inclusion in the present review. Twenty-six articles were assessed for eligibility but only 22 studies were included. Most studies have documented an association between suicidality and some neuropeptides such as corticotropin-releasing factor (CRF), VGF, cholecystokinin, substance P, and neuropeptide Y (NPY), which have been demonstrated to act as key neuromodulators of emotional processing. Significant differences in neuropeptides levels have been found in those who have attempted or completed suicide compared with healthy controls or those dying from other causes. Despite cross-sectional associations between neuropeptides levels and suicidal behavior, causality may not be inferred. The implications of the mentioned studies were discussed in this review paper.
Collapse
Affiliation(s)
- Gianluca Serafini
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | |
Collapse
|
33
|
Bangasser DA. Sex differences in stress-related receptors: ″micro″ differences with ″macro″ implications for mood and anxiety disorders. Biol Sex Differ 2013; 4:2. [PMID: 23336736 PMCID: PMC3556142 DOI: 10.1186/2042-6410-4-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 12/27/2012] [Indexed: 11/10/2022] Open
Abstract
Stress-related psychiatric disorders, such as unipolar depression and post-traumatic stress disorder (PTSD), occur more frequently in women than in men. Emerging research suggests that sex differences in receptors for the stress hormones, corticotropin releasing factor (CRF) and glucocorticoids, contribute to this disparity. For example, sex differences in CRF receptor binding in the amygdala of rats may predispose females to greater anxiety following stressful events. Additionally, sex differences in CRF receptor signaling and trafficking in the locus coeruleus arousal center combine to make females more sensitive to low levels of CRF, and less adaptable to high levels. These receptor differences in females could lead to hyperarousal, a dysregulated state associated with symptoms of depression and PTSD. Similar to the sex differences observed in CRF receptors, sex differences in glucocorticoid receptor (GR) function also appear to make females more susceptible to dysregulation after a stressful event. Following hypothalamic pituitary adrenal axis activation, GRs are critical to the negative feedback process that inhibits additional glucocorticoid release. Compared to males, female rats have fewer GRs and impaired GR translocation following chronic adolescent stress, effects linked to slower glucocorticoid negative feedback. Thus, under conditions of chronic stress, attenuated negative feedback in females would result in hypercortisolemia, an endocrine state thought to cause depression. Together, these studies suggest that sex differences in stress-related receptors shift females more easily into a dysregulated state of stress reactivity, linked to the development of mood and anxiety disorders. The implications of these receptor sex differences for the development of novel pharmacotherapies are also discussed.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, 1701 North 13th Street, 873 Weiss Hall, Philadelphia, 19122, PA.
| |
Collapse
|
34
|
Bangasser DA, Valentino RJ. Sex differences in molecular and cellular substrates of stress. Cell Mol Neurobiol 2012; 32:709-23. [PMID: 22488525 DOI: 10.1007/s10571-012-9824-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/22/2012] [Indexed: 12/20/2022]
Abstract
Women are twice as likely as men to suffer from stress-related psychiatric disorders, like unipolar depression and post-traumatic stress disorder. Although the underlying neural mechanisms are not well characterized, the pivotal role of stress in the onset and severity of these diseases has led to the idea that sex differences in stress responses account for this sex bias. Corticotropin-releasing factor (CRF) orchestrates stress responses by acting both as a neurohormone to initiate the hypothalamic-pituitary-adrenal (HPA) axis and as a neuromodulator in the brain. One target of CRF modulation is the locus coeruleus (LC)-norepinephrine system, which coordinates arousal components of the stress response. Hypersecretion of CRF and dysregulation of targets downstream from CRF, such as the HPA axis and LC-norepinephrine system, are characteristic features of many stress-related psychiatric diseases, suggesting a causal role for CRF and its targets in the development of these disorders. This review will describe sex differences in CRF and the LC-norepinephrine system that can increase stress sensitivity in females, making them vulnerable to stress-related disorders. Evidence for gonadal hormone regulation of hypothalamic CRF is discussed as an effect that can lead to increased HPA axis activity in females. Sex differences in the structure of LC neurons that create the potential for hyperarousal in response to emotional stimuli are described. Finally, sex differences at the molecular level of the CRF(1) receptor that make the LC-norepinephrine system more reactive in females are reviewed. The implications of these sex differences for the treatment of stress-related psychiatric disorders also will be discussed.
Collapse
Affiliation(s)
- Debra A Bangasser
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
35
|
Abstract
In summary, depressed patients with a history of childhood trauma may have a distinct depression endophenotype characterized by a specific neurobiology and risk genotype that may be responsive to different treatment strategies than depressed patients without childhood adversity. Based on current findings, treatment strategies should be multimodal and include the following: 1. Psychotherapy that addresses a number of domains, such as emotional regulation, cognitive reframing, careful exploration of past traumatic events, attachment, and interpersonal relationships in a safe and trusting therapeutic environment. 2. The therapy should likely be longer term in order to effectively impact those domains. 3. Pharmacotherapy that will be effective in quieting the body’s hyperresponsiveness to stress and reverse epigenetic modifications induced by trauma and stress. 4. Environmental interventions that provide a support network (maternal care, a positive family environment, the support of a close friend) have all been shown to attenuate the impact of childhood abuse. In addition, there is great potential in the identification of genomic biomarkers to help guide us in the identification of traumatized individuals who are susceptible to depression. These indices may also help identify those for whom the immediate provision of treatment may have a preventive effect and may someday guide us in the development of novel pharmacologic approaches.
Collapse
Affiliation(s)
- Radu V Saveanu
- Department of Psychiatry and Behavioral Sciences, Leonard M. Miller School of Medicine, University of Miami, 1695 Northwest 9th Avenue, #3100, Miami, FL 33136, USA.
| | | |
Collapse
|
36
|
Childhood adversity and allostatic overload of the hypothalamic-pituitary-adrenal axis: a vulnerability model for depressive disorders. Dev Psychopathol 2012; 23:1017-37. [PMID: 22018079 DOI: 10.1017/s0954579411000472] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Childhood adversity is associated with increased risk for onset of depressive episodes. This review will present evidence that allostatic overload of the hypothalamic-pituitary-adrenal axis (HPAA) partially mediates this association. The HPAA is the physiological system that regulates levels of the stress hormone cortisol. First, data from animals and humans has shown that early environmental adversity is associated with long-term dysregulation of the HPAA. This may occur due to permanent epigenetic modification of the glucocorticoid receptor. Second, data from humans has demonstrated that HPAA dysregulation is associated with increased risk of future depression onset in healthy individuals, and pharmacological correction of HPAA dysregulation reduces depressive symptoms. HPAA dysregulation may result in corticoid-mediated abnormalities in neurogenesis in early life and/or neurotoxicity on neural systems that subserve emotion and cognition.
Collapse
|
37
|
Liu Y, Poon V, Sanchez-Watts G, Watts AG, Takemori H, Aguilera G. Salt-inducible kinase is involved in the regulation of corticotropin-releasing hormone transcription in hypothalamic neurons in rats. Endocrinology 2012; 153:223-33. [PMID: 22109884 PMCID: PMC3249682 DOI: 10.1210/en.2011-1404] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of CRH transcription requires phosphorylation of cAMP response element-binding protein (CREB) and translocation of the CREB coactivator, transducer of regulated CREB activity (TORC) from cytoplasm to nucleus. In basal conditions, transcription is low because TORC remains in the cytoplasm, inactivated by phosphorylation through Ser/Thr protein kinases of the AMP-dependent protein kinases (AMPK) family, including salt-inducible kinase (SIK). To determine which kinase is responsible for TORC phosphorylation in CRH neurons, we measured SIK1 and SIK2 mRNA in the hypothalamic paraventricular nucleus of rats by in situ hybridization. In basal conditions, low mRNA levels of the two kinases were found in the dorsomedial paraventricular nucleus, consistent with location in CRH neurons. One hour of restraint stress increased SIK1 mRNA levels, whereas SIK2 mRNA showed only minor increases. In 4B hypothalamic neurons, or primary cultures, SIK1 mRNA (but not SIK2 mRNA) was inducible by the cAMP stimulator, forskolin. Overexpression of either SIK1 or SIK2 in 4B cells reduced nuclear TORC2 levels (Western blot) and inhibited forskolin-stimulated CRH transcription (luciferase assay). Conversely, the nonselective SIK inhibitor, staurosporine, increased nuclear TORC2 content and stimulated CRH transcription in 4Bcells and primary neuronal cultures (heteronuclear RNA). Unexpectedly, in 4B cells specific short hairpin RNA knockdown of endogenous SIK2 but not SIK1 induced nuclear translocation of TORC2 and CRH transcription, suggesting that SIK2 mediates TORC inactivation in basal conditions, whereas induction of SIK1 limits transcriptional activation. The study provides evidence that SIK represses CRH transcription by inactivating TORC, providing a potential mechanism for rapid on/off control of CRH transcription.
Collapse
Affiliation(s)
- Ying Liu
- Section on Endocrine Physiology, Developmental Endocrinology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
38
|
Pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF₁) receptor antagonists. Bioorg Med Chem 2011; 19:5955-66. [PMID: 21930387 DOI: 10.1016/j.bmc.2011.08.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
To identify structurally novel CRF1 receptor antagonists, a series of bicyclic core antagonists, pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines, imidazo[1,2-a]pyrimidines and pyrazolo[1,5-a][1,3,5]triazines were designed, synthesized and evaluated as CRF1 receptor antagonists. Compounds 2-27 showed binding affinity (IC(50)=4.2-418 nM) and antagonist activity (EC(50)=4.0-889 nM). Compound 5 was found to show oral efficacy in an Elevated Plus Maze test in rats. Further chemical modification of them led us to discovery of the tricyclic core antagonists pyrazolo[1,5-a]pyrrolo[3,2-e]pyrimidines. The discovery process of these compounds is presented, as is the study of the structure-activity relationship.
Collapse
|
39
|
Influence of Neuropeptide Y and antidepressants upon cerebral monoamines involved in depression: An in vivo electrochemical study. Brain Res 2011; 1407:27-37. [DOI: 10.1016/j.brainres.2011.05.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/02/2011] [Accepted: 05/14/2011] [Indexed: 11/22/2022]
|
40
|
Paez-Pereda M, Hausch F, Holsboer F. Corticotropin releasing factor receptor antagonists for major depressive disorder. Expert Opin Investig Drugs 2011; 20:519-35. [PMID: 21395482 DOI: 10.1517/13543784.2011.565330] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Major depressive disorder is a serious and common psychiatric illness, and many of the depressive patients benefit from pharmacological treatment. Available antidepressants produce remission in only about 30 -- 40% of the patients. Therefore, new concepts are being explored for the development of innovative antidepressants with higher efficacy. AREAS COVERED The use of corticotropin releasing factor type 1 (CRF1) receptor antagonists for depression is supported by abundant evidence of target validation, the availability of in vitro and in vivo assays and specific small ligands. Some of these compounds have advanced to clinical studies, with discouraging results so far in depression. This review covers the development of CRF1 receptor antagonists at different stages of the development pipeline of the pharmaceutical industry and its bottlenecks. Most of the available CRF1 receptor antagonists known so far share a common chemical scaffold. We present possible strategies to overcome obstacles in the discovery and development process at the levels of library screenings and clinical studies to find more diverse compounds. EXPERT OPINION CRF1 receptor antagonists are expected to be beneficial only for those patients with CRF overexpression and the need for tests to identify these individuals is discussed. New technical developments and diagnostic tools might eventually lead to a more successful treatment of major depression with CRF1 receptor antagonists.
Collapse
|
41
|
Prenatal stress induces long term stress vulnerability, compromising stress response systems in the brain and impairing extinction of conditioned fear after adult stress. Neuroscience 2011; 192:438-51. [PMID: 21723377 DOI: 10.1016/j.neuroscience.2011.06.041] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
Stress is a risk factor for the development of affective disorders, including depression, post-traumatic stress disorder, and other anxiety disorders. However, not all individuals who experience either chronic stress or traumatic acute stress develop such disorders. Thus, other factors must confer a vulnerability to stress, and exposure to early-life stress may be one such factor. In this study we examined prenatal stress (PNS) as a potential vulnerability factor that may produce stable changes in central stress response systems and susceptibility to develop fear- and anxiety-like behaviors after adult stress exposure. Pregnant Sprague-Dawley rats were immobilized for 1 h daily during the last week of pregnancy. Controls were unstressed. The male offspring were then studied as adults. As adults, PNS or control rats were first tested for shock-probe defensive burying behavior, then half from each group were exposed to a combined chronic plus acute prolonged stress (CAPS) treatment, consisting of chronic intermittent cold stress (4 °C, 6 h/d, 14 days) followed on day 15 by a single session of sequential acute stressors (social defeat, immobilization, cold swim). After CAPS or control treatment, different groups were tested for open field exploration, social interaction, or cued fear conditioning and extinction. Rats were sacrificed at least 5 days after behavioral testing for measurement of tyrosine hydroxylase (TH) and glucocorticoid receptor (GR) expression in specific brain regions, and plasma adrenocorticotropic hormone (ACTH) and corticosterone. Shock-probe burying, open field exploration and social interaction were unaffected by any treatment. However, PNS elevated basal corticosterone, decreased GR protein levels in hippocampus and prefrontal cortex, and decreased TH mRNA expression in noradrenergic neurons in the dorsal pons. Further, rats exposed to PNS plus CAPS showed attenuated extinction of cue-conditioned fear. These results suggest that PNS induces vulnerability to subsequent adult stress, resulting in an enhanced fear-like behavioral profile, and dysregulation of brain noradrenergic and hypothalamic-pituitary-adrenal axis (HPA) activity.
Collapse
|
42
|
Devadhasan JP, Kim S, An J. Fish-on-a-chip: a sensitive detection microfluidic system for Alzheimer's disease. J Biomed Sci 2011; 18:33. [PMID: 21619660 PMCID: PMC3125339 DOI: 10.1186/1423-0127-18-33] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 05/28/2011] [Indexed: 01/09/2023] Open
Abstract
Microfluidics has become an important tool in diagnosing many diseases, including neurological and genetic disorders. Alzheimer's disease (AD) is a neurodegenerative disease that irreversibly and progressively destroys memory, language ability, and thinking skills. Commonly, detection of AD is expensive and complex. Fluorescence in situ hybridization (FISH)-based microfluidic chip platform is capable of diagnosing AD at an early stage and they are effective tools for the diagnosis with low cost, high speed, and high sensitivity. In this review, we tried to provide basic information on the diagnosis of AD via FISH-based microfluidics. Different sample preparations using a microfluidic chip for diagnosis of AD are highlighted. Moreover, rapid innovations in nanotechnology for diagnosis are explained. This review will provide information on dynamic quantification methods for the diagnosis and treatment of AD. The knowledge provided in this review will help develop new integration diagnostic techniques based on FISH and microfluidics.
Collapse
Affiliation(s)
- Jasmine P Devadhasan
- College of Bionanotechnology, Kyungwon University, San 65, Bokjeong-Dong, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 461-701, Republic of Korea
| | | | | |
Collapse
|
43
|
Barrett J, Fleming AS. Annual Research Review: All mothers are not created equal: neural and psychobiological perspectives on mothering and the importance of individual differences. J Child Psychol Psychiatry 2011; 52:368-97. [PMID: 20925656 DOI: 10.1111/j.1469-7610.2010.02306.x] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quality of mothering relies on the integrity of multiple physiological and behavioral systems and on two maternal factors, one proximal and one distal, that have a great impact on how a mother mothers: postpartum depression and early experiences. To mother appropriately requires the action of systems that regulate sensation, perception, affect, reward, executive function, motor output and learning. When a mother is at risk to engage in less than optimal mothering, such as when she is depressed or has experienced adversity in childhood, the function of many or all of maternal and related systems may be affected. In this paper, we will review what is currently known about the biological basis of mothering, with attention to literature on hormones but with a particular focus on recent advances in the fields of functional neuroimaging. Instead of discussing strictly 'maternal' brain imaging studies, we instead use a systems approach to survey important findings relevant to brain systems integral to and/or strongly related to the mothering experience: (a) social behavior; (b) reward and affect; (c) executive function; and (d) maternal behavior. We find that there are many commonalities in terms of the brain regions identified across these systems and, as we would expect, all are sensitive to the influence of, or function differently in the context of, depression and adverse early experience. It is likely that the similarity and cross-talk between maternal, affect and stress systems, observed behaviorally, hormonally and in the context of brain function, allows for mood disturbance and early adverse experiences to have a significant impact on the quality of mothering and the motivation to mother.
Collapse
Affiliation(s)
- Jennifer Barrett
- Department of Psychology, University of Toronto at Mississauga, Mississauga, Ontario, Canada.
| | | |
Collapse
|
44
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Reversal by quercetin of corticotrophin releasing factor induced anxiety- and depression-like effect in mice. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:955-60. [PMID: 20447436 DOI: 10.1016/j.pnpbp.2010.04.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 01/13/2023]
Abstract
Quercetin is a bioflavonoid reported to produce variety of behavioral effects like anxiolytic, antidepressant, etc. Recent gathering evidences indicated that quercetin attenuates stress-induced behavioral and biochemical effects. It also decreases CRF expression in the brain. As CRF is commonly implicated in the high-anxiety and depression, we hypothesized that quercetin may involve CRF in its anxiolytic- and antidepressant-like effects. To support such possibility, we investigated the influence of quercetin on CRF or CRF antagonist (antalarmin) induced changes in social interaction time in social interaction test, and immobility time in forced swim test. Results indicated that quercetin (20-40 mg/kg, p.o.) or antalarmin (2-4 microg/mouse, i.c.v.) dose dependently increased social interaction time and decreased immobility time indicating anxiolytic- and antidepressant-like effect. These effects were comparable with the traditional anxiolytic (diazepam, 1-2mg/kg, i.p.) and antidepressant (fluoxetine, 10-20mg/kg, i.p.) agents. Administration of CRF (0.1 and 0.3 nmol/mouse, i.c.v.) produced just opposite effects to that of quercetin on these parameters. Further, it was seen that pretreatment with quercetin (20 or 40 mg/kg, p.o.) dose dependently antagonized the effects of CRF (0.1 or 0.3 nmol/mouse, i.c.v.) in social interaction and forced swim test. The sub-effective dose of antalarmin (1 microg/mouse) when administered along with the sub-effective dose of quercetin (10mg/kg) produced significant anxiolytic-and antidepressant-like effect. These observations suggest reciprocating role of quercetin on the CRF-induced anxiogenic and depressant-like effects.
Collapse
|
46
|
Endocannabinoid-mediated modulation of stress responses: Physiological and pathophysiological significance. Immunobiology 2010; 215:629-46. [DOI: 10.1016/j.imbio.2009.05.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/30/2009] [Accepted: 05/30/2009] [Indexed: 12/18/2022]
|
47
|
Alldredge B. Pathogenic involvement of neuropeptides in anxiety and depression. Neuropeptides 2010; 44:215-24. [PMID: 20096456 DOI: 10.1016/j.npep.2009.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/15/2009] [Accepted: 12/15/2009] [Indexed: 12/11/2022]
Abstract
Anxiety and depression are highly prevalent disorders of mood posing significant challenges to individuals and society. Current evidence indicates no single neurobiological determinant underpins these conditions and an integrated approach in both research and treatment is expedient. Basic, behavioral, and clinical science indicates various stress-responsive neuropeptides in the neuroendocrine, autonomic, and behavioral pathophysiology of stress-related disorders including anxiety and depression. This review draws on recent research to capture the consensus and implications of neuropeptide research concerning the pathogenesis of anxiety and depression.
Collapse
Affiliation(s)
- Brett Alldredge
- Kansas City University of Medicine and Bioscience, College of Medicine, 1705 Independence Ave., Kansas City, United States.
| |
Collapse
|
48
|
Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 2010; 15:574-88. [PMID: 20010888 PMCID: PMC3666571 DOI: 10.1038/mp.2009.141] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/10/2009] [Accepted: 11/15/2009] [Indexed: 01/20/2023]
Abstract
A concatenation of findings from preclinical and clinical studies support a preeminent function for the corticotropin-releasing factor (CRF) system in mediating the physiological response to external stressors and in the pathophysiology of anxiety and depression. Recently, human genetic studies have provided considerable support to several long-standing hypotheses of mood and anxiety disorders, including the CRF hypothesis. These data, reviewed in this report, are congruent with the hypothesis that this system is of paramount importance in mediating stress-related psychopathology. More specifically, variants in the gene encoding the CRF(1) receptor interact with adverse environmental factors to predict risk for stress-related psychiatric disorders. In-depth characterization of these variants will likely be important in furthering our understanding of the long-term consequences of adverse experience.
Collapse
Affiliation(s)
- E B Binder
- Max-Planck Institute of Psychiatry, Munich, Germany.
| | | |
Collapse
|
49
|
Vrudhula VM, Dasgupta B, Pin SS, Burris KD, Balanda LA, Fung LK, Fiedler T, Browman KE, Taber MT, Zhang J, Macor JE, Dubowchik GM. Design, synthesis and evaluation of constrained tetrahydroimidazopyrimidine derivatives as antagonists of corticotropin-releasing factor type 1 receptor (CRF1R). Bioorg Med Chem Lett 2010; 20:1905-9. [DOI: 10.1016/j.bmcl.2010.01.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 11/30/2022]
|
50
|
Taylor VH, MacQueen GM. The Role of Adipokines in Understanding the Associations between Obesity and Depression. J Obes 2010; 2010:748048. [PMID: 20798882 PMCID: PMC2925270 DOI: 10.1155/2010/748048] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 05/26/2010] [Accepted: 06/16/2010] [Indexed: 12/17/2022] Open
Abstract
Objective. Two major causes of disability, major depression and obesity, share overlapping psychosocial and pathophysiological etiologies. Studies are now focused on biological mechanisms linking the two illnesses, and there is interest in the role that adipokines may have in mediating the association between obesity and depression. We reviewed the literature to look at what is currently known about this association, focusing on the adipokines leptin, adiponectin, and resistin. Methods. A MEDLINE search, citing articles from 1966 onward, supplemented by a review of bibliographies, was conducted to identify relevant studies. Results. This paper identified plausible pathways underlying a link between adipokines and depression. Only a few studies have yet been conducted specifically examining these biomarkers in patients with depression, but the results are intriguing. Conclusion. This paper is one of the first to examine the association between adipokines and depression. It provides an overview of the physiological role of adipokines and summarizes the data suggesting that they may be dysregulated in major depression. This area of research may become increasingly important as new treatment strategies are developed.
Collapse
Affiliation(s)
- Valerie H. Taylor
- Mood Disorders Program, Centre for Mountain Health Services, McMaster University, D150-A, 100 West 5th Street, St. Joseph's Healthcare, Hamilton, ON, Canada L8N 3K7
- *Valerie H. Taylor:
| | - Glenda M. MacQueen
- University of Calgary, 2500 University Drive Northwest Calgary, Calgary, AB, Canada T2N 1N4
| |
Collapse
|