1
|
Mo F, Zhao H, Li Y, Cai H, Song Y, Wang R, Yu Y, Zhu J. Network Localization of State and Trait of Auditory Verbal Hallucinations in Schizophrenia. Schizophr Bull 2024; 50:1326-1336. [PMID: 38401526 PMCID: PMC11548935 DOI: 10.1093/schbul/sbae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Neuroimaging studies investigating the neural substrates of auditory verbal hallucinations (AVH) in schizophrenia have yielded mixed results, which may be reconciled by network localization. We sought to examine whether AVH-state and AVH-trait brain alterations in schizophrenia localize to common or distinct networks. STUDY DESIGN We initially identified AVH-state and AVH-trait brain alterations in schizophrenia reported in 48 previous studies. By integrating these affected brain locations with large-scale discovery and validation resting-state functional magnetic resonance imaging datasets, we then leveraged novel functional connectivity network mapping to construct AVH-state and AVH-trait dysfunctional networks. STUDY RESULTS The neuroanatomically heterogeneous AVH-state and AVH-trait brain alterations in schizophrenia localized to distinct and specific networks. The AVH-state dysfunctional network comprised a broadly distributed set of brain regions mainly involving the auditory, salience, basal ganglia, language, and sensorimotor networks. Contrastingly, the AVH-trait dysfunctional network manifested as a pattern of circumscribed brain regions principally implicating the caudate and inferior frontal gyrus. Additionally, the AVH-state dysfunctional network aligned with the neuromodulation targets for effective treatment of AVH, indicating possible clinical relevance. CONCLUSIONS Apart from unifying the seemingly irreproducible neuroimaging results across prior AVH studies, our findings suggest different neural mechanisms underlying AVH state and trait in schizophrenia from a network perspective and more broadly may inform future neuromodulation treatment for AVH.
Collapse
Affiliation(s)
- Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Han Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yifan Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yang Song
- Department of Pain, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Hefei, China
| |
Collapse
|
2
|
Ajunwa CC, Zhang J, Collin G, Keshavan MS, Tang Y, Zhang T, Li H, Shenton ME, Stone WS, Wang J, Niznikiewicz M, Whitfield-Gabrieli S. Dissociable Default Mode Network Connectivity Patterns Underlie Distinct Symptoms in Psychosis Risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620271. [PMID: 39484521 PMCID: PMC11527119 DOI: 10.1101/2024.10.25.620271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The Clinical High Risk (CHR) stage of psychosis is characterized by subthreshold symptoms of schizophrenia including negative symptoms, dysphoric mood, and functional deterioration. Hyperconnectivity of the default-mode network (DMN) has been observed in early schizophrenia, but the extent to which hyperconnectivity is present in CHR, and the extent to which such hyperconnectivity may underlie transdiagnostic symptoms, is not clear. As part of the Shanghai At-Risk for Psychosis (SHARP) program, resting-state fMRI data were collected from 251 young adults (158 CHR and 93 controls, M = 18.72, SD = 4.68, 129 male). We examined functional connectivity of the DMN by performing a whole-brain seed-to-voxel analysis with the MPFC as the seed. Symptom severity across a number of dimensions, including negative symptoms, positive symptoms, and affective symptoms were assessed. Compared to controls, CHRs exhibited significantly greater functional connectivity (p < 0.001 uncorrected) between the MPFC and 1) other DMN nodes including the posterior cingulate cortex (PCC), and 2) auditory cortices (superior and middle temporal gyri, STG/MTG). Furthermore, these two patterns of hyperconnectivity were differentially associated with distinct symptom clusters. Within CHR, MPFC-PCC connectivity was significantly correlated with anxiety (r= 0.23, p=0.006), while MPFC-STG/MTG connectivity was significantly correlated with negative symptom severity (r=0.26, p=0.001). Secondary analyses using item-level symptom scores confirmed a similar dissociation. These results demonstrate that two dissociable patterns of DMN hyperconnectivity found in the CHR stage may underlie distinct dimensions of symptomatology.
Collapse
Affiliation(s)
| | - Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA
| | - Guusje Collin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
- Radboudumc, Department of Psychiatry, Nijmegen, the Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijun Li
- Department of Psychology, Florida A&M University, Tallahassee, FL
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Research and Development, VA Boston Healthcare System, Brockton Division, Brockton, MA
- Department of Radiology Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - William S. Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Margaret Niznikiewicz
- Department of Psychiatry, VA Boston Healthcare System, Brockton Division, Brockton, MA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, MA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
3
|
Chen J, Wei Y, Xue K, Han S, Li W, Zhou B, Cheng J. Abnormal effective connectivity of reward network in first-episode schizophrenia with auditory verbal hallucinations. J Psychiatr Res 2024; 171:207-214. [PMID: 38309210 DOI: 10.1016/j.jpsychires.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/02/2023] [Accepted: 01/15/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVE Auditory verbal hallucinations (AVHs) in schizophrenia is proved to be associated with dysfunction of mesolimbic-cortical circuits, especially during abnormal salient and internal verbal resource monitoring processing procedures. However, the information flow among areas involved in coordinated interaction implicated the pathophysiology of AVHs remains unclear. METHODS We used spectral dynamic causal modeling (DCM) to quantify connections among eight critical hubs of reward network in 86 first-episode drug-naïve schizophrenia patients with AVHs (AVH), 93 patients without AVHs (NAVH), and 88 matched normal controls (NC) using resting-state functional magnetic resonance imaging. Group-level connection coefficients, between-group differences and correlation analysis between image measures and symptoms were performed. RESULT DCM revealed weaker effective connectivity (EC) from right ventral striatum (RVS) to ventral tegmental area (VTA) in AVH compared to NAVH. AVH showed stronger EC from left anterior insula (AI) to RVS, stronger EC from RVS to anterior cingulate cortex (ACC), and stronger EC from VTA to posterior cingulate cortex (PCC) compared to NC. The correlation analysis results were mostly visible in the negative correlation between EC from right AI to ACC and positive sub-score, P1 sub-score, and P3 sub-score of PNASS in group-level. CONCLUSION These findings suggest that neural causal interactions between the reward network associated with AVHs are disrupted, expanding the evidence for potential neurobiological mechanisms of AVHs. Particularly, dopamine-dependent salience attribution and top-down monitoring impairments and compensatory effects of enhanced excitatory afferents to ACC, which may provide evidence for a therapeutic target based on direct in vivo of AVHs in schizophrenia.
Collapse
Affiliation(s)
- Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Wenbin Li
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, 450052, China.
| |
Collapse
|
4
|
Wang J, Dong W, Li Y, Wydell TN, Quan W, Tian J, Song Y, Jiang L, Li F, Yi C, Zhang Y, Yao D, Xu P. Discrimination of auditory verbal hallucination in schizophrenia based on EEG brain networks. Psychiatry Res Neuroimaging 2023; 331:111632. [PMID: 36958075 DOI: 10.1016/j.pscychresns.2023.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Auditory verbal hallucinations (AVH) are a core positive symptom of schizophrenia and are regarded as a consequence of the functional breakdown in the related sensory process. Yet, the potential mechanism of AVH is still lacking. In the present study, we explored the difference between AVHs (n = 23) and non-AVHs (n = 19) in schizophrenia and healthy controls (n = 29) by using multidimensional electroencephalograms data during an auditory oddball task. Compared to healthy controls, both AVH and non-AVH groups showed reduced P300 amplitudes. Additionally, the results from brain networks analysis revealed that AVH patients showed reduced left frontal to posterior parietal/temporal connectivity compared to non-AVH patients. Moreover, using the fused network properties of both delta and theta bands as features for in-depth learning made it possible to identify the AVH from non-AVH patients at an accuracy of 80.95%. The left frontal-parietal/temporal networks seen in the auditory oddball paradigm might be underlying biomarkers of AVH in schizophrenia. This study demonstrated for the first time the functional breakdown of the auditory processing pathway in the AVH patients, leading to a better understanding of the atypical brain network of the AVH patients.
Collapse
Affiliation(s)
- Jiuju Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Wentian Dong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yuqin Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Taeko N Wydell
- Centre for Cognitive Neuroscience, Brunel University London, Uxbridge, UK
| | - Wenxiang Quan
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Ju Tian
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Yanping Song
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Lin Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fali Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China.
| | - Chanlin Yi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yangsong Zhang
- School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Xu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu 2019RU035, China.
| |
Collapse
|
5
|
Zhang S, Cai H, Wang C, Zhu J, Yu Y. Sex-dependent gut microbiota-brain-cognition associations: a multimodal MRI study. BMC Neurol 2023; 23:169. [PMID: 37106317 PMCID: PMC10134644 DOI: 10.1186/s12883-023-03217-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND There is bidirectional communication between the gut microbiota and the brain. Empirical evidence has demonstrated sex differences in both the gut microbiome and the brain. However, the effects of sex on the gut microbiota-brain associations have yet to be determined. We aim to elucidate the sex-specific effects of gut microbiota on brain and cognition. METHODS One hundred fifty-seven healthy young adults underwent brain structural, perfusion, functional and diffusion MRIs to measure gray matter volume (GMV), cerebral blood flow (CBF), functional connectivity strength (FCS) and white matter integrity, respectively. Fecal samples were collected and 16S amplicon sequencing was utilized to assess gut microbial diversity. Correlation analyses were conducted to test for sex-dependent associations between microbial diversity and brain imaging parameters, and mediation analysis was performed to further characterize the gut microbiota-brain-cognition relationship. RESULTS We found that higher gut microbial diversity was associated with higher GMV in the right cerebellum VI, higher CBF in the bilateral calcarine sulcus yet lower CBF in the left superior frontal gyrus, higher FCS in the bilateral paracentral lobule, and lower diffusivity in widespread white matter regions in males. However, these associations were absent in females. Of more importance, these neuroimaging biomarkers significantly mediated the association between gut microbial diversity and behavioral inhibition in males. CONCLUSIONS These findings highlight sex as a potential influential factor underlying the gut microbiota-brain-cognition relationship, and expose the gut microbiota as a biomarker-driven and sex-sensitive intervention target for mental disorders with abnormal behavioral inhibition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, 272007, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, China.
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei, 230032, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, 230032, China.
| |
Collapse
|
6
|
Percie du Sert O, Unrau J, Gauthier CJ, Chakravarty M, Malla A, Lepage M, Raucher-Chéné D. Cerebral blood flow in schizophrenia: A systematic review and meta-analysis of MRI-based studies. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110669. [PMID: 36341843 DOI: 10.1016/j.pnpbp.2022.110669] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Schizophrenia-spectrum disorders (SSD) represent one of the leading causes of disability worldwide and are usually underpinned by neurodevelopmental brain abnormalities observed on a structural and functional level. Nuclear medicine imaging studies of cerebral blood flow (CBF) have already provided insights into the pathophysiology of these disorders. Recent developments in non-invasive MRI techniques such as arterial spin labeling (ASL) have allowed broader examination of CBF across SSD prompting us to conduct an updated literature review of MRI-based perfusion studies. In addition, we conducted a focused meta-analysis of whole brain studies to provide a complete picture of the literature on the topic. METHODS A systematic OVID search was performed in Embase, MEDLINEOvid, and PsycINFO. Studies eligible for inclusion in the review involved: 1) individuals with SSD, first-episode psychosis or clinical-high risk for psychosis, or; 2) had healthy controls for comparison; 3) involved MRI-based perfusion imaging methods; and 4) reported CBF findings. No time span was specified for the database queries (last search: 08/2022). Information related to participants, MRI techniques, CBF analyses, and results were systematically extracted. Whole-brain studies were then selected for the meta-analysis procedure. The methodological quality of each included studies was assessed. RESULTS For the systematic review, the initial Ovid search yielded 648 publications of which 42 articles were included, representing 3480 SSD patients and controls. The most consistent finding was that negative symptoms were linked to cortical fronto-limbic hypoperfusion while positive symptoms seemed to be associated with hyperperfusion, notably in subcortical structures. The meta-analysis integrated results from 13 whole-brain studies, across 426 patients and 401 controls, and confirmed the robustness of the hypoperfusion in the left superior and middle frontal gyri and right middle occipital gyrus while hyperperfusion was found in the left putamen. CONCLUSION This updated review of the literature supports the implication of hemodynamic correlates in the pathophysiology of psychosis symptoms and disorders. A more systematic exploration of brain perfusion could complete the search of a multimodal biomarker of SSD.
Collapse
Affiliation(s)
- Olivier Percie du Sert
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Joshua Unrau
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Claudine J Gauthier
- Concordia University, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Mallar Chakravarty
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ashok Malla
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Martin Lepage
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada.
| | - Delphine Raucher-Chéné
- McGill University, Montreal, QC, Canada; Douglas Mental Health University Institute, Montreal, QC, Canada; University of Reims Champagne-Ardenne, Cognition, Health, and Society Laboratory (EA 6291), Reims, France; Academic Department of Psychiatry, University Hospital of Reims, EPSM Marne, Reims, France
| |
Collapse
|
7
|
Cui LB, Wang DJJ, Ma G. Editorial: Multi-parametric perfusion MRI by arterial spin labeling. Front Neurosci 2023; 16:1132835. [PMID: 36711152 PMCID: PMC9875590 DOI: 10.3389/fnins.2022.1132835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Long-Biao Cui
- Schizophrenia Imaging Lab, Fourth Military Medical University, Xi'an, China
| | - Danny J. J. Wang
- Laboratory of FMRI Technology (LOFT), Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China,*Correspondence: Guolin Ma ✉
| |
Collapse
|
8
|
Sun X, Huang W, Wang J, Xu R, Zhang X, Zhou J, Zhu J, Qian Y. Cerebral blood flow changes and their genetic mechanisms in major depressive disorder: a combined neuroimaging and transcriptome study. Psychol Med 2023; 53:1-13. [PMID: 36601814 DOI: 10.1017/s0033291722003750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Extensive research has shown abnormal cerebral blood flow (CBF) in patients with major depressive disorder (MDD) that is a heritable disease. The objective of this study was to investigate the genetic mechanisms of CBF abnormalities in MDD. METHODS To achieve a more thorough characterization of CBF changes in MDD, we performed a comprehensive neuroimaging meta-analysis of previous literature as well as examined group CBF differences in an independent sample of 133 MDD patients and 133 controls. In combination with the Allen Human Brain Atlas, transcriptome-neuroimaging spatial association analyses were conducted to identify genes whose expression correlated with CBF changes in MDD, followed by a set of gene functional feature analyses. RESULTS We found increased CBF in the reward circuitry and default-mode network and decreased CBF in the visual system in MDD patients. Moreover, these CBF changes were spatially associated with expression of 1532 genes, which were enriched for important molecular functions, biological processes, and cellular components of the cerebral cortex as well as several common mental disorders. Concurrently, these genes were specifically expressed in the brain tissue, in immune cells and neurons, and during nearly all developmental stages. Regarding behavioral relevance, these genes were associated with domains involving emotion and sensation. In addition, these genes could construct a protein-protein interaction network supported by 60 putative hub genes with functional significance. CONCLUSIONS Our findings suggest a cerebral perfusion redistribution in MDD, which may be a consequence of complex interactions of a wide range of genes with diverse functional features.
Collapse
Affiliation(s)
- Xuetian Sun
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Weisheng Huang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jie Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Ruoxuan Xu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xiaohan Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jianhui Zhou
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China
- Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| |
Collapse
|
9
|
A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr Res 2022; 249:63-73. [PMID: 33189520 DOI: 10.1016/j.schres.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022]
Abstract
Numerous genetic and postmortem studies link N-methyl-d-aspartate receptor (NMDAR) dysfunction with schizophrenia, forming the basis of the popular glutamate hypothesis. Neuronal NMDAR abnormalities are consistently reported from both basic and clinical experiments, however, non-neuronal cells also contain NMDARs, and are rarely, if ever, considered in the discussion of glutamate action in schizophrenia. We offer an examination of recent discoveries elucidating the actions and consequences of NMDAR activation in the neuroendothelium. While there has been mixed literature regarding blood flow alterations in the schizophrenia brain, in this review, we posit that some common findings may be explained by neuroendothelial NMDAR dysfunction. In particular, we emphasize that endothelial NMDARs are key mediators of neurovascular coupling, where increased neuronal activity leads to increased blood flow. Based on the broad conclusions that hypoperfusion is a neuroanatomical finding in schizophrenia, we discuss potential mechanisms by which endothelial NMDARs contribute to this disorder. We propose that endothelial NMDAR dysfunction can be a primary cause of neurovascular abnormalities in schizophrenia. Importantly, functional MRI studies using BOLD signal as a proxy for neuron activity should be considered in a new light if neurovascular coupling is impaired in schizophrenia. This review is the first to propose that NMDARs in non-excitable cells play a role in schizophrenia.
Collapse
|
10
|
Wang R, Mo F, Shen Y, Song Y, Cai H, Zhu J. Functional connectivity gradients of the insula to different cerebral systems. Hum Brain Mapp 2022; 44:790-800. [PMID: 36206289 PMCID: PMC9842882 DOI: 10.1002/hbm.26099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 01/25/2023] Open
Abstract
The diverse functional roles of the insula may emerge from its heavy connectivity to an extensive network of cortical and subcortical areas. Despite several previous attempts to investigate the hierarchical organization of the insula by applying the recently developed gradient approach to insula-to-whole brain connectivity data, little is known about whether and how there is variability across connectivity gradients of the insula to different cerebral systems. Resting-state functional MRI data from 793 healthy subjects were used to discover and validate functional connectivity gradients of the insula, which were computed based on its voxel-wise functional connectivity profiles to distinct cerebral systems. We identified three primary patterns of functional connectivity gradients of the insula to distinct cerebral systems. The connectivity gradients to the higher-order transmodal associative systems, including the prefrontal, posterior parietal, temporal cortices, and limbic lobule, showed a ventroanterior-dorsal axis across the insula; those to the lower-order unimodal primary systems, including the motor, somatosensory, and occipital cortices, displayed radiating transitions from dorsoanterior toward both ventroanterior and dorsoposterior parts of the insula; the connectivity gradient to the subcortical nuclei exhibited an organization along the anterior-posterior axis of the insula. Apart from complementing and extending previous literature on the heterogeneous connectivity patterns of insula subregions, the presented framework may offer ample opportunities to refine our understanding of the role of the insula in many brain disorders.
Collapse
Affiliation(s)
- Rui Wang
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Fan Mo
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Yuhao Shen
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Yu Song
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Huanhuan Cai
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| | - Jiajia Zhu
- Department of RadiologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina,Research Center of Clinical Medical Imaging, Anhui ProvinceHefeiChina,Anhui Provincial Institute of Translational MedicineHefeiChina
| |
Collapse
|
11
|
Zhuo C, Tian H, Chen J, Li Q, Yang L, Zhang Q, Chen G, Cheng L, Zhou C, Song X. Associations of cognitive impairment in patients with schizophrenia with genetic features and with schizophrenia-related structural and functional brain changes. Front Genet 2022; 13:880027. [PMID: 36061201 PMCID: PMC9437456 DOI: 10.3389/fgene.2022.880027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Cognitive impairment is highly prevalent in patients with major psychiatric disorders (MPDs), including schizophrenia (SCZ), bipolar disorder, major depressive disorder, in whom it can be highly disruptive to community functioning and worsen prognosis. Previously, genetic factors and cognitive impairments in MPD patients have been examined mostly in isolated circuits rather than in the whole brain. In the present study, genetic, neuroimaging, and psychometric approaches were combined to investigate the relationship among genetic factors, alterations throughout the brain, and cognitive impairments in a large cohort of patients diagnosed with SCZ, with a reference healthy control (HC) group. Single nucleotide polymorphisms (SNPs) in SCZ-risk genes were found to be strongly related to cognitive impairments as well as to gray matter volume (GMV) and functional connectivity (FC) alterations in the SCZ group. Annotating 136 high-ranking SNPs revealed 65 affected genes (including PPP1R16B, GBBR2, PDE4B, CANCNA1C, SLC12AB, SATB2, MAG12, and SATB2). Only one, a PDE4B SNP (rs1006737), correlated with GMV (r = 0:19 p = 0.015) and FC (r = 0.21, p = 0.0074) in SCZ patients. GMV and FC alterations correlated with one another broadly across brain regions. Moreover, the present data demonstrate three-way SNP-FC-GMV associations in patients with SCZ, thus providing clues regarding potential genetic bases of cognition impairments in SCZ. SNP-FC-GMV relationships correlated with visual learning and reasoning dimensions of cognition. These data provide evidence that SCZ-related cognitive impairments may reflect genetically underlain whole-brain structural and functional alterations.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brian Circuits in Psychiatry and Neurology (RTBNP_Lab), Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
- Digital Analysis Center of Psychiatry, Tianjin Fourth Center Hospital, Tianjin, China
- Department of Psychiatry and Neurology Imaging-Genetics and Comorbidity Laboratory (PNGC_Lab) of Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Deep Learning Center of MRI and Genetics, Wenzhou Seventh People’s Hospital, Wenzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| | - Hongjun Tian
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Jiayue Chen
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qianchen Li
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Department of Psychiatry, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Center Hospital, Tianjin, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Langlang Cheng
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Chuanjun Zhuo, ; Xueqin Song,
| |
Collapse
|
12
|
Chhabra H, Selvaraj S, Sreeraj VS, Damodharan D, Shivakumar V, Kumar V, Narayanaswamy JC, Venkatasubramanian G. Functional near-infrared spectroscopy in schizophrenia patients with auditory verbal hallucinations: Preliminary observations. Asian J Psychiatr 2022; 73:103127. [PMID: 35430497 DOI: 10.1016/j.ajp.2022.103127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 11/02/2022]
Abstract
Auditory Signal Detection (ASD) theory postulates that auditory verbal hallucinations (AVH) result from an aberrant association of meaningful connection to abstract noises. In this study, schizophrenia (SZ) patients with persistent AVH (N = 17) and matched controls (N = 25) performed an ASD task with concurrent functional near-infrared spectroscopy recording targetting the left dorsolateral prefrontal cortex (L-DLPFC) and left temporoparietal junction (L-TPJ). During the task, discriminability index had a significant negative correlation, and early deoxyhemoglobin (HbR) latency at L-TPJ positively correlated with AVH scores. Also, patients had significantly lower discriminability, early HbR latency at L-TPJ, and delayed latency at L-DLPFC. This finding suggests the presence of ASD abnormalities and impaired auditory processing in SZ patients with AVH supporting ASD-based pathogenesis.
Collapse
Affiliation(s)
- Harleen Chhabra
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Sowmya Selvaraj
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Vanteemar S Sreeraj
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Dinakaran Damodharan
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Venkataram Shivakumar
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Vijay Kumar
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Janardhanan C Narayanaswamy
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India
| | - Ganesan Venkatasubramanian
- Center for Psychophysics, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore 560029, India.
| |
Collapse
|
13
|
Chen J, Xue K, Yang M, Wang K, Xu Y, Wen B, Cheng J, Han S, Wei Y. Altered Coupling of Cerebral Blood Flow and Functional Connectivity Strength in First-Episode Schizophrenia Patients With Auditory Verbal Hallucinations. Front Neurosci 2022; 16:821078. [PMID: 35546878 PMCID: PMC9083321 DOI: 10.3389/fnins.2022.821078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Auditory verbal hallucinations (AVHs) are a major symptom of schizophrenia and are connected with impairments in auditory and speech-related networks. In schizophrenia with AVHs, alterations in resting-state cerebral blood flow (CBF) and functional connectivity have been described. However, the neurovascular coupling alterations specific to first-episode drug-naïve schizophrenia (FES) patients with AVHs remain unknown. Methods Resting-state functional MRI and arterial spin labeling (ASL) was performed on 46 first-episode drug-naïve schizophrenia (FES) patients with AVHs (AVH), 39 FES drug-naïve schizophrenia patients without AVHs (NAVH), and 48 healthy controls (HC). Then we compared the correlation between the CBF and functional connection strength (FCS) of the entire gray matter between the three groups, as well as the CBF/FCS ratio of each voxel. Correlation analyses were performed on significant results between schizophrenia patients and clinical measures scale. Results The CBF/FCS ratio was reduced in the cognitive and emotional brain regions in both the AVH and NAVH groups, primarily in the crus I/II, vermis VI/VII, and cerebellum VI. In the AVH group compared with the HC group, the CBF/FCS ratio was higher in auditory perception and language-processing areas, primarily the left superior and middle temporal gyrus (STG/MTG). The CBF/FCS ratio in the left STG and left MTG positively correlates with the score of the Auditory Hallucination Rating Scale in AVH patients. Conclusion These findings point to the difference in neurovascular coupling failure between AVH and NAVH patients. The dysfunction of the forward model based on the predictive and computing role of the cerebellum may increase the excitability in the auditory cortex, which may help to understand the neuropathological mechanism of AVHs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Zhu J, Wang C, Qian Y, Cai H, Zhang S, Zhang C, Zhao W, Zhang T, Zhang B, Chen J, Liu S, Yu Y. Multimodal neuroimaging fusion biomarkers mediate the association between gut microbiota and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110468. [PMID: 34736997 DOI: 10.1016/j.pnpbp.2021.110468] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 02/06/2023]
Abstract
Background The field of microbiota-gut-brain research in animals has progressed, while the exact nature of gut microbiota-brain-cognition relationship in humans is not completely elucidated, likely due to small sample sizes and single neuroimaging modality utilized to delineate limited aspects of the brain. We aimed to comprehensively investigate such association in a large sample using multimodal MRI. Methods Fecal samples were collected from 157 healthy young adults and 16S sequencing was used to assess gut microbial diversity and enterotypes. Five brain imaging measures, including regional homogeneity (ReHo) and functional connectivity density (FCD) from resting-state functional MRI, cerebral blood flow (CBF) from arterial spin labeling, gray matter volume (GMV) from structural MRI, and fractional anisotropy (FA) from diffusion tensor imaging, were jointly analyzed with a data-driven multivariate fusion method. Cognition was evaluated by 3-back and digit span tasks. Results We found significant associations of gut microbial diversity with ReHo, FCD, CBF, and GMV within the frontoparietal, default mode and visual networks, as well as with FA in a distributed set of juxtacortical white matter regions. In addition, there were FCD, CBF, GMV, and FA differences between Prevotella- versus Bacteroides-enterotypes in females and between Prevotella- versus Ruminococcaceae-enterotypes in males. Moreover, the identified neuroimaging fusion biomarkers could mediate the associations between microbial diversity and cognition. Conclusions Our findings not only expand existing knowledge of the microbiota-gut-brain axis, but also have potential clinical and translational implications by exposing the gut microbiota as a promising treatment and prevention target for cognitive impairment and related brain disorders.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Tingting Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Research Center of Clinical Medical Imaging, Anhui Province, Hefei 230032, China; Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
15
|
Zhuo C, Chen G, Chen J, Tian H, Ma X, Li Q, Yang L, Zhang Q, Li R, Song X, Huang C. Lithium bidirectionally regulates depression- and mania-related brain functional alterations without worsening cognitive function in patients with bipolar disorder. Front Psychiatry 2022; 13:963005. [PMID: 36186884 PMCID: PMC9520085 DOI: 10.3389/fpsyt.2022.963005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 01/10/2023] Open
Abstract
Lithium monotherapy has been proposed to have antidepressant and antimanic effects in patients with bipolar disorder (BP). However, so far, it is lack of evidence to support this proposition. The main aim of this study was to test the hypothesis that lithium bidirectionally regulates depression- and mania-related brain functional abnormalities in patients with BP. We also assessed the effects of lithium, alone and in combination with other pharmacological treatments, on patients' cognitive performance. We enrolled 149 drug-naïve patients with BP; 99 patients experiencing first depressive episodes were allocated randomly to four treatment groups [lithium (DP/Li), lithium with lamotrigine (LTG; DP/Li+LTG), LTG (DP/LTG), and valproate (VPA) with LTG (DP/VPA+LTG)], and 50 experiencing first hypo-manic episodes were allocated to two treatment groups (MA/Li and MA/VPA). For comparative analysis, 60 age-matched healthy individuals were also recruited. Whole-brain global and regional resting-state cerebral blood flow (rs-CBF) and cognitive alterations were examined before and after 12-week treatment. We have the following findings: DP/Li+LTG, and to a lesser extent DP/Li, alleviated the depression-related reduction in rs-CBF. MA/VPA and MA/Li reversed the mania-related elevation of rs-CBF completely and partially, respectively. Lithium alone improved cognitive performance during depressive and manic episodes; other tested treatments have no such effect or worsened cognitive ability. Our results showed that lithium bidirectionally regulates depression- and mania-associated brain functional abnormalities in patients with BP. Lithium monotherapy has a better antimanic effect than VPA, is superior to other tested treatments in improving cognition during the course of BP, and has satisfactory antidepressant effects in patients with BP.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China.,Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China.,Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China.,Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangdong Chen
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| | - Jiayue Chen
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Hongjun Tian
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Xiaoyan Ma
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Qianchen Li
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Lei Yang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Qiuyu Zhang
- Key Laboratory of Real Time Tracing of Brain Circuits of Neurology and Psychiatry (RTBNP_Lab), Tianjin Fourth Center Hospital Affiliated to Tianjin Medical University, Tianjin Fourth Center Hospital, Tianjin, China
| | - Ranli Li
- Key Laboratory of Psychiatric-Neuroimaging-Genetics Laboratory (PNGC_Lab), Tianjin Mental Health Center of Tianjin Medical University, Tianjin Anding Hospital, Tianjin, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunhai Huang
- Department of Psychiatry, Wenzhou Seventh Peoples Hospital, Wenzhou, China
| |
Collapse
|
16
|
Li X, Xu N, Meng X, Dai C, Qiu X, Ding H, Lv H, Zeng R, Xie J, Zhao P, Yang Z, Gong S, Wang Z. Transverse Sinus Stenosis in Venous Pulsatile Tinnitus Patients May Lead to Brain Perfusion and White Matter Changes. Front Neurosci 2021; 15:732113. [PMID: 34955710 PMCID: PMC8694213 DOI: 10.3389/fnins.2021.732113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Transverse sinus stenosis (TSS) is associated with various symptoms, but whether it can lead to pathological brain changes is unclear. This study aimed to investigate brain changes in venous pulsatile tinnitus (PT) patients with TSS. Materials and Methods: In this study, fifty-five consecutive venous PT patients and fifty age- and gender-matched healthy controls (HCs) were investigated. In CT venography, the combined conduit score (CCS) was used to assess the degree of TSS in venous PT patients. Magnetic resonance venography was used to assess TSS in HCs. All the participants had undergone arterial spin labeling and structural MRI scans. Results: Two patients without TSS and ten HCs with TSS were excluded. Fifty-three venous PT patients with TSS and 40 HCs without TSS were included in this study. All the patients had unilateral cases: 16 on the left and 37 on the right. Based on the CCS, the patients were divided into high-degree TSS (a score of 1–2) (n = 30) and low-degree TSS groups (a score of 3–4) (n = 23). In the whole brain and gray matter, the patients with high-degree TSS showed decreased cerebral blood flow (CBF) compared with patients with low-degree TSS as well as HCs (P < 0.05), and no significant difference in CBF was found in patients with low-degree TSS and HCs (P > 0.05). In white matter (WM) regions, the patients with high-degree TSS exhibited decreased CBF relative to the HCs (P < 0.05). The incidence of cloud-like WM hyperintensity was significantly higher in the above two patient groups than in the HC group (P < 0.05). Conclusion: TSS in venous PT patients may lead to decreased CBF and cloud-like WM hyperintensity. These neuroimaging findings may provide new insights into pathological TSS in venous PT.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ning Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuxu Meng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chihang Dai
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rong Zeng
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Xie
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Shao X, Liao Y, Gu L, Chen W, Tang J. The Etiology of Auditory Hallucinations in Schizophrenia: From Multidimensional Levels. Front Neurosci 2021; 15:755870. [PMID: 34858129 PMCID: PMC8632545 DOI: 10.3389/fnins.2021.755870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Enormous efforts have been made to unveil the etiology of auditory hallucinations (AHs), and multiple genetic and neural factors have already been shown to have their own roles. Previous studies have shown that AHs in schizophrenia vary from those in other disorders, suggesting that they have unique features and possibly distinguishable mechanisms worthy of further investigation. In this review, we intend to offer a comprehensive summary of current findings related to AHs in schizophrenia from aspects of genetics and transcriptome, neurophysiology (neurometabolic and electroencephalogram studies), and neuroimaging (structural and functional magnetic resonance imaging studies and transcriptome–neuroimaging association study). Main findings include gene polymorphisms, glutamate level change, electroencephalographic alterations, and abnormalities of white matter fasciculi, cortical structure, and cerebral activities, especially in multiple regions, including auditory and language networks. More solid and comparable research is needed to replicate and integrate ongoing findings from multidimensional levels.
Collapse
Affiliation(s)
- Xu Shao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Gu
- RIKEN AIP, Tokyo, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
18
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
19
|
Huang X, Wen Z, Tong Y, Qi CX, Shen Y. Altered resting cerebral blood flow specific to patients with diabetic retinopathy revealed by arterial spin labeling perfusion magnetic resonance imaging. Acta Radiol 2021; 62:524-532. [PMID: 32551803 DOI: 10.1177/0284185120932391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous neuroimaging studies have shown that patients with diabetic retinopathy (DR) were accompanied by abnormalities in cerebral functional and structural architecture, whereas the resting cerebral blood flow (CBF) alterations in patients with DR are not well understood. PURPOSE To explore CBF alterations in patients with DR using pseudo-continuous arterial spin labeling (pCASL) imaging. MATERIAL AND METHODS Thirty-one individuals with DR (15 men, 16 women; mean age = 53.38 ± 9.12 years) and 33 healthy controls (HC) (12 men, 21 women; mean age = 51.61 ± 9.84 years) closely matched for age, sex, and education, underwent pCASL imaging scans. Two-sample T test was conducted to compare different CBF values between two groups. RESULTS Patients with DR exhibited significantly increased CBF values in the left middle temporal gyrus (Brodmann's area, BA 22) and the bilateral supplementary motor area (BA3) and decreased CBF values in the bilateral calcarine (BA17,18) and bilateral caudate relative to HC group (two-tailed, voxel level at P < 0.01, Gaussian random field (GRF), cluster level at P < 0.05). Moreover, the HbA1c (%) level showed a positive correlation with CBF values in the bilateral caudate (r = 0.473, P = 0.007) in patients with DR. CONCLUSION Our results highlighted that patients with DR had abnormal CBF values in the visual cortices, caudate, middle temporal gyrus, and supplementary motor area, which might reflect vision and sensorimotor and cognition dysfunction in patients with DR. These findings might help us to understanding the neural mechanism of patients with DR.
Collapse
Affiliation(s)
- Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yan Tong
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Chen-Xing Qi
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Medical Research Institute, Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
20
|
Li X, Zhao P, Qiu X, Lv H, Ding H, Yang Z, Gong S, Wang Z. Altered cerebral blood flow in patients with unilateral venous pulsatile tinnitus: an arterial spin labeling study. Br J Radiol 2021; 94:20200990. [PMID: 33733819 PMCID: PMC8010559 DOI: 10.1259/bjr.20200990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives: Abnormal neuronal activity and functional connectivity have been reported in patients with venous pulsatile tinnitus (PT). As neuronal activity is closely coupled to regional brain perfusion, the purpose of this study was to investigate the cerebral blood flow (CBF) alterations in patients with unilateral venous PT using arterial spin labeling (ASL). Methods: This study included patients with right-sided PT between January 2018 and July 2019. A healthy control (HC) group matched 1:1 for gender and age was also recruited. All subjects underwent ASL scanning using 3.0T MRI. The correlation between altered CBF and Tinnitus Handicap Inventory (THI) score as well as PT duration was analyzed. Results Twenty-one patients with right-sided PT and 21 HCs were included. The mean PT duration of the patients was 35.9 ± 32.2 months, and the mean THI score was 64.1 ± 20.3. Compared with the HCs, the PT patients exhibited increased CBF in the left inferior parietal gyrus and decreased CBF in the bilateral lingual gyrus (family-wise error corrected, p < 0.05). The increased CBF in the left inferior parietal gyrus showed a positive correlation with the THI score in PT patients (r = 0.501, p = 0.021). Conclusions PT patients exhibit regional CBF alterations. The increased CBF in the left inferior parietal gyrus may reflect the severity of PT. Advances in knowledge: This study not only presents evidence for the potential neuropathology of PT from the perspective of CBF alterations but also offers a new method for investigating the neuropathological mechanism of PT.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Zhu J, Zhang S, Cai H, Wang C, Yu Y. Common and distinct functional stability abnormalities across three major psychiatric disorders. NEUROIMAGE-CLINICAL 2020; 27:102352. [PMID: 32721869 PMCID: PMC7393318 DOI: 10.1016/j.nicl.2020.102352] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 11/14/2022]
Abstract
Functional stability is a recently developed dynamic functional connectivity approach. Schizophrenia individuals had a distributed pattern of higher and lower stability. Individuals with bipolar disorder only manifested local higher stability. Individuals with attention deficit/hyperactivity disorder exhibited no stability differences. Psychiatric disorders show common and distinct functional stability abnormalities.
Delineating the neuropathological characteristics across psychiatric disorders is critical for understanding their pathophysiology. The purpose of this study was to investigate common and distinct brain functional abnormalities across psychiatric disorders by using functional stability, a recently developed dynamic functional connectivity approach. Resting-state functional magnetic resonance imaging data were collected from a transdisease sample of healthy controls (n = 115) and individuals with schizophrenia (SZ) (n = 47), bipolar disorder (BD) (n = 44), and attention deficit/hyperactivity disorder (ADHD) (n = 40). Functional stability of each voxel was calculated by measuring the concordance of dynamic functional connectivity over time. Differences in functional stability among the four groups were assessed voxel-wisely. Compared to healthy controls, individuals with SZ demonstrated a distributed pattern of higher functional stability in the bilateral inferior temporal gyrus yet lower stability in the bilateral calcarine sulcus and left insula; individuals with BD only manifested local higher stability in the left inferior temporal gyrus; no differences were found between ADHD and healthy individuals. Notably, individuals with SZ and BD had common higher functional stability in the left inferior temporal gyrus, whereas higher functional stability in the right inferior temporal gyrus and lower stability in the bilateral calcarine sulcus and left insula were unique abnormalities in individuals with SZ. Additionally, direct comparisons between disorders revealed that individuals with SZ showed lower functional stability in the right calcarine sulcus compared to those with BD and higher stability in the left inferior temporal gyrus compared to those with ADHD. However, no significant associations between functional stability and clinical symptoms were observed. Our findings suggest that the functional stability approach has the potential to be extended to the domain of psychiatry and encourage further investigations of shared and unique neuropathology of psychiatric disorders.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chunli Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
22
|
Mancini V, Zöller D, Schneider M, Schaer M, Eliez S. Abnormal Development and Dysconnectivity of Distinct Thalamic Nuclei in Patients With 22q11.2 Deletion Syndrome Experiencing Auditory Hallucinations. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:875-890. [PMID: 32620531 DOI: 10.1016/j.bpsc.2020.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Several studies in patients with schizophrenia have demonstrated an abnormal thalamic volume and thalamocortical connectivity. Specifically, hyperconnectivity with somatosensory areas has been related to the presence of auditory hallucinations (AHs). The 22q11.2 deletion syndrome is a neurogenetic disorder conferring proneness to develop schizophrenia, and deletion carriers (22qdel carriers) experience hallucinations to a greater extent than the general population. METHODS We acquired 442 consecutive magnetic resonance imaging scans from 120 22qdel carriers and 110 control subjects every 3 years (age range: 8-35 years). The volume of thalamic nuclei was obtained with FreeSurfer and was compared between 22qdel carriers and control subjects and between 22qdel carriers with and without AHs. In a subgroup of 76 22qdel carriers, we evaluated the functional connectivity between thalamic nuclei affected in patients experiencing AHs and cortical regions. RESULTS As compared with control subjects, 22qdel carriers had lower and higher volumes of nuclei involved in sensory processing and cognitive functions, respectively. 22qdel carriers with AHs had a smaller volume of the medial geniculate nucleus, with deviant trajectories showing a steeper volume decrease from childhood with respect to those without AHs. Moreover, we showed an aberrant development of nuclei intercalated between the prefrontal cortex and hippocampus (the anteroventral and medioventral reuniens nuclei) and hyperconnectivity of the medial geniculate nucleus and anteroventral nucleus with the auditory cortex and Wernicke's area. CONCLUSIONS The increased connectivity of the medial geniculate nucleus and anteroventral nucleus to the auditory cortex might be interpreted as a lack of maturation of thalamocortical connectivity. Overall, our findings point toward an aberrant development of thalamic nuclei and an immature pattern of connectivity with temporal regions in relation to AHs.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Daniela Zöller
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland; Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland; Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
23
|
Abstract
Perceptual disturbances in psychosis, such as auditory verbal hallucinations, are associated with increased baseline activity in the associative auditory cortex and increased dopamine transmission in the associative striatum. Perceptual disturbances are also associated with perceptual biases that suggest increased reliance on prior expectations. We review theoretical models of perceptual inference and key supporting physiological evidence, as well as the anatomy of associative cortico-striatal loops that may be relevant to auditory perceptual inference. Integrating recent findings, we outline a working framework that bridges neurobiology and the phenomenology of perceptual disturbances via theoretical models of perceptual inference.
Collapse
|
24
|
Huang J, Zhuo C, Xu Y, Lin X. Auditory verbal hallucination and the auditory network: From molecules to connectivity. Neuroscience 2019; 410:59-67. [PMID: 31082536 DOI: 10.1016/j.neuroscience.2019.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
Auditory verbal hallucinations (AVHs) frequently occur across multiple psychiatric diseases especially in schizophrenia (SCZ) patients. Functional imaging studies have revealed the hyperactivity of the auditory cortex and disrupted auditory-verbal network activity underlying AVH etiology. This review will firstly summarize major findings from both human AVH patients and animal models, with focuses on the auditory cortex and associated cortical/sub-cortical areas. Besides mesoscale connectivity or activity data, structure and functions at synaptic level will be discussed, in conjunction with molecular mechanisms. We have summarized major findings for the pathogenesis of AVH in SCZ patients, with focuses in the auditory cortex and prefrontal cortex (PFC). Those discoveries provide explanations for AVH from different perspectives including inter-regional connectivity, local activity in specific areas, structure and functions of synapse, and potentially molecular targets. Due to the uniqueness of AVH in humans, full replica using animals seems impossible. However, we can still extract useful information from animal SCZ models based on the disruption of auditory pathway during AVH episodes. Therefore, we will further interpolate the synaptic structures and molecular targets, whose dysregulation in SCZ models may be highly related with AVH episodes. As the last part, implications for future development of treatment strategies will be discussed.
Collapse
Affiliation(s)
- Jianjie Huang
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China; Department of Psychiatry, Institute of Mental Health, Jining University, Jining Shandong Province, 272191, China; Department of Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, China, Tianjin, 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xiaodong Lin
- Department of Psychiatric-Neuroimging-Genetics Laboratory(PNG-Lab), Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
25
|
Schneider K, Michels L, Hartmann-Riemer MN, Burrer A, Tobler PN, Stämpfli P, Kirschner M, Seifritz E, Kaiser S. Cerebral blood flow in striatal regions is associated with apathy in patients with schizophrenia. J Psychiatry Neurosci 2019; 44:102-110. [PMID: 30246686 PMCID: PMC6397041 DOI: 10.1503/jpn.170150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Striatal dysfunction has been proposed as a pathomechanism for negative symptoms in schizophrenia. There is consensus that negative symptoms can be grouped into 2 dimensions: apathy and diminished expression. Recent studies suggest that different neural mechanisms underlie these dimensions, but the relationship between regional resting-state cerebral blood flow (rCBF) and negative symptom dimensions has not been investigated. METHODS This study included 29 patients with schizophrenia and 20 healthy controls. We measured rCBF in the striatum using arterial spin labelling (ASL) MRI. We assessed negative symptoms using the Brief Negative Symptom Scale. RESULTS In the ventral and dorsal striatum, rCBF was not different between patients with schizophrenia and controls. However, we did find a positive association between the severity of apathy and increased rCBF in the ventral and dorsal striatum in patients with schizophrenia. This effect was not present for diminished expression. LIMITATIONS All patients were taking atypical antipsychotics, so an effect of antipsychotic medication on rCBF could not be excluded, although we did not find a significant association between rCBF and chlorpromazine equivalents. CONCLUSION The main finding of this study was a specific association between increased striatal rCBF and the negative symptom dimension of apathy. Our results further support the separate assessment of apathy and diminished expression when investigating the neural basis of negative symptoms. The ASL technique can provide a direct and quantitative approach to investigating the role of rCBF changes in the pathophysiology of negative symptoms.
Collapse
Affiliation(s)
- Karoline Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Lars Michels
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Matthias N Hartmann-Riemer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Achim Burrer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Philippe N Tobler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Matthias Kirschner
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| | - Stefan Kaiser
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich (Schneider, Hartmann-Riemer, Burrer, Stämpfli, Kirschner, Seifritz); Institute of Neuroradiology, University Hospital Zurich (Michels); Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich (Hartmann-Riemer, Tobler); MR Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich (Stämpfli); and the Adult Psychiatry Division, Department of Mental Health and Psychiatry, Geneva University Hospitals (Kaiser)
| |
Collapse
|
26
|
McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, Dopamine and the Striatum: From Biology to Symptoms. Trends Neurosci 2019; 42:205-220. [PMID: 30621912 PMCID: PMC6401206 DOI: 10.1016/j.tins.2018.12.004] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022]
Abstract
The mesolimbic hypothesis has been a central dogma of schizophrenia for decades, positing that aberrant functioning of midbrain dopamine projections to limbic regions causes psychotic symptoms. Recently, however, advances in neuroimaging techniques have led to the unanticipated finding that dopaminergic dysfunction in schizophrenia is greatest within nigrostriatal pathways, implicating the dorsal striatum in the pathophysiology and calling into question the mesolimbic theory. At the same time our knowledge of striatal anatomy and function has progressed, suggesting new mechanisms via which striatal dysfunction may contribute to the symptoms of schizophrenia. This Review draws together these developments, to explore what they mean for our understanding of the pathophysiology, clinical manifestations, and treatment of the disorder. Techniques for characterising the mesostriatal dopamine system, both in humans and animal models, have advanced significantly over the past decade. In vivo imaging studies in schizophrenia patients demonstrate that dopaminergic dysfunction in schizophrenia is greatest in nigrostriatal as opposed to mesolimbic pathways. Better understanding of striatal structure and function has enhanced our insight into the neurobiological basis of psychotic symptoms. The role of other neurotransmitters in modulating striatal dopamine function merits further exploration, and modulating these neurotransmitter systems has potential to offer new therapeutic strategies.
Collapse
Affiliation(s)
- Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK; South London and Maudsley NHS Foundation Trust, London, SE5 8AF, UK
| | - Anissa Abi-Dargham
- Department of Psychiatry, School of Medicine, Stony Brook University, New York, USA
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK; MRC London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK; South London and Maudsley NHS Foundation Trust, London, SE5 8AF, UK.
| |
Collapse
|
27
|
Striatal cerebral blood flow, executive functioning, and fronto-striatal functional connectivity in clinical high risk for psychosis. Schizophr Res 2018; 201:231-236. [PMID: 29983268 DOI: 10.1016/j.schres.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/22/2018] [Accepted: 06/09/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Patients at clinical high risk (CHR) for psychosis exhibit increased striatal cerebral blood flow (CBF) during the resting state and impaired cognitive function. However, the relation between CBF and cognitive impairment is unknown. We therefore studied the association between striatal CBF and executive functioning and evaluated the functional connectivity (FC) between dorsal striatum and the frontal cortex in CHR. METHODS In total, 47 participants [29 with CHR, 18 matched clinical controls (CC)] were assessed for ultra-high-risk criteria and basic symptoms and were tested for executive functioning using the trail making test-B (TMT-B). Resting state mean CBF and FC were calculated from arterial spin labeling 3T MRI data. RESULTS Striatal CBF was highest in CHR patients with TMT-B deficits and was significantly higher than that in CC with and without TMT-B impairment. Further, a significantly lower CBF FC between the dorsal striatum and the anterior cingulate cortex was revealed in CHR. CONCLUSIONS Our study suggests that higher striatal CBF might represent focal pathology in CHR and is associated with disrupted cingulo-striatal FC and executive dysfunctions.
Collapse
|
28
|
Plewnia C, Brendel B, Schwippel T, Martus P, Cordes J, Hasan A, Fallgatter AJ. Treatment of auditory hallucinations with bilateral theta burst stimulation (cTBS): protocol of a randomized, double-blind, placebo-controlled, multicenter trial. Eur Arch Psychiatry Clin Neurosci 2018; 268:663-673. [PMID: 29224040 DOI: 10.1007/s00406-017-0861-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022]
Abstract
UNLABELLED Auditory verbal hallucinations (AH) are core symptoms of schizophrenia. They are often severely distressing and refractory to therapy. Their perception is associated with increased activity in temporoparietal areas of the brain. Repetitive transcranial magnetic stimulation (rTMS) can reduce focal brain hyperactivity and has been shown to ameliorate AH. However, controlled multicenter clinical trials are still missing, effect sizes are moderate, and the treatment with rTMS is time consuming. Continuous theta burst stimulation (cTBS) is a quicker and potentially more effective technique to reduce cortical hyperactivity. First case and pilot studies indicate effectiveness in the treatment of AH. In this randomized, sham-controlled, double-blind multicenter clinical trial, 86 patients with schizophrenia spectrum disorder will be randomized to either cTBS or sham to the left and right temporoparietal cortex during three consecutive weeks (15 sessions totally). In each session, both hemispheres will be stimulated sequentially. The order in the first session (left-right or right-left, respectively) will be determined by randomization and alternated in all following sessions. Primary outcome is the reduction of mean PSYRATS-AH score after cTBS as compared to sham treatment. Follow-up measurements will be performed 1, 3 and 6 months after the end of the treatment. Statistical analysis will be based on the intention-to-treat population including all randomized patients using an analysis of covariance. This multicenter-controlled clinical trial will be able to provide decisive evidence for the efficacy of cTBS in the treatment of AH. The results will be suitable to clarify the role of this innovative, pathophysiology-based therapeutic approach in treatment guidelines for AH. TRIAL REGISTRY ClinicalTrials.gov identifier: NCT02670291.
Collapse
Affiliation(s)
- Christian Plewnia
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany.
| | - Bettina Brendel
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany.,Institute of Clinical Epidemiology and Applied Biometry of the University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
| | - Tobias Schwippel
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany
| | - Peter Martus
- Institute of Clinical Epidemiology and Applied Biometry of the University of Tübingen, Silcherstr. 5, 72076, Tübingen, Germany
| | - Joachim Cordes
- LVR-Klinikum Düsseldorf, Kliniken der Heinrich-Heine Universität Düsseldorf, 40629, Düsseldorf, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians University Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Neurophysiology and Interventional Neuropsychiatry, University of Tübingen, Calwerstrasse 14, 72076, Tübingen, Germany
| |
Collapse
|
29
|
Jing RX, Li S, Zhang XJ, Long J, Zhou TH, Zhuo CJ. Aberrant Functional Connectivity Patterns of Default Mode Network May Play a Key Role in the Interaction between Auditory Verbal Hallucinations and Insight. Chin Med J (Engl) 2018. [PMID: 29521298 PMCID: PMC5865321 DOI: 10.4103/0366-6999.226905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Ri-Xing Jing
- Department of Pattern Recognition, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190; Department of Pattern Recognition, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Li
- Tianjin Mental Health Center, Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin 300222; Department of Psychiatry, College of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xin-Jun Zhang
- Tianjin Mental Health Center, Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin 300222, China
| | - Jing Long
- Tianjin Mental Health Center, Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin 300222, China
| | - Tian-Hong Zhou
- Tianjin Mental Health Center, Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin 300222, China
| | - Chuan-Jun Zhuo
- Tianjin Mental Health Center, Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin 300222, China
| |
Collapse
|
30
|
Jing R, Huang J, Jiang D, Lin X, Ma X, Tian H, Li J, Zhuo C. Distinct pattern of cerebral blood flow alterations specific to schizophrenics experiencing auditory verbal hallucinations with and without insight: a pilot study. Oncotarget 2018; 9:6763-6770. [PMID: 29467926 PMCID: PMC5805512 DOI: 10.18632/oncotarget.23631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Schizophrenia is associated with widespread and complex cerebral blood flow (CBF) disturbance. Auditory verbal hallucinations (AVH) and insight are the core symptoms of schizophrenia. However, to the best of our knowledge, very few studies have assessed the CBF characteristics of the AVH suffered by schizophrenic patients with and without insight. Based on our previous findings, Using a 3D pseudo-continuous ASL (pcASL) technique, we investigated the differences in AVH-related CBF alterations in schizophrenia patients with and without insight. We used statistical parametric mapping (SPM8) and statistical non-parametric mapping (SnPM13) to perform the fMRI analysis. We found that AVH-schizophrenia patients without insight showed an increased CBF in the left temporal pole and a decreased CBF in the right middle frontal gyrus when compared to AVH-schizophrenia patients with insight. Our novel findings suggest that AVH-schizophrenia patients without insight possess a more complex CBF disturbance. Simultaneously, our findings also incline to support the idea that the CBF aberrant in some specific brain regions may be the common neural basis of insight and AVH. Our findings support the mostly current hypotheses regarding AVH to some extent. Although our findings come from a small sample, it provide the evidence that indicate us to conduct a larger study to thoroughly explore the mechanisms of schizophrenia, especially the core symptoms of AVHs and insight.
Collapse
Affiliation(s)
- Rixing Jing
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiangjie Huang
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Deguo Jiang
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaodong Lin
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Xiaolei Ma
- Department of Psychological Medicine, Tianjin Anning Hospital, Tianjin, China
| | - Hongjun Tian
- Department of Psychological Medicine, Tianjin Anning Hospital, Tianjin, China
| | - Jie Li
- Department of Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin Mental Health Center, Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Chuanjun Zhuo
- Department of Psychological Medicine, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China.,Department of Psychiatric Neuroimaging Laboratory, Tianjin Anding Hospital, Tianjin Mental Health Center, Teaching Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
31
|
Kindler J, Schultze-Lutter F, Hauf M, Dierks T, Federspiel A, Walther S, Schimmelmann BG, Hubl D. Increased Striatal and Reduced Prefrontal Cerebral Blood Flow in Clinical High Risk for Psychosis. Schizophr Bull 2018; 44:182-192. [PMID: 28575528 PMCID: PMC5768043 DOI: 10.1093/schbul/sbx070] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Increased striatal dopaminergic activity and decreased prefrontal functioning have been reported in individuals at clinical high risk (CHR) for psychosis. Abnormal metabolic rate might affect resting-state cerebral blood flow (rCBF) in the respective regions. Here, we examined if striatal and prefrontal rCBF differ between patients with CHR, first-episode psychosis (FEP), chronic schizophrenia-spectrum disorder (SZ) and controls. Two cohorts with a total of 122 participants were included and analyzed separately: 32 patients with SZ and 31 healthy controls (HC) from the University Hospital of Psychiatry, and 59 patients from the Bern Early Recognition and Intervention Center (29 with CHR, 12 with FEP, and 18 clinical controls [CC]). Ultra-high risk criteria were assessed with the Structured Interview for Psychosis-Risk Syndromes, basic symptom criteria with the Schizophrenia Proneness Instrument. rCBF was measured with pseudo-continuous arterial spin labeling 3T-Magnetic Resonance Imaging. Striatal rCBF was significantly increased and prefrontal rCBF significantly decreased in the SZ group compared to HC group and in the CHR and FEP groups compared to CC group. Striatal rCBF correlated significantly with positive symptom scores in SZ and CHR. An inverse correlation between striatal and frontal rCBF was found in controls (HC, CC), but not in patient groups (SZ, FEP, CHR). This is the first study to demonstrate increased neuronal activity within the striatum, but reduced prefrontal activity in patients with CHR, FEP, and SZ compared to the respective controls. Our results indicate that alterations in striatal and prefrontal rCBF are reflecting metabolic abnormalities preceding the onset of frank psychosis.
Collapse
Affiliation(s)
- Jochen Kindler
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland,To whom correspondence should be addressed; University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland; tel: +41319328554, fax: +41319328569, e-mail:
| | - Frauke Schultze-Lutter
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Martinus Hauf
- Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Thomas Dierks
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Benno G Schimmelmann
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland,University Hospital of Child and Adolescent Psychiatry, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Daniela Hubl
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|