1
|
Nguyen LP, Song W, Yang Y, Tran AP, Weston TA, Jung H, Tu Y, Kim PH, Kim JR, Xie K, Yu RG, Scheithauer J, Presnell AM, Ploug M, Birrane G, Arnold H, Koltowska K, Mäe MA, Betsholtz C, He L, Goodwin JL, Beigneux AP, Fong LG, Young SG. Distinct strategies for intravascular triglyceride metabolism in hearts of mammals and lower vertebrate species. JCI Insight 2024; 9:e184940. [PMID: 39435661 PMCID: PMC11529983 DOI: 10.1172/jci.insight.184940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Lipoprotein lipase (LPL) and multiple regulators of LPL activity (e.g., APOC2 and ANGPTL4) are present in all vertebrates, but GPIHBP1-the endothelial cell (EC) protein that captures LPL within the subendothelial spaces and transports it to its site of action in the capillary lumen-is present in mammals but in not chickens or other lower vertebrates. In mammals, GPIHBP1 deficiency causes severe hypertriglyceridemia, but chickens maintain low triglyceride levels despite the absence of GPIHBP1. To understand intravascular lipolysis in lower vertebrates, we examined LPL expression in mouse and chicken hearts. In both species, LPL was abundant on capillaries, but the distribution of Lpl transcripts was strikingly different. In mouse hearts, Lpl transcripts were extremely abundant in cardiomyocytes but were barely detectable in capillary ECs. In chicken hearts, Lpl transcripts were absent in cardiomyocytes but abundant in capillary ECs. In zebrafish hearts, lpl transcripts were also in capillary ECs but not cardiomyocytes. In both mouse and chicken hearts, LPL was present, as judged by immunogold electron microscopy, in the glycocalyx of capillary ECs. Thus, mammals produce LPL in cardiomyocytes and rely on GPIHBP1 to transport the LPL into capillaries, whereas lower vertebrates produce LPL directly in capillary ECs, rendering an LPL transporter unnecessary.
Collapse
Affiliation(s)
| | | | - Ye Yang
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hannah Arnold
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarzyna Koltowska
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja A. Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institute Campus Flemingsberg, Huddinge, Sweden
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeffrey L. Goodwin
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | - Stephen G. Young
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
2
|
Zhang R, Zhang K. A unified model for regulating lipoprotein lipase activity. Trends Endocrinol Metab 2024; 35:490-504. [PMID: 38521668 PMCID: PMC11663433 DOI: 10.1016/j.tem.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Mostaza JM, Pintó X, Armario P, Masana L, Real JT, Valdivielso P, Arrobas-Velilla T, Baeza-Trinidad R, Calmarza P, Cebollada J, Civera-Andrés M, Cuende Melero JI, Díaz-Díaz JL, Espíldora-Hernández J, Fernández Pardo J, Guijarro C, Jericó C, Laclaustra M, Lahoz C, López-Miranda J, Martínez-Hervás S, Muñiz-Grijalvo O, Páramo JA, Pascual V, Pedro-Botet J, Pérez-Martínez P, Puzo J. SEA 2024 Standards for Global Control of Vascular Risk. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36:133-194. [PMID: 38490888 DOI: 10.1016/j.arteri.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/03/2024] [Indexed: 03/17/2024]
Abstract
One of the objectives of the Spanish Society of Arteriosclerosis is to contribute to the knowledge, prevention and treatment of vascular diseases, which are the leading cause of death in Spain and entail a high degree of disability and health expenditure. Atherosclerosis is a multifactorial disease and its prevention requires a global approach that takes into account the associated risk factors. This document summarises the current evidence and includes recommendations for patients with established vascular disease or at high vascular risk: it reviews the symptoms and signs to evaluate, the laboratory and imaging procedures to request routinely or in special situations, and includes the estimation of vascular risk, diagnostic criteria for entities that are vascular risk factors, and general and specific recommendations for their treatment. Finally, it presents aspects that are not usually referenced in the literature, such as the organisation of a vascular risk consultation.
Collapse
Affiliation(s)
- José María Mostaza
- Servicio de Medicina Interna, Unidad de Lípidos y Arteriosclerosis, Hospital La Paz-Carlos III, Madrid, España.
| | - Xavier Pintó
- Unidad de Riesgo Vascular, Servicio de Medicina Interna, Hospital Universitario Bellvitge, Centro de Investigación Biomédica en Red, Fisiopatología de la Obesidad y Nutrición (CIBERobn), Fundación para la Investigación y Prevención de las Enfermedades Cardiovasculares (FIPEC), Universidad de Barcelona, Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Barcelona, España
| | - Pedro Armario
- Servicio de Medicina Interna, Área de Atención Integrada de Riesgo Vascular, Complex Hospitalari Universitari Moisès Broggi, Consorci Sanitari Integral (CSI), Sant Joan Despí, Universidad de Barcelona, Barcelona, España
| | - Luis Masana
- Unidad de Medicina Vascular y Metabolismo (UVASMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universitat Rovira i Virgili, Tarragona, España
| | - José T Real
- Servicio de Endocrinología y Nutrición, Hospital Clínico, Universidad de València, Valencia, España; Departamento de Medicina, Universidad de Valencia, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Pedro Valdivielso
- Unidad de Lípidos, Servicio de Medicina Interna, Hospital Universitario Virgen de la Victoria, Málaga, España; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand), Universidad de Málaga, Málaga, España
| | - Teresa Arrobas-Velilla
- Laboratorio de Nutrición y RCV, UGC de Bioquímica clínica, Hospital Virgen Macarena, Sevilla, España
| | | | - Pilar Calmarza
- Servicio de Bioquímica Clínica, Hospital Universitario Miguel Servet, Zaragoza, España; Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Investigación Sanitaria (ISS) de Aragón, Universidad de Zaragoza, Zaragoza, España
| | - Jesús Cebollada
- Servicio de Medicina Interna, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - Miguel Civera-Andrés
- Servicio de Endocrinología y Nutrición, Hospital Clínico, Universidad de València, Valencia, España; Departamento de Medicina, Universidad de Valencia, Valencia, España
| | - José I Cuende Melero
- Consulta de Riesgo Cardiovascular, Servicio de Medicina Interna, Complejo Asistencial Universitario de Palencia, Palencia, España
| | - José L Díaz-Díaz
- Sección de Medicina Interna, Unidad de Lípidos y Riesgo Cardiovascular, Hospital Abente y Lago Complejo Hospitalario Universitario A Coruña, La Coruña, España
| | - Javier Espíldora-Hernández
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA-Bionand), Universidad de Málaga, Málaga, España; Unidad de Lípidos y Unidad Asistencial de Hipertensión Arterial- Riesgo Vascular (HTA-RV), UGC Medicina Interna, Hospital Universitario Virgen de la Victoria, Málaga, España
| | - Jacinto Fernández Pardo
- Servicio de Medicina Interna, Hospital General Universitario Reina Sofía de Murcia, Universidad de Murcia, Murcia, España
| | - Carlos Guijarro
- Unidad de Medicina Interna, Hospital Universitario Fundación Alcorcón, Universidad Rey Juan Carlos, Alcorón, España
| | - Carles Jericó
- Servicio de Medicina Interna, Área de Atención Integrada de Riesgo Vascular, Complex Hospitalari Universitari Moisès Broggi, Consorci Sanitari Integral (CSI), Sant Joan Despí, Universidad de Barcelona, Barcelona, España
| | - Martín Laclaustra
- Centro de Investigación en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Investigación Sanitaria (ISS) de Aragón, Universidad de Zaragoza, Zaragoza, España
| | - Carlos Lahoz
- Servicio de Medicina Interna, Unidad de Lípidos y Arteriosclerosis, Hospital La Paz-Carlos III, Madrid, España
| | - José López-Miranda
- Unidad de Lípidos y Arteriosclerosis, UGC de Medicina Interna, Hospital Universitario Reina Sofía, Córdoba, España; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Sergio Martínez-Hervás
- Servicio de Endocrinología y Nutrición, Hospital Clínico, Universidad de València, Valencia, España; Departamento de Medicina, Universidad de Valencia, Valencia, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - Ovidio Muñiz-Grijalvo
- Servicio de Medicina Interna, UCERV, UCAMI, Hospital Virgen del Rocío de Sevilla, Sevilla, España
| | - José A Páramo
- Servicio de Hematología, Clínica Universidad de Navarra, Navarra, España; Laboratorio Aterotrombosis, CIMA, Universidad de Navarra, Pamplona, España
| | - Vicente Pascual
- Centro de Salud Palleter, Universidad CEU-Cardenal Herrera, Castellón, España
| | - Juan Pedro-Botet
- Unidad de Lípidos y Riesgo Vascular, Servicio de Endocrinología y Nutrición, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, España
| | - Pablo Pérez-Martínez
- Unidad de Lípidos y Arteriosclerosis, UGC de Medicina Interna, Hospital Universitario Reina Sofía, Córdoba, España; Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba, Córdoba, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - José Puzo
- Servicio de Bioquímica Clínica, Unidad de Lípidos, Hospital General Universitario San Jorge de Huesca, Huesca, España; Departamento de Medicina, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
4
|
Kurooka N, Eguchi J, Wada J. Role of glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in hypertriglyceridemia and diabetes. J Diabetes Investig 2023; 14:1148-1156. [PMID: 37448184 PMCID: PMC10512915 DOI: 10.1111/jdi.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In diabetes, the impairment of insulin secretion and insulin resistance contribute to hypertriglyceridemia, as the enzymatic activity of lipoprotein lipase (LPL) depends on insulin action. The transport of LPL to endothelial cells and its enzymatic activity are maintained by the formation of lipolytic complex depending on the multiple positive (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 [GPIHBP1], apolipoprotein C-II [APOC2], APOA5, heparan sulfate proteoglycan [HSPG], lipase maturation factor 1 [LFM1] and sel-1 suppressor of lin-12-like [SEL1L]) and negative regulators (APOC1, APOC3, angiopoietin-like proteins [ANGPTL]3, ANGPTL4 and ANGPTL8). Among the regulators, GPIHBP1 is a crucial molecule for the translocation of LPL from parenchymal cells to the luminal surface of capillary endothelial cells, and maintenance of lipolytic activity; that is, hydrolyzation of triglyceride into free fatty acids and monoglyceride, and conversion from chylomicron to chylomicron remnant in the exogenous pathway and from very low-density lipoprotein to low-density lipoprotein in the endogenous pathway. The null mutation of GPIHBP1 causes severe hypertriglyceridemia and pancreatitis, and GPIGBP1 autoantibody syndrome also causes severe hypertriglyceridemia and recurrent episodes of acute pancreatitis. In patients with type 2 diabetes, the elevated serum triglyceride levels negatively correlate with circulating LPL levels, and positively with circulating APOC1, APOC3, ANGPTL3, ANGPTL4 and ANGPTL8 levels. In contrast, circulating GPIHBP1 levels are not altered in type 2 diabetes patients with higher serum triglyceride levels, whereas they are elevated in type 2 diabetes patients with diabetic retinopathy and nephropathy. The circulating regulators of lipolytic complex might be new biomarkers for lipid and glucose metabolism, and diabetic vascular complications.
Collapse
Affiliation(s)
- Naoko Kurooka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Eguchi
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
5
|
Kumari A, Grønnemose AL, Kristensen KK, Winther AML, Young SG, Jørgensen TJD, Ploug M. Inverse effects of APOC2 and ANGPTL4 on the conformational dynamics of lid-anchoring structures in lipoprotein lipase. Proc Natl Acad Sci U S A 2023; 120:e2221888120. [PMID: 37094117 PMCID: PMC10160976 DOI: 10.1073/pnas.2221888120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
The lipolytic processing of triglyceride-rich lipoproteins (TRLs) by lipoprotein lipase (LPL) is crucial for the delivery of dietary lipids to the heart, skeletal muscle, and adipose tissue. The processing of TRLs by LPL is regulated in a tissue-specific manner by a complex interplay between activators and inhibitors. Angiopoietin-like protein 4 (ANGPTL4) inhibits LPL by reducing its thermal stability and catalyzing the irreversible unfolding of LPL's α/β-hydrolase domain. We previously mapped the ANGPTL4 binding site on LPL and defined the downstream unfolding events resulting in LPL inactivation. The binding of LPL to glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 protects against LPL unfolding. The binding site on LPL for an activating cofactor, apolipoprotein C2 (APOC2), and the mechanisms by which APOC2 activates LPL have been unclear and controversial. Using hydrogen-deuterium exchange/mass spectrometry, we now show that APOC2's C-terminal α-helix binds to regions of LPL surrounding the catalytic pocket. Remarkably, APOC2's binding site on LPL overlaps with that for ANGPTL4, but their effects on LPL conformation are distinct. In contrast to ANGPTL4, APOC2 increases the thermal stability of LPL and protects it from unfolding. Also, the regions of LPL that anchor the lid are stabilized by APOC2 but destabilized by ANGPTL4, providing a plausible explanation for why APOC2 is an activator of LPL, while ANGPTL4 is an inhibitor. Our studies provide fresh insights into the molecular mechanisms by which APOC2 binds and stabilizes LPL-and properties that we suspect are relevant to the conformational gating of LPL's active site.
Collapse
Affiliation(s)
- Anni Kumari
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Anne Louise Grønnemose
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK–5320Odense, Denmark
| | - Kristian K. Kristensen
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Anne-Marie L. Winther
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Thomas J. D. Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK–5320Odense, Denmark
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| |
Collapse
|
6
|
Deng H, Li J, Shah AA, Ge L, Ouyang W. Comprehensive in-silico analysis of deleterious SNPs in APOC2 and APOA5 and their differential expression in cancer and cardiovascular diseases conditions. Genomics 2023; 115:110567. [PMID: 36690263 DOI: 10.1016/j.ygeno.2023.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/04/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023]
Abstract
Genetic variations in APOC2 and APOA5 genes involve activating lipoprotein lipase (LPL), responsible for the hydrolysis of triglycerides (TG) in blood and whose impaired functions affect the TG metabolism and are associated with metabolic diseases. In this study, we investigate the biological significance of genetic variations at the DNA sequence and structural level using various computational tools. Subsequently, 8 (APOC2) and 17 (APOA5) non-synonymous SNPs (nsSNPs) were identified as high-confidence deleterious SNPs based on the effects of the mutations on protein conservation, stability, and solvent accessibility. Furthermore, based on our docking results, the interaction of native and mutant forms of the corresponding proteins with LPL depicts differences in root mean square deviation (RMSD), and binding affinities suggest that these mutations may affect their function. Furthermore, in vivo, and in vitro studies have shown that differential expression of these genes in disease conditions due to the influence of nsSNPs abundance may be associated with promoting the development of cancer and cardiovascular diseases. Preliminary screening using computational methods can be a helpful start in understanding the effects of mutations in APOC2 and APOA5 on lipid metabolism; however, further wet-lab experiments would further strengthen the conclusions drawn from the computational study.
Collapse
Affiliation(s)
- Huiyin Deng
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, PR China
| | - Jiuyi Li
- Department of Anesthesiology, the First People's Hospital of Chenzhou, Chenzhou, Hunan Province 410013, PR China
| | - Abid Ali Shah
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan Province 410013, PR China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, PR China; The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan Province 410013, PR China; Hunan provincial key laboratory of Neurorestoratology, the Second Affiliated Hospital, Hunan Normal University, Hunan Province 410013, PR China.
| | - Wen Ouyang
- Department of Anesthesiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, PR China.
| |
Collapse
|
7
|
Young SG, Song W, Yang Y, Birrane G, Jiang H, Beigneux AP, Ploug M, Fong LG. A protein of capillary endothelial cells, GPIHBP1, is crucial for plasma triglyceride metabolism. Proc Natl Acad Sci U S A 2022; 119:e2211136119. [PMID: 36037340 PMCID: PMC9457329 DOI: 10.1073/pnas.2211136119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
GPIHBP1, a protein of capillary endothelial cells (ECs), is a crucial partner for lipoprotein lipase (LPL) in the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1, which contains a three-fingered cysteine-rich LU (Ly6/uPAR) domain and an intrinsically disordered acidic domain (AD), captures LPL from within the interstitial spaces (where it is secreted by parenchymal cells) and shuttles it across ECs to the capillary lumen. Without GPIHBP1, LPL remains stranded within the interstitial spaces, causing severe hypertriglyceridemia (chylomicronemia). Biophysical studies revealed that GPIHBP1 stabilizes LPL structure and preserves LPL activity. That discovery was the key to crystallizing the GPIHBP1-LPL complex. The crystal structure revealed that GPIHBP1's LU domain binds, largely by hydrophobic contacts, to LPL's C-terminal lipid-binding domain and that the AD is positioned to project across and interact, by electrostatic forces, with a large basic patch spanning LPL's lipid-binding and catalytic domains. We uncovered three functions for GPIHBP1's AD. First, it accelerates the kinetics of LPL binding. Second, it preserves LPL activity by inhibiting unfolding of LPL's catalytic domain. Third, by sheathing LPL's basic patch, the AD makes it possible for LPL to move across ECs to the capillary lumen. Without the AD, GPIHBP1-bound LPL is trapped by persistent interactions between LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the abluminal surface of ECs. The AD interrupts the HSPG interactions, freeing LPL-GPIHBP1 complexes to move across ECs to the capillary lumen. GPIHBP1 is medically important; GPIHBP1 mutations cause lifelong chylomicronemia, and GPIHBP1 autoantibodies cause some acquired cases of chylomicronemia.
Collapse
Affiliation(s)
- Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Anne P. Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen 2200N, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G. Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
8
|
Sustar U, Groselj U, Khan SA, Shafi S, Khan I, Kovac J, Bizjan BJ, Battelino T, Sadiq F. A homozygous variant in the GPIHBP1 gene in a child with severe hypertriglyceridemia and a systematic literature review. Front Genet 2022; 13:983283. [PMID: 36051701 PMCID: PMC9424485 DOI: 10.3389/fgene.2022.983283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Due to nonspecific symptoms, rare dyslipidaemias are frequently misdiagnosed, overlooked, and undertreated, leading to increased risk for severe cardiovascular disease, pancreatitis and/or multiple organ failures before diagnosis. Better guidelines for the recognition and early diagnosis of rare dyslipidaemias are urgently required. Methods: Genomic DNA was isolated from blood samples of a Pakistani paediatric patient with hypertriglyceridemia, and from his parents and siblings. Next-generation sequencing (NGS) was performed, and an expanded dyslipidaemia panel was employed for genetic analysis. Results: The NGS revealed the presence of a homozygous missense pathogenic variant c.230G>A (NM_178172.6) in exon 3 of the GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1) gene resulting in amino acid change p.Cys77Tyr (NP_835466.2). The patient was 5.5 years old at the time of genetic diagnosis. The maximal total cholesterol and triglyceride levels were measured at the age of 10 months (850.7 mg/dl, 22.0 mmol/L and 5,137 mg/dl, 58.0 mmol/L, respectively). The patient had cholesterol deposits at the hard palate, eruptive xanthomas, lethargy, poor appetite, and mild splenomegaly. Both parents and sister were heterozygous for the familial variant in the GPIHBP1 gene. Moreover, in the systematic review, we present 62 patients with pathogenic variants in the GPIHBP1 gene and clinical findings, associated with hyperlipoproteinemia. Conclusion: In a child with severe hypertriglyceridemia, we identified a pathogenic variant in the GPIHBP1 gene causing hyperlipoproteinemia (type 1D). In cases of severe elevations of plasma cholesterol and/or triglycerides genetic testing for rare dyslipidaemias should be performed as soon as possible for optimal therapy and patient management.
Collapse
Affiliation(s)
- Ursa Sustar
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Urh Groselj, ; Fouzia Sadiq,
| | - Sabeen Abid Khan
- Department of Paediatrics, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saeed Shafi
- Department of Anatomy, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Iqbal Khan
- Department of Vascular Surgery, Shifa International Hospital, Islamabad, Pakistan
- Department of Vascular Surgery, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Jernej Kovac
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Clinical Institute for Special Laboratory Diagnostics, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Endocrinology, Diabetes and Metabolism, University Children’s Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Fouzia Sadiq
- Directorate of Research, Shifa Tameer-e-Millat University, Islamabad, Pakistan
- *Correspondence: Urh Groselj, ; Fouzia Sadiq,
| |
Collapse
|
9
|
Zhang G, Yang Q, Mao W, Hu Y, Pu N, Deng H, Yu X, Zhang J, Zhou J, Ye B, Li G, Li B, Ke L, Tong Z, Murakami M, Kimura T, Nakajima K, Cao W, Liu Y, Li W. GPIHBP1 autoantibody is an independent risk factor for the recurrence of hypertriglyceridemia-induced acute pancreatitis. J Clin Lipidol 2022; 16:626-634. [DOI: 10.1016/j.jacl.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 10/15/2022]
|
10
|
SEA 2022 Standards for Global Control of Cardiovascular Risk. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2022; 34:130-179. [PMID: 35090775 DOI: 10.1016/j.arteri.2021.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/27/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
One of the objectives of the Spanish Society of Arteriosclerosis is to contribute to better knowledge of vascular disease, its prevention and treatment. It is well known that cardiovascular diseases are the leading cause of death in our country and entail a high degree of disability and health care costs. Arteriosclerosis is a multifactorial disease and therefore its prevention requires a global approach that takes into account the different risk factors with which it is associated. Therefore, this document summarizes the current level of knowledge and includes recommendations and procedures to be followed in patients with established cardiovascular disease or at high vascular risk. Specifically, this document reviews the main symptoms and signs to be evaluated during the clinical visit, the laboratory and imaging procedures to be routinely requested or requested for those in special situations. It also includes vascular risk estimation, the diagnostic criteria of the different entities that are cardiovascular risk factors, and makes general and specific recommendations for the treatment of the different cardiovascular risk factors and their final objectives. Finally, the document includes aspects that are not usually referenced in the literature, such as the organization of a vascular risk consultation.
Collapse
|
11
|
Song W, Beigneux AP, Winther AML, Kristensen KK, Grønnemose AL, Yang Y, Tu Y, Munguia P, Morales J, Jung H, de Jong PJ, Jung CJ, Miyashita K, Kimura T, Nakajima K, Murakami M, Birrane G, Jiang H, Tontonoz P, Ploug M, Fong LG, Young SG. Electrostatic sheathing of lipoprotein lipase is essential for its movement across capillary endothelial cells. J Clin Invest 2022; 132:157500. [PMID: 35229724 PMCID: PMC8884915 DOI: 10.1172/jci157500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
GPIHBP1, an endothelial cell (EC) protein, captures lipoprotein lipase (LPL) within the interstitial spaces (where it is secreted by myocytes and adipocytes) and transports it across ECs to its site of action in the capillary lumen. GPIHBP1’s 3-fingered LU domain is required for LPL binding, but the function of its acidic domain (AD) has remained unclear. We created mutant mice lacking the AD and found severe hypertriglyceridemia. As expected, the mutant GPIHBP1 retained the capacity to bind LPL. Unexpectedly, however, most of the GPIHBP1 and LPL in the mutant mice was located on the abluminal surface of ECs (explaining the hypertriglyceridemia). The GPIHBP1-bound LPL was trapped on the abluminal surface of ECs by electrostatic interactions between the large basic patch on the surface of LPL and negatively charged heparan sulfate proteoglycans (HSPGs) on the surface of ECs. GPIHBP1 trafficking across ECs in the mutant mice was normalized by disrupting LPL-HSPG electrostatic interactions with either heparin or an AD peptide. Thus, GPIHBP1’s AD plays a crucial function in plasma triglyceride metabolism; it sheathes LPL’s basic patch on the abluminal surface of ECs, thereby preventing LPL-HSPG interactions and freeing GPIHBP1-LPL complexes to move across ECs to the capillary lumen.
Collapse
Affiliation(s)
- Wenxin Song
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Anne-Marie L Winther
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Kristian K Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Anne L Grønnemose
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Yiping Tu
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Priscilla Munguia
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jazmin Morales
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Cris J Jung
- Children's Hospital Oakland Research Institute, Oakland, California, USA
| | - Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan.,Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
12
|
The Importance of Lipoprotein Lipase Regulation in Atherosclerosis. Biomedicines 2021; 9:biomedicines9070782. [PMID: 34356847 PMCID: PMC8301479 DOI: 10.3390/biomedicines9070782] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Lipoprotein lipase (LPL) plays a major role in the lipid homeostasis mainly by mediating the intravascular lipolysis of triglyceride rich lipoproteins. Impaired LPL activity leads to the accumulation of chylomicrons and very low-density lipoproteins (VLDL) in plasma, resulting in hypertriglyceridemia. While low-density lipoprotein cholesterol (LDL-C) is recognized as a primary risk factor for atherosclerosis, hypertriglyceridemia has been shown to be an independent risk factor for cardiovascular disease (CVD) and a residual risk factor in atherosclerosis development. In this review, we focus on the lipolysis machinery and discuss the potential role of triglycerides, remnant particles, and lipolysis mediators in the onset and progression of atherosclerotic cardiovascular disease (ASCVD). This review details a number of important factors involved in the maturation and transportation of LPL to the capillaries, where the triglycerides are hydrolyzed, generating remnant lipoproteins. Moreover, LPL and other factors involved in intravascular lipolysis are also reported to impact the clearance of remnant lipoproteins from plasma and promote lipoprotein retention in capillaries. Apolipoproteins (Apo) and angiopoietin-like proteins (ANGPTLs) play a crucial role in regulating LPL activity and recent insights into LPL regulation may elucidate new pharmacological means to address the challenge of hypertriglyceridemia in atherosclerosis development.
Collapse
|
13
|
A novel GPIHBP1 mutation related to familial chylomicronemia syndrome: A series of cases. Atherosclerosis 2021; 322:31-38. [PMID: 33706081 DOI: 10.1016/j.atherosclerosis.2021.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS GPIHBP1 is an accessory protein of lipoprotein lipase (LPL) essential for its functioning. Mutations in the GPIHBP1 gene cause a deficit in the action of LPL, leading to severe hypertriglyceridemia and increased risk for acute pancreatitis. METHODS We describe twelve patients (nine women) with a novel homozygous mutation in intron 2 of the GPIHBP1 gene. RESULTS All patients were from the Northeastern region of Brazil and presented the same homozygous variant located in a highly conserved 3' splicing acceptor site of the GPIHBP1 gene. This new variant was named c.182-1G > T, according to HGVS recommendations. We verified this new GPIHBP1 variant's effect by using the Human Splicing Finder (HSF) tool. This mutation changes the GPIHBP1 pre-mRNA processing and possibly causes the skipping of the exon 3 of the GPIHBP1 gene, affecting almost 50% of the cysteine-rich Lys6 GPIHBP1 domain. Patients presented with severe hypertriglyceridemia (2351 mg/dl [885-20600]) and low HDL (18 mg/dl [5-41). Four patients (33%) had a previous history of acute pancreatitis. CONCLUSIONS We describe a novel GPIHBP1 pathogenic intronic mutation of patients from the Northeast region of Brazil, suggesting the occurrence of a founder effect.
Collapse
|
14
|
Miyashita K, Lutz J, Hudgins LC, Toib D, Ashraf AP, Song W, Murakami M, Nakajima K, Ploug M, Fong LG, Young SG, Beigneux AP. Chylomicronemia from GPIHBP1 autoantibodies. J Lipid Res 2020; 61:1365-1376. [PMID: 32948662 PMCID: PMC7604722 DOI: 10.1194/jlr.r120001116] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Some cases of chylomicronemia are caused by autoantibodies against glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1), an endothelial cell protein that shuttles LPL to the capillary lumen. GPIHBP1 autoantibodies prevent binding and transport of LPL by GPIHBP1, thereby disrupting the lipolytic processing of triglyceride-rich lipoproteins. Here, we review the "GPIHBP1 autoantibody syndrome" and summarize clinical and laboratory findings in 22 patients. All patients had GPIHBP1 autoantibodies and chylomicronemia, but we did not find a correlation between triglyceride levels and autoantibody levels. Many of the patients had a history of pancreatitis, and most had clinical and/or serological evidence of autoimmune disease. IgA autoantibodies were present in all patients, and IgG4 autoantibodies were present in 19 of 22 patients. Patients with GPIHBP1 autoantibodies had low plasma LPL levels, consistent with impaired delivery of LPL into capillaries. Plasma levels of GPIHBP1, measured with a monoclonal antibody-based ELISA, were very low in 17 patients, reflecting the inability of the ELISA to detect GPIHBP1 in the presence of autoantibodies (immunoassay interference). However, GPIHBP1 levels were very high in five patients, indicating little capacity of their autoantibodies to interfere with the ELISA. Recently, several GPIHBP1 autoantibody syndrome patients were treated successfully with rituximab, resulting in the disappearance of GPIHBP1 autoantibodies and normalization of both plasma triglyceride and LPL levels. The GPIHBP1 autoantibody syndrome should be considered in any patient with newly acquired and unexplained chylomicronemia.
Collapse
Affiliation(s)
- Kazuya Miyashita
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
- Immuno-Biological Laboratories (IBL), Fujioka, Gunma, Japan
| | - Jens Lutz
- Medical Clinic, Nephrology-Infectious Diseases, Central Rhine Hospital Group, Koblenz, Germany
| | - Lisa C Hudgins
- Rogosin Institute, Weill Cornell Medical College, New York, NY, USA
| | - Dana Toib
- Department of Pediatrics, Drexel University, Philadelphia, PA, USA
- Section of Pediatric Rheumatology, St. Christopher's Hospital for Children, Philadelphia, PA, USA
| | - Ambika P Ashraf
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wenxin Song
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
- Biotechnology Research Innovation Center, Copenhagen University, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
15
|
Shetty SK, Walzem RL, Davies BSJ. A novel NanoBiT-based assay monitors the interaction between lipoprotein lipase and GPIHBP1 in real time. J Lipid Res 2020; 61:546-559. [PMID: 32029511 DOI: 10.1194/jlr.d119000388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
The hydrolysis of triglycerides in triglyceride-rich lipoproteins by LPL is critical for the delivery of triglyceride-derived fatty acids to tissues, including heart, skeletal muscle, and adipose tissues. Physiologically active LPL is normally bound to the endothelial cell protein glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1), which transports LPL across endothelial cells, anchors LPL to the vascular wall, and stabilizes LPL activity. Disruption of LPL-GPIHBP1 binding significantly alters triglyceride metabolism and lipid partitioning. In this study, we modified the NanoLuc® Binary Technology split-luciferase system to develop a novel assay that monitors the binding of LPL to GPIHBP1 on endothelial cells in real time. We validated the specificity and sensitivity of the assay using endothelial lipase and a mutant version of LPL and found that this assay reliably and specifically detected the interaction between LPL and GPIHBP1. We then interrogated various endogenous and exogenous inhibitors of LPL-mediated lipolysis for their ability to disrupt the binding of LPL to GPIHBP1. We found that angiopoietin-like (ANGPTL)4 and ANGPTL3-ANGPTL8 complexes disrupted the interactions of LPL and GPIHBP1, whereas the exogenous LPL blockers we tested (tyloxapol, poloxamer-407, and tetrahydrolipstatin) did not. We also found that chylomicrons could dissociate LPL from GPIHBP1 and found evidence that this dissociation was mediated in part by the fatty acids produced by lipolysis. These results demonstrate the ability of this assay to monitor LPL-GPIHBP1 binding and to probe how various agents influence this important complex.
Collapse
Affiliation(s)
- Shwetha K Shetty
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center and Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Rosemary L Walzem
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843
| | - Brandon S J Davies
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center and Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| |
Collapse
|
16
|
Abstract
Our understanding of the role of the vascular endothelium has evolved over the past 2 decades, with the recognition that it is a dynamically regulated organ and that it plays a nodal role in a variety of physiological and pathological processes. Endothelial cells (ECs) are not only a barrier between the circulation and peripheral tissues, but also actively regulate vascular tone, blood flow, and platelet function. Dysregulation of ECs contributes to pathological conditions such as vascular inflammation, atherosclerosis, hypertension, cardiomyopathy, retinopathy, neuropathy, and cancer. The close anatomic relationship between vascular endothelium and highly vascularized metabolic organs/tissues suggests that the crosstalk between ECs and these organs is vital for both vascular and metabolic homeostasis. Numerous reports support that hyperlipidemia, hyperglycemia, and other metabolic stresses result in endothelial dysfunction and vascular complications. However, how ECs may regulate metabolic homeostasis remains poorly understood. Emerging data suggest that the vascular endothelium plays an unexpected role in the regulation of metabolic homeostasis and that endothelial dysregulation directly contributes to the development of metabolic disorders. Here, we review recent studies about the pivotal role of ECs in glucose and lipid homeostasis. In particular, we introduce the concept that the endothelium adjusts its barrier function to control the transendothelial transport of fatty acids, lipoproteins, LPLs (lipoprotein lipases), glucose, and insulin. In addition, we summarize reports that ECs communicate with metabolic cells through EC-secreted factors and we discuss how endothelial dysregulation contributes directly to the development of obesity, insulin resistance, dyslipidemia, diabetes mellitus, cognitive defects, and fatty liver disease.
Collapse
Affiliation(s)
- Xinchun Pi
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Liang Xie
- From the Section of Athero & Lipo, Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX (X.P., L.X.)
| | - Cam Patterson
- University of Arkansas for Medical Sciences, Little Rock (C.P.)
| |
Collapse
|
17
|
Young SG, Fong LG, Beigneux AP, Allan CM, He C, Jiang H, Nakajima K, Meiyappan M, Birrane G, Ploug M. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metab 2019; 30:51-65. [PMID: 31269429 PMCID: PMC6662658 DOI: 10.1016/j.cmet.2019.05.023] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipoprotein lipase (LPL), identified in the 1950s, has been studied intensively by biochemists, physiologists, and clinical investigators. These efforts uncovered a central role for LPL in plasma triglyceride metabolism and identified LPL mutations as a cause of hypertriglyceridemia. By the 1990s, with an outline for plasma triglyceride metabolism established, interest in triglyceride metabolism waned. In recent years, however, interest in plasma triglyceride metabolism has awakened, in part because of the discovery of new molecules governing triglyceride metabolism. One such protein-and the focus of this review-is GPIHBP1, a protein of capillary endothelial cells. GPIHBP1 is LPL's essential partner: it binds LPL and transports it to the capillary lumen; it is essential for lipoprotein margination along capillaries, allowing lipolysis to proceed; and it preserves LPL's structure and activity. Recently, GPIHBP1 was the key to solving the structure of LPL. These developments have transformed the models for intravascular triglyceride metabolism.
Collapse
Affiliation(s)
- Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher M Allan
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cuiwen He
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haibo Jiang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Molecular Sciences, University of Western Australia, Crawley 6009, Australia
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Department of Medicine, Maebashi, Gunma 371-0805, Japan
| | - Muthuraman Meiyappan
- Discovery Therapeutics, Takeda Pharmaceutical Company Ltd., Cambridge, MA 02142, USA
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen DK-2200, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
18
|
Standards for global cardiovascular risk management arteriosclerosis. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 31 Suppl 1:1-43. [PMID: 30981542 DOI: 10.1016/j.arteri.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One of the main goals of the Spanish Society of Arteriosclerosis is to contribute to a wider and greater knowledge of vascular disease, its prevention and treatment. Cardiovascular diseases are the leading cause of death in our country and also lead to a high degree of disability and health expenditure. Arteriosclerosis is a multifactorial disease, this is why its prevention requires a global approach that takes into account the different risk factors with which it is associated. Thus, this document summarizes the current level of knowledge and integrates recommendations and procedures to be followed for patients with established cardiovascular disease or high vascular risk. Specifically, this document reviews the main symptoms and signs to be evaluated during the clinical visit, the laboratory and imaging procedures to be routinely requested or those in special situations. It also includes the estimation of vascular risk, the diagnostic criteria of the different entities that are cardiovascular risk factors, and presents general and specific recommendations for the treatment of the different cardiovascular risk factors and their final objectives. Finally, the document includes aspects that are not often mentioned in the literature, such as the organisation of a vascular risk consultation.
Collapse
|
19
|
Matsumoto R, Tsunekawa K, Shoho Y, Yanagawa Y, Kotajima N, Matsumoto S, Araki O, Kimura T, Nakajima K, Murakami M. Association between skeletal muscle mass and serum concentrations of lipoprotein lipase, GPIHBP1, and hepatic triglyceride lipase in young Japanese men. Lipids Health Dis 2019; 18:84. [PMID: 30947712 PMCID: PMC6449999 DOI: 10.1186/s12944-019-1014-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background Two important regulators for circulating lipid metabolisms are lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL). In relation to this, glycosylphosphatidylinositol anchored high-density lipoprotein binding protein 1 (GPIHBP1) has been shown to have a vital role in LPL lipolytic processing. However, the relationships between skeletal muscle mass and lipid metabolism, including LPL, GPIHBP1, and HTGL, remain to be elucidated. Demonstration of these relationships may lead to clarification of the metabolic dysfunctions caused by sarcopenia. In this study, these relationships were investigated in young Japanese men who had no age-related factors; participants included wrestling athletes with abundant skeletal muscle. Methods A total of 111 young Japanese men who were not taking medications were enrolled; 70 wrestling athletes and 41 control students were included. The participants’ body compositions, serum concentrations of lipoprotein, LPL, GPIHBP1 and HTGL and thyroid function test results were determined under conditions of no extreme dietary restrictions and exercises. Results Compared with the control participants, wrestling athletes had significantly higher skeletal muscle index (SMI) (p < 0.001), higher serum concentrations of LPL (p < 0.001) and GPIHBP1 (p < 0.001), and lower fat mass index (p = 0.024). Kruskal–Wallis tests with Bonferroni multiple comparison tests showed that serum LPL and GPIHBP1 concentrations were significantly higher in the participants with higher SMI. Spearman’s correlation analyses showed that SMI was positively correlated with LPL (ρ = 0.341, p < 0.001) and GPIHBP1 (ρ = 0.309, p = 0.001) concentration. The serum concentrations of LPL and GPIHBP1 were also inversely correlated with serum concentrations of triglyceride (LPL, ρ = − 0.198, p = 0.037; GPIHBP1, ρ = − 0.249, p = 0.008). Serum HTGL concentration was positively correlated with serum concentrations of total cholesterol (ρ = 0.308, p = 0.001), low-density lipoprotein-cholesterol (ρ = 0.336, p < 0.001), and free 3,5,3′-triiodothyronine (ρ = 0.260, p = 0.006), but not with SMI. Conclusions The results suggest that increased skeletal muscle mass leads to improvements in energy metabolism by promoting triglyceride-rich lipoprotein hydrolysis through the increase in circulating LPL and GPIHBP1.
Collapse
Affiliation(s)
- Ryutaro Matsumoto
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Katsuhiko Tsunekawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.
| | - Yoshifumi Shoho
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.,Faculty of Education, Ikuei University, Takasaki, 370-0011, Japan
| | - Yoshimaro Yanagawa
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.,Faculty of Education, Ikuei University, Takasaki, 370-0011, Japan
| | - Nobuo Kotajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan.,School of Medical Technology, Faculty of Health Science, Gunma Paz University, Takasaki, 370-0006, Japan
| | - Shingo Matsumoto
- Graduate School of Health and Sport Science, Nippon Sport Science University, Yokohama, 227-0033, Japan
| | - Osamu Araki
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Takao Kimura
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| |
Collapse
|
20
|
Surendran RP, Udayyapan SD, Clemente-Postigo M, Havik SR, Schimmel AWM, Tinahones F, Nieuwdorp M, Dallinga-Thie GM. Decreased GPIHBP1 protein levels in visceral adipose tissue partly underlie the hypertriglyceridemic phenotype in insulin resistance. PLoS One 2018; 13:e0205858. [PMID: 30408040 PMCID: PMC6224034 DOI: 10.1371/journal.pone.0205858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/02/2018] [Indexed: 01/29/2023] Open
Abstract
GPIHBP1 is a protein localized at the endothelial cell surface that facilitates triglyceride (TG) lipolysis by binding lipoprotein lipase (LPL). Whether Glycosyl Phosphatidyl Inositol high density lipoprotein binding protein 1 (GPIHBP1) function is impaired and may underlie the hyperTG phenotype observed in type 2 diabetes is not yet established. To elucidate the mechanism underlying impaired TG homeostasis in insulin resistance state we studied the effect of insulin on GPIHBP1 protein expression in human microvascular endothelial cells (HMVEC) under flow conditions. Next, we assessed visceral adipose tissue GPIHBP1 protein expression in type 2 diabetes Leprdb/db mouse model as well as in subjects with ranging levels of insulin resistance. We report that insulin reduces the expression of GPIHBP1 protein in HMVECs. Furthermore, GPIHBP1 protein expression in visceral adipose tissue in Leprdb/db mice is significantly reduced as is the active monomeric form of GPIHBP1 as compared to Leprdb/m mice. A similar decrease in GPIHBP1 protein was observed in subjects with increased body weight. GPIHBP1 protein expression was negatively associated with insulin and HOMA-IR. In conclusion, our data suggest that decreased GPIHBP1 availability in insulin resistant state may hamper peripheral lipolysis capacity.
Collapse
Affiliation(s)
- R. Preethi Surendran
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Shanti D. Udayyapan
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Mercedes Clemente-Postigo
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CB06/03), Barcelona, Spain
| | - Stefan R. Havik
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Alinda W. M. Schimmel
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Fransisco Tinahones
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- CIBER Fisiopatologia de la Obesidad y Nutrición (CB06/03), Barcelona, Spain
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
| | - Geesje M. Dallinga-Thie
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, The Netherlands
- Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Complejo Hospitalario de Málaga (Virgen de la Victoria)/Universidad de Malaga, Malaga, Spain
- * E-mail:
| |
Collapse
|
21
|
Ariza MJ, Rioja J, Ibarretxe D, Camacho A, Díaz-Díaz JL, Mangas A, Carbayo-Herencia JA, Ruiz-Ocaña P, Lamíquiz-Moneo I, Mosquera D, Sáenz P, Masana L, Muñiz-Grijalvo O, Pérez-Calahorra S, Valdivielso P, Suárez Tembra M, Iglesias GP, Carbayo Herencia J, Guerrero Buitrago C, Vila L, Morales Coca C, Llargués Rocabruna E, Perea Castillo V, Pedro-Botet J, Climent E, Mauri Pont M, Pinto X, Ortega Martínez de la Victoria E, Amor J, Zambón Rados D, Blanco Vaca F, Ramiro Lozano J, Fuentes Jiménez F, Soler I, Ferrer C, Zamora Cervantes A, Vila Belmonte A, Novoa Mogollón F, Sanchez-Hernández R, Expósito Montesdeoca A, Romero Jiménez M, González García M, Bueno Díez M, Brea Hernando A, Lahoz C, Mostaza Prieto J, Millán Núñez-Cortés J, Reinares García L, Blanco Echevarría A, Ariza Corbo MJ, Rioja Villodres J, Sánchez-Chaparro M, Jansen Chaparro S, Sáenz Aranzubía P, Martorell Mateu E, Almagro Múgica F, Muñiz Grijalvo O, Masana Martín L, Plana Gil N, Ibarretxe Gerediaga D, Rodríguez Borjabad C, Zabala López S, Hernández Mijares A, Ascaso Gimilio J, Pérez García L, Civeira Murillo F, Pérez-Calahorra S, Lamiquiz-Moneo I, Mateo Gallego R, Marco Benedí V, Ferrando Vela J. Molecular basis of the familial chylomicronemia syndrome in patients from the National Dyslipidemia Registry of the Spanish Atherosclerosis Society. J Clin Lipidol 2018; 12:1482-1492.e3. [DOI: 10.1016/j.jacl.2018.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/09/2018] [Accepted: 07/24/2018] [Indexed: 01/16/2023]
|
22
|
GPIHBP1 autoantibody syndrome during interferon β1a treatment. J Clin Lipidol 2018; 13:62-69. [PMID: 30514621 DOI: 10.1016/j.jacl.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Autoantibodies against glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) cause chylomicronemia by blocking the ability of GPIHBP1 to bind lipoprotein lipase (LPL) and transport the enzyme to its site of action in the capillary lumen. OBJECTIVE A patient with multiple sclerosis developed chylomicronemia during interferon (IFN) β1a therapy. The chylomicronemia resolved when the IFN β1a therapy was discontinued. Here, we sought to determine whether the drug-induced chylomicronemia was caused by GPIHBP1 autoantibodies. METHODS We tested plasma samples collected during and after IFN β1a therapy for GPIHBP1 autoantibodies (by western blotting and with enzyme-linked immunosorbent assays). We also tested whether the patient's plasma blocked the binding of LPL to GPIHBP1 on GPIHBP1-expressing cells. RESULTS During IFN β1a therapy, the plasma contained GPIHBP1 autoantibodies, and those autoantibodies blocked GPIHBP1's ability to bind LPL. Thus, the chylomicronemia was because of the GPIHBP1 autoantibody syndrome. Consistent with that diagnosis, the plasma levels of GPIHBP1 and LPL were very low. After IFN β1a therapy was stopped, the plasma triglyceride levels returned to normal, and GPIHBP1 autoantibodies were undetectable. CONCLUSION The appearance of GPIHBP1 autoantibodies during IFN β1a therapy caused chylomicronemia. The GPIHBP1 autoantibodies disappeared when the IFN β1a therapy was stopped, and the plasma triglyceride levels fell within the normal range.
Collapse
|
23
|
Miyashita K, Fukamachi I, Machida T, Nakajima K, Young SG, Murakami M, Beigneux AP, Nakajima K. An ELISA for quantifying GPIHBP1 autoantibodies and making a diagnosis of the GPIHBP1 autoantibody syndrome. Clin Chim Acta 2018; 487:174-178. [PMID: 30287259 DOI: 10.1016/j.cca.2018.09.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Autoantibodies against GPIHBP1, the endothelial cell transporter for lipoprotein lipase (LPL), cause severe hypertriglyceridemia ("GPIHBP1 autoantibody syndrome"). Affected patients have low serum GPIHBP1 and LPL levels. We report the development of a sensitive and specific ELISA, suitable for routine clinical use, to detect GPIHBP1 autoantibodies in serum and plasma. METHODS Serum and plasma samples were added to wells of an ELISA plate that had been coated with recombinant human GPIHBP1. GPIHBP1 autoantibodies bound to GPIHBP1 were detected with an HRP-labeled antibody against human immunoglobulin. Sensitivity, specificity, and reproducibility of the ELISA was evaluated with plasma or serum samples from patients with the GPIHBP1 autoantibody syndrome. RESULTS A solid-phase ELISA to detect and quantify GPIHBP1 autoantibodies in human plasma and serum was developed. Spiking recombinant human GPIHBP1 into the samples reduced the ability of the ELISA to detect GPIHBP1 autoantibodies. The ELISA is reproducible and sensitive; it can detect GPIHBP1 autoantibodies in samples diluted by >1000-fold. CONCLUSION We have developed a sensitive and specific ELISA for detecting GPIHBP1 autoantibodies in human serum and plasma; this assay will make it possible to rapidly diagnose the GPIHBP1 autoantibody syndrome.
Collapse
Affiliation(s)
| | | | - Tetsuo Machida
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kiyomi Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Stephen G Young
- Department of Medicine and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, United States; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, United States
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Anne P Beigneux
- Department of Medicine and David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90025, United States.
| | - Katsuyuki Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
24
|
Liu C, Li L, Guo D, Lv Y, Zheng X, Mo Z, Xie W. Lipoprotein lipase transporter GPIHBP1 and triglyceride-rich lipoprotein metabolism. Clin Chim Acta 2018; 487:33-40. [PMID: 30218660 DOI: 10.1016/j.cca.2018.09.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/11/2018] [Accepted: 09/11/2018] [Indexed: 02/05/2023]
Abstract
Increased plasma triglyceride serves as an independent risk factor for cardiovascular disease (CVD). Lipoprotein lipase (LPL), which hydrolyzes circulating triglyceride, plays a crucial role in normal lipid metabolism and energy balance. Hypertriglyceridemia is possibly caused by gene mutations resulting in LPL dysfunction. There are many factors that both positively and negatively interact with LPL thereby impacting TG lipolysis. Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a newly identified factor, appears essential for transporting LPL to the luminal side of the blood vessel and offering a platform for TG hydrolysis. Numerous lines of evidence indicate that GPIHBP1 exerts distinct functions and plays diverse roles in human triglyceride-rich lipoprotein (TRL) metabolism. In this review, we discuss the GPIHBP1 gene, protein, its expression and function and subsequently focus on its regulation and provide critical evidence supporting its role in TRL metabolism. Underlying mechanisms of action are highlighted, additional studies discussed and potential therapeutic targets reviewed.
Collapse
Affiliation(s)
- Chuhao Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China; 2016 Class of Excellent Doctor, University of South China, Hengyang 421001, Hunan, China
| | - Liang Li
- Department of Pathophysiology, University of South China, Hengyang 421001, Hunan, China
| | - Dongming Guo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China
| | - XiLong Zheng
- Department of Biochemistry and Molecular Biology, The Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, The University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary T2N 4N1, Alberta, Canada; Key Laboratory of Molecular Targets & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Zhongcheng Mo
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
25
|
Chen J, Chen Y, Wei Y, Tao X, Xu H, Liu Y, Zhu L, Tang G, Wen A, Lv D, Li X, Jiang Y. Activities Analysis and Polymorphisms Identification of GPIHBP1 Promoter Region in Porcine. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418060042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Gordts PLSM, Esko JD. The heparan sulfate proteoglycan grip on hyperlipidemia and atherosclerosis. Matrix Biol 2018; 71-72:262-282. [PMID: 29803939 DOI: 10.1016/j.matbio.2018.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where they interact with a plethora of proteins involved in lipid homeostasis and inflammation. Over the last decade, new insights have emerged regarding the mechanism and biological significance of these interactions in the context of cardiovascular disease. The majority of cardiovascular disease-related deaths are caused by complications of atherosclerosis, a disease that results in narrowing of the arterial lumen, thereby reducing blood flow to critical levels in vital organs, such as the heart and brain. Here, we discuss novel insights into how heparan sulfate proteoglycans modulate risk factors such as hyperlipidemia and inflammation that drive the initiation and progression of atherosclerotic plaques to their clinical critical endpoint.
Collapse
Affiliation(s)
- Philip L S M Gordts
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA.
| | - Jeffrey D Esko
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Larsson M, Allan CM, Heizer PJ, Tu Y, Sandoval NP, Jung RS, Walzem RL, Beigneux AP, Young SG, Fong LG. Impaired thermogenesis and sharp increases in plasma triglyceride levels in GPIHBP1-deficient mice during cold exposure. J Lipid Res 2018; 59:706-713. [PMID: 29449313 PMCID: PMC5880501 DOI: 10.1194/jlr.m083832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Indexed: 01/11/2023] Open
Abstract
Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), an endothelial cell protein, binds LPL in the subendothelial spaces and transports it to the capillary lumen. In Gpihbp1-/- mice, LPL remains stranded in the subendothelial spaces, causing hypertriglyceridemia, but how Gpihbp1-/- mice respond to metabolic stress (e.g., cold exposure) has never been studied. In wild-type mice, cold exposure increases LPL-mediated processing of triglyceride-rich lipoproteins (TRLs) in brown adipose tissue (BAT), providing fuel for thermogenesis and leading to lower plasma triglyceride levels. We suspected that defective TRL processing in Gpihbp1-/- mice might impair thermogenesis and blunt the fall in plasma triglyceride levels. Indeed, Gpihbp1-/- mice exhibited cold intolerance, but the effects on plasma triglyceride levels were paradoxical. Rather than falling, the plasma triglyceride levels increased sharply (from ∼4,000 to ∼15,000 mg/dl), likely because fatty acid release by peripheral tissues drives hepatic production of TRLs that cannot be processed. We predicted that the sharp increase in plasma triglyceride levels would not occur in Gpihbp1-/-Angptl4-/- mice, where LPL activity is higher and baseline plasma triglyceride levels are lower. Indeed, the plasma triglyceride levels in Gpihbp1-/-Angptl4-/- mice fell during cold exposure. Metabolic studies revealed increased levels of TRL processing in the BAT of Gpihbp1-/-Angptl4-/- mice.
Collapse
Affiliation(s)
- Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095.
| | - Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Patrick J Heizer
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Yiping Tu
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Norma P Sandoval
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Rosemary L Walzem
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095; Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095.
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
28
|
Miyashita K, Fukamachi I, Nagao M, Ishida T, Kobayashi J, Machida T, Nakajima K, Murakami M, Ploug M, Beigneux AP, Young SG, Nakajima K. An enzyme-linked immunosorbent assay for measuring GPIHBP1 levels in human plasma or serum. J Clin Lipidol 2018; 12:203-210.e1. [PMID: 29246728 PMCID: PMC5963937 DOI: 10.1016/j.jacl.2017.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1), a glycosylphosphatidylinositol (GPI)-anchored protein of capillary endothelial cells, transports lipoprotein lipase to the capillary lumen and is essential for the lipolytic processing of triglyceride-rich lipoproteins. OBJECTIVE Because some GPI-anchored proteins have been detected in plasma, we tested whether GPIHBP1 is present in human blood and whether GPIHBP1 deficiency or a history of cardiovascular disease affected GPIHBP1 circulating levels. METHODS We developed 2 monoclonal antibodies against GPIHBP1 and used the antibodies to establish a sandwich enzyme-linked immunosorbent assay (ELISA) to measure GPIHBP1 levels in human blood. RESULTS The GPIHBP1 ELISA was linear in the 8 to 500 pg/mL range and allowed the quantification of GPIHBP1 in serum and in pre- and post-heparin plasma (including lipemic samples). GPIHBP1 was undetectable in the plasma of subjects with null mutations in GPIHBP1. Serum GPIHBP1 median levels were 849 pg/mL (range: 740-1014) in healthy volunteers (n = 28) and 1087 pg/mL (range: 877-1371) in patients with a history of cardiovascular or metabolic disease (n = 415). There was an extremely small inverse correlation between GPIHBP1 and triglyceride levels (r = 0.109; P < .0275). GPIHBP1 levels tended to be slightly higher in patients who had a major cardiovascular event after revascularization. CONCLUSION We developed an ELISA for quantifying GPIHBP1 in human blood. This assay will be useful to identify patients with GPIHBP1 deficiency and patients with GPIHBP1 autoantibodies. The potential of plasma GPIHBP1 as a biomarker for metabolic or cardiovascular disease is yet questionable but needs additional testing.
Collapse
Affiliation(s)
| | | | - Manabu Nagao
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junji Kobayashi
- Department of General Internal Medicine, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Tetsuo Machida
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kiyomi Nakajima
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katsuyuki Nakajima
- Department of General Internal Medicine, Kanazawa Medical University, Kanazawa, Ishikawa, Japan; Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
29
|
He C, Hu X, Jung RS, Larsson M, Tu Y, Duarte-Vogel S, Kim P, Sandoval NP, Price TR, Allan CM, Raney B, Jiang H, Bensadoun A, Walzem RL, Kuo RI, Beigneux AP, Fong LG, Young SG. Lipoprotein lipase reaches the capillary lumen in chickens despite an apparent absence of GPIHBP1. JCI Insight 2017; 2:96783. [PMID: 29046479 DOI: 10.1172/jci.insight.96783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/11/2017] [Indexed: 12/17/2022] Open
Abstract
In mammals, GPIHBP1 is absolutely essential for transporting lipoprotein lipase (LPL) to the lumen of capillaries, where it hydrolyzes the triglycerides in triglyceride-rich lipoproteins. In all lower vertebrate species (e.g., birds, amphibians, reptiles, fish), a gene for LPL can be found easily, but a gene for GPIHBP1 has never been found. The obvious question is whether the LPL in lower vertebrates is able to reach the capillary lumen. Using purified antibodies against chicken LPL, we showed that LPL is present on capillary endothelial cells of chicken heart and adipose tissue, colocalizing with von Willebrand factor. When the antibodies against chicken LPL were injected intravenously into chickens, they bound to LPL on the luminal surface of capillaries in heart and adipose tissue. LPL was released rapidly from chicken hearts with an infusion of heparin, consistent with LPL being located inside blood vessels. Remarkably, chicken LPL bound in a specific fashion to mammalian GPIHBP1. However, we could not identify a gene for GPIHBP1 in the chicken genome, nor could we identify a transcript for GPIHBP1 in a large chicken RNA-seq data set. We conclude that LPL reaches the capillary lumen in chickens - as it does in mammals - despite an apparent absence of GPIHBP1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tara R Price
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, Texas, USA
| | | | - Brian Raney
- University of California, Santa Cruz Genomics Institute and
| | - Haibo Jiang
- Department of Medicine and.,Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia, Western Australia, Perth, Australia
| | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, New York, USA
| | - Rosemary L Walzem
- Department of Poultry Science and Faculty of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Richard I Kuo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Stephen G Young
- Department of Medicine and.,Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
30
|
Alterations in plasma triglycerides lipolysis in patients with history of multifactorial chylomicronemia. Atherosclerosis 2017; 265:22-28. [DOI: 10.1016/j.atherosclerosis.2017.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 11/19/2022]
|
31
|
Functional validation of GPIHBP1 and identification of a functional mutation in GPIHBP1 for milk fat traits in dairy cattle. Sci Rep 2017; 7:8546. [PMID: 28819221 PMCID: PMC5561204 DOI: 10.1038/s41598-017-08668-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/12/2017] [Indexed: 11/08/2022] Open
Abstract
In a previous genome-wide association study (GWAS) on milk production traits in a Chinese Holstein population, we revealed that GPIHBP1 is a novel promising candidate gene for milk fat content traits. In this study, we performed over-expression and RNAi experiments on GPIHBP1 in bovine primary mammary epithelial cells. The results showed that the expression of several important milk fat-related genes (LPL, CD36, VLDLR, ACACA and FASN) increased or decreased when the expression of GPIHBP1 was up- or down-regulated. To identify the potential functional SNP involved, we explored the genetic variants of GPIHBP1 and found that a G/A mutation (chr14:2553998) in the promoter region of GPIHBP1 significantly reduced promoter activity and had an effect on transcription factor binding sites. This finding was consistent with the lower expression of GPIHBP1 observed in the mammary gland tissue of cows harboring the homozygous AA mutation compared with wild-type homozygous GG or heterozygous AG. Furthermore, association analysis showed that cows with the AA genotype outperformed those with the GG and AG genotypes in terms of the milk fat percentage. Our study demonstrates that GPIHBP1 could be a strong candidate gene for milk fat content traits and, in particular, the G to A mutation at chr14:2553998 within GPIHBP1 could be a functional mutation related to its effects.
Collapse
|
32
|
GPIHBP1 autoantibodies in a patient with unexplained chylomicronemia. J Clin Lipidol 2017; 11:964-971. [PMID: 28666713 DOI: 10.1016/j.jacl.2017.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND GPIHBP1, a glycolipid-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the interstitial spaces and transports it to the capillary lumen. GPIHBP1 deficiency prevents LPL from reaching the capillary lumen, resulting in low intravascular LPL levels, impaired intravascular triglyceride processing, and severe hypertriglyceridemia (chylomicronemia). A recent study showed that some cases of hypertriglyceridemia are caused by autoantibodies against GPIHBP1 ("GPIHBP1 autoantibody syndrome"). OBJECTIVE Our objective was to gain additional insights into the frequency of the GPIHBP1 autoantibody syndrome in patients with unexplained chylomicronemia. METHODS We used enzyme-linked immunosorbent assays to screen for GPIHBP1 autoantibodies in 33 patients with unexplained chylomicronemia and then used Western blots and immunocytochemistry studies to characterize the GPIHBP1 autoantibodies. RESULTS The plasma of 1 patient, a 36-year-old man with severe hypertriglyceridemia, contained GPIHBP1 autoantibodies. The autoantibodies, which were easily detectable by Western blot, blocked the ability of GPIHBP1 to bind LPL. The plasma levels of LPL mass and activity were low. The patient had no history of autoimmune disease, but his plasma was positive for antinuclear antibodies. CONCLUSIONS One of 33 patients with unexplained chylomicronemia had the GPIHBP1 autoantibody syndrome. Additional studies in large lipid clinics will be helpful for better defining the frequency of this syndrome and for exploring the best strategies for treatment.
Collapse
|
33
|
Allan CM, Jung CJ, Larsson M, Heizer PJ, Tu Y, Sandoval NP, Dang TLP, Jung RS, Beigneux AP, de Jong PJ, Fong LG, Young SG. Mutating a conserved cysteine in GPIHBP1 reduces amounts of GPIHBP1 in capillaries and abolishes LPL binding. J Lipid Res 2017; 58:1453-1461. [PMID: 28476858 DOI: 10.1194/jlr.m076943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/04/2017] [Indexed: 12/22/2022] Open
Abstract
Mutation of conserved cysteines in proteins of the Ly6 family cause human disease-chylomicronemia in the case of glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1) and paroxysmal nocturnal hemoglobinuria in the case of CD59. A mutation in a conserved cysteine in CD59 prevented the protein from reaching the surface of blood cells. In contrast, mutation of conserved cysteines in human GPIHBP1 had little effect on GPIHBP1 trafficking to the surface of cultured CHO cells. The latter findings were somewhat surprising and raised questions about whether CHO cell studies accurately model the fate of mutant GPIHBP1 proteins in vivo. To explore this concern, we created mice harboring a GPIHBP1 cysteine mutation (p.C63Y). The p.C63Y mutation abolished the ability of mouse GPIHBP1 to bind LPL, resulting in severe chylomicronemia. The mutant GPIHBP1 was detectable by immunohistochemistry on the surface of endothelial cells, but the level of expression was ∼70% lower than in WT mice. The mutant GPIHBP1 protein in mouse tissues was predominantly monomeric. We conclude that mutation of a conserved cysteine in GPIHBP1 abolishes the ability of GPIHBP1 to bind LPL, resulting in mislocalization of LPL and severe chylomicronemia. The mutation reduced but did not eliminate GPIHBP1 on the surface of endothelial cells in vivo.
Collapse
Affiliation(s)
- Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Cris J Jung
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Patrick J Heizer
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Yiping Tu
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Norma P Sandoval
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Tiffany Ly P Dang
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095.
| | - Pieter J de Jong
- Children's Hospital Oakland Research Institute, Oakland, CA 94609
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095.
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095; Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095.
| |
Collapse
|
34
|
Lee J, Hegele RA. Investigated treatments for lipoprotein lipase deficiency and related metabolic disorders. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1311784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Beigneux AP, Miyashita K, Ploug M, Blom DJ, Ai M, Linton MF, Khovidhunkit W, Dufour R, Garg A, McMahon MA, Pullinger CR, Sandoval NP, Hu X, Allan CM, Larsson M, Machida T, Murakami M, Reue K, Tontonoz P, Goldberg IJ, Moulin P, Charrière S, Fong LG, Nakajima K, Young SG. Autoantibodies against GPIHBP1 as a Cause of Hypertriglyceridemia. N Engl J Med 2017; 376:1647-1658. [PMID: 28402248 PMCID: PMC5555413 DOI: 10.1056/nejmoa1611930] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND A protein that is expressed on capillary endothelial cells, called GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1), binds lipoprotein lipase and shuttles it to its site of action in the capillary lumen. A deficiency in GPIHBP1 prevents lipoprotein lipase from reaching the capillary lumen. Patients with GPIHBP1 deficiency have low plasma levels of lipoprotein lipase, impaired intravascular hydrolysis of triglycerides, and severe hypertriglyceridemia (chylomicronemia). During the characterization of a monoclonal antibody-based immunoassay for GPIHBP1, we encountered two plasma samples (both from patients with chylomicronemia) that contained an interfering substance that made it impossible to measure GPIHBP1. That finding raised the possibility that those samples might contain GPIHBP1 autoantibodies. METHODS Using a combination of immunoassays, Western blot analyses, and immunocytochemical studies, we tested the two plasma samples (as well as samples from other patients with chylomicronemia) for the presence of GPIHBP1 autoantibodies. We also tested the ability of GPIHBP1 autoantibodies to block the binding of lipoprotein lipase to GPIHBP1. RESULTS We identified GPIHBP1 autoantibodies in six patients with chylomicronemia and found that these autoantibodies blocked the binding of lipoprotein lipase to GPIHBP1. As in patients with GPIHBP1 deficiency, those with GPIHBP1 autoantibodies had low plasma levels of lipoprotein lipase. Three of the six patients had systemic lupus erythematosus. One of these patients who had GPIHBP1 autoantibodies delivered a baby with plasma containing maternal GPIHBP1 autoantibodies; the infant had severe but transient chylomicronemia. Two of the patients with chylomicronemia and GPIHBP1 autoantibodies had a response to treatment with immunosuppressive agents. CONCLUSIONS In six patients with chylomicronemia, GPIHBP1 autoantibodies blocked the ability of GPIHBP1 to bind and transport lipoprotein lipase, thereby interfering with lipoprotein lipase-mediated processing of triglyceride-rich lipoproteins and causing severe hypertriglyceridemia. (Funded by the National Heart, Lung, and Blood Institute and the Leducq Foundation.).
Collapse
Affiliation(s)
- Anne P Beigneux
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Kazuya Miyashita
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Michael Ploug
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Dirk J Blom
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Masumi Ai
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - MacRae F Linton
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Weerapan Khovidhunkit
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Robert Dufour
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Abhimanyu Garg
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Maureen A McMahon
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Clive R Pullinger
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Norma P Sandoval
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Xuchen Hu
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Christopher M Allan
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Mikael Larsson
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Tetsuo Machida
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Masami Murakami
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Karen Reue
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Peter Tontonoz
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Ira J Goldberg
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Philippe Moulin
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Sybil Charrière
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Loren G Fong
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Katsuyuki Nakajima
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| | - Stephen G Young
- From the Departments of Medicine (A.P.B., M.A.M., N.P.S., X.H., C.M.A., M.L., L.G.F., S.G.Y.), Rheumatology (M.A.M.), Human Genetics (K.R., S.G.Y.), and Pathology and Laboratory Medicine (P.T.), David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, and the Cardiovascular Research Institute and Department of Physiological Nursing, University of California, San Francisco, San Francisco (C.R.P.); the Department of Clinical Laboratory Medicine, Gunma University Graduate School of Medicine, Maebashi (K.M., T.M., M.M., K.N.), and the Department of Insured Medical Care Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo (M.A.) - both in Japan; the Finsen Laboratory, Rigshospitalet, Copenhagen (M.P.); the Department of Medicine, University of Cape Town, Cape Town, South Africa (D.J.B.); the Departments of Medicine and Pharmacology, Vanderbilt University Medical Center, Nashville (M.F.L.); the Department of Medicine, Faculty of Medicine, Chulalongkorn University and Thai Red Cross Society, Bangkok, Thailand (W.K.); Clinique de Prévention Cardiovasculaire, Institut de Recherches Cliniques de Montréal, University of Montreal, Montreal (R.D.); the Department of Medicine, University of Texas Southwestern Medical Center, Dallas (A.G.); the Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, New York University School of Medicine, New York (I.J.G.); and Fédération d'Endocrinologie, Groupement Hospitalier Est, Hospices Civils de Lyon, INSERM UMR-1060 Carmen, Université de Lyon, Lyon, France (P.M., S.C.)
| |
Collapse
|
36
|
Abstract
Lipoprotein lipase (LPL) is a rate-limiting enzyme for hydrolysing circulating triglycerides (TG) into free fatty acids that are taken up by peripheral tissues. Postprandial LPL activity rises in white adipose tissue (WAT), but declines in the heart and skeletal muscle, thereby directing circulating TG to WAT for storage; the reverse is true during fasting. However, the mechanism for the tissue-specific regulation of LPL activity during the fed–fast cycle has been elusive. Recent identification of lipasin/angiopoietin-like 8 (Angptl8), a feeding-induced hepatokine, together with Angptl3 and Angptl4, provides intriguing, yet puzzling, insights, because all the three Angptl members are LPL inhibitors, and the deficiency (overexpression) of any one causes hypotriglyceridaemia (hypertriglyceridaemia). Then, why does nature need all of the three? Our recent data that Angptl8 negatively regulates LPL activity specifically in cardiac and skeletal muscles suggest an Angptl3-4-8 model: feeding induces Angptl8, activating the Angptl8–Angptl3 pathway, which inhibits LPL in cardiac and skeletal muscles, thereby making circulating TG available for uptake by WAT, in which LPL activity is elevated owing to diminished Angptl4; the reverse is true during fasting, which suppresses Angptl8 but induces Angptl4, thereby directing TG to muscles. The model suggests a general framework for how TG trafficking is regulated.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, 540 East Canfield Street, Detroit, MI 48201, USA
| |
Collapse
|
37
|
Mysling S, Kristensen KK, Larsson M, Kovrov O, Bensadouen A, Jørgensen TJ, Olivecrona G, Young SG, Ploug M. The angiopoietin-like protein ANGPTL4 catalyzes unfolding of the hydrolase domain in lipoprotein lipase and the endothelial membrane protein GPIHBP1 counteracts this unfolding. eLife 2016; 5. [PMID: 27929370 PMCID: PMC5148603 DOI: 10.7554/elife.20958] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
Lipoprotein lipase (LPL) undergoes spontaneous inactivation via global unfolding and this unfolding is prevented by GPIHBP1 (Mysling et al., 2016). We now show: (1) that ANGPTL4 inactivates LPL by catalyzing the unfolding of its hydrolase domain; (2) that binding to GPIHBP1 renders LPL largely refractory to this inhibition; and (3) that both the LU domain and the intrinsically disordered acidic domain of GPIHBP1 are required for this protective effect. Genetic studies have found that a common polymorphic variant in ANGPTL4 results in lower plasma triglyceride levels. We now report: (1) that this ANGPTL4 variant is less efficient in catalyzing the unfolding of LPL; and (2) that its Glu-to-Lys substitution destabilizes its N-terminal α-helix. Our work elucidates the molecular basis for regulation of LPL activity by ANGPTL4, highlights the physiological relevance of the inherent instability of LPL, and sheds light on the molecular defects in a clinically relevant variant of ANGPTL4. DOI:http://dx.doi.org/10.7554/eLife.20958.001
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Oleg Kovrov
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Allan CM, Larsson M, Jung RS, Ploug M, Bensadoun A, Beigneux AP, Fong LG, Young SG. Mobility of "HSPG-bound" LPL explains how LPL is able to reach GPIHBP1 on capillaries. J Lipid Res 2016; 58:216-225. [PMID: 27811232 DOI: 10.1194/jlr.m072520] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 10/31/2016] [Indexed: 12/22/2022] Open
Abstract
In mice lacking glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1), the LPL secreted by adipocytes and myocytes remains bound to heparan sulfate proteoglycans (HSPGs) on all cells within tissues. That observation raises a perplexing issue: Why isn't the freshly secreted LPL in wild-type mice captured by the same HSPGs, thereby preventing LPL from reaching GPIHBP1 on capillaries? We hypothesized that LPL-HSPG interactions are transient, allowing the LPL to detach and move to GPIHBP1 on capillaries. Indeed, we found that LPL detaches from HSPGs on cultured cells and moves to: 1) soluble GPIHBP1 in the cell culture medium; 2) GPIHBP1-coated agarose beads; and 3) nearby GPIHBP1-expressing cells. Movement of HSPG-bound LPL to GPIHBP1 did not occur when GPIHBP1 contained a Ly6 domain missense mutation (W109S), but was almost normal when GPIHBP1's acidic domain was mutated. To test the mobility of HSPG-bound LPL in vivo, we injected GPIHBP1-coated agarose beads into the brown adipose tissue of GPIHBP1-deficient mice. LPL moved quickly from HSPGs on adipocytes to GPIHBP1-coated beads, thereby depleting LPL stores on the surface of adipocytes. We conclude that HSPG-bound LPL in the interstitial spaces of tissues is mobile, allowing the LPL to move to GPIHBP1 on endothelial cells.
Collapse
Affiliation(s)
- Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen N, Denmark and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-220 Copenhagen N, Denmark
| | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, NY 14853
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA 90095 .,Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
39
|
Allan CM, Larsson M, Hu X, He C, Jung RS, Mapar A, Voss C, Miyashita K, Machida T, Murakami M, Nakajima K, Bensadoun A, Ploug M, Fong LG, Young SG, Beigneux AP. An LPL-specific monoclonal antibody, 88B8, that abolishes the binding of LPL to GPIHBP1. J Lipid Res 2016; 57:1889-1898. [PMID: 27494936 DOI: 10.1194/jlr.m070813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/26/2022] Open
Abstract
LPL contains two principal domains: an amino-terminal catalytic domain (residues 1-297) and a carboxyl-terminal domain (residues 298-448) that is important for binding lipids and binding glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1) (an endothelial cell protein that shuttles LPL to the capillary lumen). The LPL sequences required for GPIHBP1 binding have not been examined in detail, but one study suggested that sequences near LPL's carboxyl terminus (residues ∼403-438) were crucial. Here, we tested the ability of LPL-specific monoclonal antibodies (mAbs) to block the binding of LPL to GPIHBP1. One antibody, 88B8, abolished LPL binding to GPIHBP1. Consistent with those results, antibody 88B8 could not bind to GPIHBP1-bound LPL on cultured cells. Antibody 88B8 bound poorly to LPL proteins with amino acid substitutions that interfered with GPIHBP1 binding (e.g., C418Y, E421K). However, the sequences near LPL's carboxyl terminus (residues ∼403-438) were not sufficient for 88B8 binding; upstream sequences (residues 298-400) were also required. Additional studies showed that these same sequences are required for LPL binding to GPIHBP1. In conclusion, we identified an LPL mAb that binds to LPL's GPIHBP1-binding domain. The binding of both antibody 88B8 and GPIHBP1 to LPL depends on large segments of LPL's carboxyl-terminal domain.
Collapse
Affiliation(s)
- Christopher M Allan
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Mikael Larsson
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Xuchen Hu
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Cuiwen He
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Rachel S Jung
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Alaleh Mapar
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | - Constance Voss
- Departments of Medicine University of California Los Angeles, Los Angeles, CA
| | | | - Tetsuo Machida
- Gunma University, Graduate School of Medicine, Maebashi, Japan
| | - Masami Murakami
- Gunma University, Graduate School of Medicine, Maebashi, Japan
| | | | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, NY
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Loren G Fong
- Departments of Medicine University of California Los Angeles, Los Angeles, CA.
| | - Stephen G Young
- Departments of Medicine University of California Los Angeles, Los Angeles, CA; Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA.
| | - Anne P Beigneux
- Departments of Medicine University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
40
|
Patni N, Brothers J, Xing C, Garg A. Type 1 hyperlipoproteinemia in a child with large homozygous deletion encompassing GPIHBP1. J Clin Lipidol 2016; 10:1035-1039.e2. [DOI: 10.1016/j.jacl.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/30/2016] [Accepted: 04/03/2016] [Indexed: 01/12/2023]
|
41
|
Fong LG, Young SG, Beigneux AP, Bensadoun A, Oberer M, Jiang H, Ploug M. GPIHBP1 and Plasma Triglyceride Metabolism. Trends Endocrinol Metab 2016; 27:455-469. [PMID: 27185325 PMCID: PMC4927088 DOI: 10.1016/j.tem.2016.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
GPIHBP1, a GPI-anchored protein in capillary endothelial cells, is crucial for the lipolytic processing of triglyceride-rich lipoproteins (TRLs). GPIHBP1 shuttles lipoprotein lipase (LPL) to its site of action in the capillary lumen and is essential for the margination of TRLs along capillaries - such that lipolytic processing can proceed. GPIHBP1 also reduces the unfolding of the LPL catalytic domain, thereby stabilizing LPL catalytic activity. Many different GPIHBP1 mutations have been identified in patients with severe hypertriglyceridemia (chylomicronemia), the majority of which interfere with folding of the protein and abolish its capacity to bind and transport LPL. The discovery of GPIHBP1 has substantially revised our understanding of intravascular triglyceride metabolism but has also raised many new questions for future research.
Collapse
Affiliation(s)
- Loren G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - Anne P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - André Bensadoun
- Division of Nutritional Science, Cornell University, Ithaca, NY 14853, USA
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz and BioTechMed, Graz, Austria
| | - Haibo Jiang
- Centre for Microscopy, Characterisation, and Analysis, The University of Western Australia
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, 2200 Copenhagen N, Denmark; Biotech Research and Innovation Centre (BRIC), University of Copenhagen, 220 Copenhagen N, Denmark.
| |
Collapse
|
42
|
Clinical and genetic features of 3 patients with familial chylomicronemia due to mutations in GPIHBP1 gene. J Clin Lipidol 2016; 10:915-921.e4. [PMID: 27578123 DOI: 10.1016/j.jacl.2016.03.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/11/2016] [Accepted: 03/12/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Familial chylomicronemia is a recessive disorder that may be due to mutations in lipoprotein lipase (LPL) and in other proteins such as apolipoprotein C-II and apolipoprotein A-V (activators of LPL), GPIHBP1 (the molecular platform required for LPL activity on endothelial surface), and LMF1 (a factor required for intracellular formation of active LPL). METHODS We sequenced the familial chylomicronemia candidate genes in 2 adult females presenting long-standing hypertriglyceridemia and a history of acute pancreatitis. RESULTS Both probands had plasma triglyceride >10 mmol/L but no mutations in the LPL gene. The sequence of the other candidate genes showed that one patient was homozygous for a novel missense mutation p.(Cys83Arg), and the other was homozygous for a previously reported nonsense mutation p.(Cys 89*), respectively, in GPIHBP1. Family screening showed that the hypertriglyceridemic brother of the p.(Cys83Arg) homozygote was also homozygous for this mutation. He had no history of pancreatitis. The p.(Cys83Arg) heterozygous carriers had normal triglyceride levels. The substitution of a cysteine residue in the Ly6 domain of GPIHBP1 is predicted to abolish one of the disulfide bridges required to maintain the structure of GPIHBP1. The p.(Cys89*) mutation results in a truncated protein devoid of function. CONCLUSIONS Both mutant GPIHBP1 proteins are expected to be incapable of transferring LPL from the subendothelial space to the endothelial surface.
Collapse
|
43
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
44
|
Mysling S, Kristensen KK, Larsson M, Beigneux AP, Gårdsvoll H, Fong LG, Bensadouen A, Jørgensen TJ, Young SG, Ploug M. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain. eLife 2016; 5:e12095. [PMID: 26725083 PMCID: PMC4755760 DOI: 10.7554/elife.12095] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/02/2016] [Indexed: 12/19/2022] Open
Abstract
GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and their lipolytic processing. The current work conceptualizes a model for the GPIHBP1•LPL interaction based on biophysical measurements with hydrogen-deuterium exchange/mass spectrometry, surface plasmon resonance, and zero-length cross-linking. According to this model, GPIHBP1 comprises two functionally distinct domains: (1) an intrinsically disordered acidic N-terminal domain; and (2) a folded C-terminal domain that tethers GPIHBP1 to the cell membrane by glycosylphosphatidylinositol. We demonstrate that these domains serve different roles in regulating the kinetics of LPL binding. Importantly, the acidic domain stabilizes LPL catalytic activity by mitigating the global unfolding of LPL's catalytic domain. This study provides a conceptual framework for understanding intravascular lipolysis and GPIHBP1 and LPL mutations causing familial chylomicronemia. DOI:http://dx.doi.org/10.7554/eLife.12095.001 Fat is an important part of our diet. The intestines absorb fats and package them into particles called lipoproteins. After reaching the bloodstream, the fat molecules (lipids) in the lipoproteins are broken down by an enzyme called lipoprotein lipase (LPL), which is located along the surface of small blood vessels. This releases nutrients that can be used by vital tissues – mainly the heart, skeletal muscle, and adipose tissues. LPL is produced by muscle and adipose tissue, but it is quickly swept up by a protein called GPIHBP1 and shuttled to its site of action inside the blood vessels. Mutations that alter the structure of LPL or GPIHBP1 can prevent the breakdown of lipids, resulting in high levels of lipids in the blood. This can lead to inflammation in the pancreas and also increases the risk of heart attacks and strokes. Many earlier studies have examined the properties of LPL, but our understanding of GPIHBP1 has been limited, mainly because it has been difficult to purify GPIHBP1 for analysis. Using genetically altered insect cells, Mysling et al. were able to purify two different forms of GPIHBP1 – a full-length version and a shorter version that lacked a small section at the end of the molecule known as the acidic domain. This revealed that the opposite end of the molecule – called the carboxyl-terminal domain – is primarily responsible for binding LPL and anchoring it inside blood vessels. Once LPL is bound to GPIHBP1, the acidic domain of GPIHBP1 helps to stabilize LPL. If GPIHBP1’s acidic domain is missing then LPL is more susceptible to losing its structure, rendering it incapable of breaking down the lipids in the blood. Mysling et al. describe a new model for how LPL and GPIHBP1 interact that explains how specific mutations in the genes that encode these proteins interfere with the delivery of LPL to small blood vessels. In the future, this could help researchers to develop new strategies to treat people with high levels of lipids in their blood. DOI:http://dx.doi.org/10.7554/eLife.12095.002
Collapse
Affiliation(s)
- Simon Mysling
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Mikael Larsson
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Anne P Beigneux
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Henrik Gårdsvoll
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - André Bensadouen
- Division of Nutritional Science, Cornell University, Ithaca, United States
| | - Thomas Jd Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Ariza MJ, Martínez-Hernández PL, Ibarretxe D, Rabacchi C, Rioja J, Grande-Aragón C, Plana N, Tarugi P, Olivecrona G, Calandra S, Valdivielso P. Novel mutations in the GPIHBP1 gene identified in 2 patients with recurrent acute pancreatitis. J Clin Lipidol 2015; 10:92-100.e1. [PMID: 26892125 DOI: 10.1016/j.jacl.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/09/2015] [Accepted: 09/16/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) has been demonstrated to be essential for the in vivo function of lipoprotein lipase (LPL), the major triglyceride (TG)-hydrolyzing enzyme involved in the intravascular lipolysis of TG-rich lipoproteins. Recently, loss-of-function mutations of GPIHBP1 have been reported as the cause of type I hyperlipoproteinemia in several patients. METHODS Two unrelated patients were referred to our Lipid Units because of a severe hypertriglyceridemia and recurrent pancreatitis. We measured LPL activity in postheparin plasma and serum ApoCII and sequenced LPL, APOC2, and GPIHBP1. RESULTS The 2 patients exhibited very low LPL activity not associated with mutations in LPL gene or with ApoCII deficiency. The sequence of GPIHBP1 revealed 2 novel point mutations. One patient (proband 1) was found to be homozygous for a C>A transversion in exon 3 resulting in the conversion of threonine to lysine at position 80 (p.Thr80Lys). The other patient (proband 2) was found to be homozygous for a G>T transversion in the third base of the ATG translation initiation codon in exon 1, resulting in the conversion of methionine to isoleucine (p.Met1Ile). CONCLUSION In conclusion, we have identified 2 novel GPIHBP1 missense mutations in 2 unrelated patients as the cause of their severe hypertriglyceridemia.
Collapse
Affiliation(s)
- María José Ariza
- Department of Medicine and Dermatology, Lipids and Atherosclerosis Laboratory, CIMES, University of Málaga, Málaga, Spain.
| | | | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Claudio Rabacchi
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - José Rioja
- Department of Medicine and Dermatology, Lipids and Atherosclerosis Laboratory, CIMES, University of Málaga, Málaga, Spain
| | | | - Nuria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Reus, Spain
| | - Patrizia Tarugi
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Gunilla Olivecrona
- Department of Medical Biosciences, Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia Modena, Italy
| | - Pedro Valdivielso
- Department of Medicine and Dermatology, Lipids and Atherosclerosis Laboratory, CIMES, University of Málaga, Málaga, Spain; Internal Medicine Unit, Virgen de la Victoria University Hospital, Málaga, Spain
| |
Collapse
|
46
|
Adeyo O, Oberer M, Ploug M, Fong LG, Young SG, Beigneux AP. Heterogeneity in the properties of mutant secreted lymphocyte antigen 6/urokinase receptor-related protein 1 (SLURP1) in Mal de Meleda. Br J Dermatol 2015; 173:1066-9. [PMID: 25919322 DOI: 10.1111/bjd.13868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- O Adeyo
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, U.S.A
| | - M Oberer
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, A-8010, Graz, Austria
| | - M Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - L G Fong
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, U.S.A
| | - S G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, U.S.A.,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, U.S.A
| | - A P Beigneux
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 90095, CA, U.S.A
| |
Collapse
|
47
|
Xie SL, Chen TZ, Huang XL, Chen C, Jin R, Huang ZM, Zhou MT. Genetic Variants Associated with Gestational Hypertriglyceridemia and Pancreatitis. PLoS One 2015; 10:e0129488. [PMID: 26079787 PMCID: PMC4469420 DOI: 10.1371/journal.pone.0129488] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Severe hypertriglyceridemia is a well-known cause of pancreatitis. Usually, there is a moderate increase in plasma triglyceride level during pregnancy. Additionally, certain pre-existing genetic traits may render a pregnant woman susceptible to development of severe hypertriglyceridemia and pancreatitis, especially in the third trimester. To elucidate the underlying mechanism of gestational hypertriglyceridemic pancreatitis, we undertook DNA mutation analysis of the lipoprotein lipase (LPL), apolipoprotein C2 (APOC2), apolipoprotein A5 (APOA5), lipase maturation factor 1 (LMF1), and glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) genes in five unrelated pregnant Chinese women with severe hypertriglyceridemia and pancreatitis. DNA sequencing showed that three out of five patients had the same homozygous variation, p.G185C, in APOA5 gene. One patient had a compound heterozygous mutation, p.A98T and p.L279V, in LPL gene. Another patient had a compound heterozygous mutation, p.A98T & p.C14F in LPL and GPIHBP1 gene, respectively. No mutations were seen in APOC2 or LMF1 genes. All patients were diagnosed with partial LPL deficiency in non-pregnant state. As revealed in our study, genetic variants appear to play an important role in the development of severe gestational hypertriglyceridemia, and, p.G185C mutation in APOA5 gene appears to be the most common variant implicated in the Chinese population. Antenatal screening for mutations in susceptible women, combined with subsequent interventions may be invaluable in the prevention of potentially life threatening gestational hypertriglyceridemia-induced pancreatitis.
Collapse
Affiliation(s)
- Sai-Li Xie
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tan-Zhou Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xie-Lin Huang
- Ren-Ji Study, Wenzhou Medical University, Wenzhou, China
| | - Chao Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Jin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhi-Ming Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (M-TZ); (Z-MH)
| | - Meng-Tao Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- * E-mail: (M-TZ); (Z-MH)
| |
Collapse
|
48
|
Abstract
This Review discusses new developments in understanding the basis of chylomicronaemia--a challenging metabolic disorder for which there is an unmet clinical need. Chylomicronaemia presents in two distinct primary forms. The first form is very rare monogenic early-onset chylomicronaemia, which presents in childhood or adolescence and is often caused by homozygous mutations in the gene encoding lipoprotein lipase (LPL), its cofactors apolipoprotein C-II or apolipoprotein A-V, the LPL chaperone lipase maturation factor 1 or glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1. The second form, polygenic late-onset chylomicronaemia, which is caused by an accumulation of several genetic variants, can be exacerbated by secondary factors, such as poor diet, obesity, alcohol intake and uncontrolled type 1 or type 2 diabetes mellitus, and is more common than early-onset chylomicronaemia. Both forms of chylomicronaemia are associated with an increased risk of life-threatening pancreatitis; the polygenic form might also be associated with an increased risk of cardiovascular disease. Treatment of chylomicronaemia focuses on restriction of dietary fat and control of secondary factors, as available pharmacological therapies are only minimally effective. Emerging therapies that might prove more effective than existing agents include LPL gene therapy, inhibition of microsomal triglyceride transfer protein and diacylglycerol O-acyltransferase 1, and interference with the production and secretion of apoC-III and angiopoietin-like protein 3.
Collapse
Affiliation(s)
- Amanda J Brahm
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
49
|
Reimund M, Larsson M, Kovrov O, Kasvandik S, Olivecrona G, Lookene A. Evidence for Two Distinct Binding Sites for Lipoprotein Lipase on Glycosylphosphatidylinositol-anchored High Density Lipoprotein-binding Protein 1 (GPIHBP1). J Biol Chem 2015; 290:13919-34. [PMID: 25873395 DOI: 10.1074/jbc.m114.634626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/20/2023] Open
Abstract
GPIHBP1 is an endothelial membrane protein that transports lipoprotein lipase (LPL) from the subendothelial space to the luminal side of the capillary endothelium. Here, we provide evidence that two regions of GPIHBP1, the acidic N-terminal domain and the central Ly6 domain, interact with LPL as two distinct binding sites. This conclusion is based on comparative binding studies performed with a peptide corresponding to the N-terminal domain of GPIHBP1, the Ly6 domain of GPIHBP1, wild type GPIHBP1, and the Ly6 domain mutant GPIHBP1 Q114P. Although LPL and the N-terminal domain formed a tight but short lived complex, characterized by fast on- and off-rates, the complex between LPL and the Ly6 domain formed more slowly and persisted for a longer time. Unlike the interaction of LPL with the Ly6 domain, the interaction of LPL with the N-terminal domain was significantly weakened by salt. The Q114P mutant bound LPL similarly to the N-terminal domain of GPIHBP1. Heparin dissociated LPL from the N-terminal domain, and partially from wild type GPIHBP1, but was unable to elute the enzyme from the Ly6 domain. When LPL was in complex with the acidic peptide corresponding to the N-terminal domain of GPIHBP1, the enzyme retained its affinity for the Ly6 domain. Furthermore, LPL that was bound to the N-terminal domain interacted with lipoproteins, whereas LPL bound to the Ly6 domain did not. In summary, our data suggest that the two domains of GPIHBP1 interact independently with LPL and that the functionality of LPL depends on its localization on GPIHBP1.
Collapse
Affiliation(s)
- Mart Reimund
- From the Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Mikael Larsson
- the Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden, and
| | - Oleg Kovrov
- the Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden, and
| | - Sergo Kasvandik
- the Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Gunilla Olivecrona
- the Department of Medical Biosciences, Umeå University, SE-901 87 Umeå, Sweden, and
| | - Aivar Lookene
- From the Department of Chemistry, Tallinn University of Technology, Tallinn 12618, Estonia,
| |
Collapse
|
50
|
Affiliation(s)
- Sara N Vallerie
- From the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (S.N.V., K.E.B.), and Department of Pathology (K.E.B.), Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA
| | - Karin E Bornfeldt
- From the Department of Medicine, Division of Metabolism, Endocrinology and Nutrition (S.N.V., K.E.B.), and Department of Pathology (K.E.B.), Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|