1
|
Kerdiles O, Oye Mintsa Mi-mba MF, Coulombe K, Tremblay C, Émond V, Saint-Pierre M, Rouxel C, Berthiaume L, Julien P, Cicchetti F, Calon F. Additive neurorestorative effects of exercise and docosahexaenoic acid intake in a mouse model of Parkinson's disease. Neural Regen Res 2025; 20:574-586. [PMID: 38819068 PMCID: PMC11317935 DOI: 10.4103/nrr.nrr-d-23-00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00033/figure1/v/2024-05-28T214302Z/r/image-tiff There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson's disease after diagnosis. Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids, such as docosahexaenoic acid, and exercise in Parkinson's disease, we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway. First, mice received a unilateral stereotactic injection of 6-hydroxydopamine into the striatum to establish an animal model of nigrostriatal denervation. Four weeks after lesion, animals were fed a docosahexaenoic acid-enriched or a control diet for the next 8 weeks. During this period, the animals had access to a running wheel, which they could use or not. Docosahexaenoic acid treatment, voluntary exercise, or the combination of both had no effect on (i) distance traveled in the open field test, (ii) the percentage of contraversive rotations in the apomorphine-induction test or (iii) the number of tyrosine-hydroxylase-positive cells in the substantia nigra pars compacta. However, the docosahexaenoic acid diet increased the number of tyrosine-hydroxylase-positive terminals and induced a rise in dopamine concentrations in the lesioned striatum. Compared to docosahexaenoic acid treatment or exercise alone, the combination of docosahexaenoic acid and exercise (i) improved forelimb balance in the stepping test, (ii) decreased the striatal DOPAC/dopamine ratio and (iii) led to increased dopamine transporter levels in the lesioned striatum. The present results suggest that the combination of exercise and docosahexaenoic acid may act synergistically in the striatum of mice with a unilateral lesion of the dopaminergic system and provide support for clinical trials combining nutrition and physical exercise in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Olivier Kerdiles
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Méryl-Farelle Oye Mintsa Mi-mba
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Katherine Coulombe
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Cyntia Tremblay
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Vincent Émond
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| | - Martine Saint-Pierre
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
| | - Clémence Rouxel
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
| | - Line Berthiaume
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Pierre Julien
- Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec-Université Laval, Quebec, QC, Canada
- Département de Médecine, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Francesca Cicchetti
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Département de Psychiatrie et Neurosciences, Faculté de Médecine, Quebec, QC, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, Canada
- Axe Neuroscience, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, Canada
- Institute of Nutrition and Functional Foods, Quebec, QC, Canada
- Optinutribrain International Associated Laboratory (NutriNeuro, France; INAF, Canada), Quebec, QC, Canada
| |
Collapse
|
2
|
Poplawski J, Montina T, Metz GAS. Early life stress shifts critical periods and causes precocious visual cortex development. PLoS One 2024; 19:e0316384. [PMID: 39739746 DOI: 10.1371/journal.pone.0316384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/10/2024] [Indexed: 01/02/2025] Open
Abstract
The developing nervous system displays remarkable plasticity in response to sensory stimulation during critical periods of development. Critical periods may also increase the brain's vulnerability to adverse experiences. Here we show that early-life stress (ELS) in mice shifts the timing of critical periods in the visual cortex. ELS induced by animal transportation on postnatal day 12 accelerated the opening and closing of the visual cortex critical period along with earlier maturation of visual acuity. Staining of a molecular correlate that marks the end of critical period plasticity revealed premature emergence of inhibitory perineuronal nets (PNNs) following ELS. ELS also drove lasting changes in visual cortex mRNA expression affecting genes linked to psychiatric disease risk, with hemispheric asymmetries favoring the right side. NMR spectroscopy and a metabolomics approach revealed that ELS was accompanied by activated energy metabolism and protein biosynthesis. Thus, ELS may accelerate visual system development, resulting in premature opening and closing of critical period plasticity. Overall, the data suggest that ELS desynchronizes the orchestrated temporal sequence of regional brain development potentially leading to long-term functional deficiencies. These observations provide new insights into a neurodevelopmental expense to adaptative brain plasticity. These findings also suggest that shipment of laboratory animals during vulnerable developmental ages may result in long lasting phenotypes, introducing critical confounds to the experimental design.
Collapse
Affiliation(s)
- Janet Poplawski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
- Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, Midlothian, United Kingdom
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
3
|
Gu J, Bao Y, Li Y, Hua L, Deng X, Zhang Y, Zhu X, Ran J. Dietary N-6 Polyunsaturated Fatty Acid Intake and Brain Health in Middle-Aged and Elderly Adults. Nutrients 2024; 16:4272. [PMID: 39770894 PMCID: PMC11680004 DOI: 10.3390/nu16244272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Dietary intake of polyunsaturated fatty acids (PUFA) plays a significant role in the onset and progression of neurodegenerative diseases. Since the neuroprotective effects of n-3 PUFA have been widely validated, the role of n-6 PUFA remains debated, with their underlying mechanisms still not fully understood. METHODS In this study, 169,295 participants from the UK Biobank were included to analyze the associations between dietary n-6 PUFA intake and neurodegenerative diseases using Cox regression models with full adjustments for potential confounders. In addition, multiple linear regression models were utilized to estimate the impact of n-6 PUFA intake on brain imaging phenotypes. RESULTS Results indicated that low dietary n-6 PUFA intake was associated with increased risks of incident dementia (hazard ratio [95% confidence interval] = 1.30 [1.13, 1.49]), Parkinson's disease (1.42 [1.16, 1.74]), and multiple sclerosis (1.65 [1.03, 2.65]). Moreover, the low intake was linked to diminished volumes of various brain structures, including the hippocampus (β [95% confidence interval] = -0.061 [-0.098, -0.025]), thalamus (-0.071 [-0.105, -0.037]), and others. White matter integrity was also found to be compromised in individuals with low n-6 PUFA intake. CONCLUSIONS These findings enhanced our understanding of how dietary n-6 PUFA intake might affect neurological health, thereby providing epidemiological evidence for future clinical and public health interventions.
Collapse
Affiliation(s)
- Jiawei Gu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.G.); (Y.B.); (Y.L.); (L.H.); (X.D.)
| | - Yujia Bao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.G.); (Y.B.); (Y.L.); (L.H.); (X.D.)
| | - Yongxuan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.G.); (Y.B.); (Y.L.); (L.H.); (X.D.)
| | - Li Hua
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.G.); (Y.B.); (Y.L.); (L.H.); (X.D.)
| | - Xiaobei Deng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.G.); (Y.B.); (Y.L.); (L.H.); (X.D.)
| | - Yuzheng Zhang
- National Center for Mental Health, Beijing 100121, China;
| | - Xiaojun Zhu
- School of Mathematics and Physics, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (J.G.); (Y.B.); (Y.L.); (L.H.); (X.D.)
| |
Collapse
|
4
|
Hernandez J, Schäffer J, Herden C, Pflieger FJ, Reiche S, Körber S, Kitagawa H, Welter J, Michels S, Culmsee C, Bier J, Sommer N, Kang JX, Mayer K, Hecker M, Rummel C. n-3 Polyunsaturated Fatty Acids Modulate LPS-Induced ARDS and the Lung-Brain Axis of Communication in Wild-Type versus Fat-1 Mice Genetically Modified for Leukotriene B4 Receptor 1 or Chemerin Receptor 23 Knockout. Int J Mol Sci 2023; 24:13524. [PMID: 37686333 PMCID: PMC10487657 DOI: 10.3390/ijms241713524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Collapse
Affiliation(s)
- Jessica Hernandez
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Julia Schäffer
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Sylvia Reiche
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Svenja Körber
- Institute of Veterinary Pathology, Justus Liebig University Giessen, 35392 Giessen, Germany; (C.H.); (S.K.)
| | - Hiromu Kitagawa
- Department of Biomedical Engineering, Osaka Institute of Technology, Omiya, Osaka 535-8585, Japan
| | - Joelle Welter
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
| | - Susanne Michels
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35032 Marburg, Germany (C.C.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| | - Jens Bier
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical, Boston, MA 02129, USA
| | - Konstantin Mayer
- Department of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Matthias Hecker
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University Giessen, 35392 Giessen, Germany (J.B.); (N.S.)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Giessen, Germany; (J.H.); (J.S.)
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35032 Marburg, Germany
| |
Collapse
|
5
|
Pantzaris MC, Bakirtzis C, Grigoriadis N, Hadjigeorgiou G, Dardiotis E, Loucaides G, Ntzani E, Markozannes G, Omorfos S, Valsasina P, Messina R, Preziosa P, Rocca MA, Patrikios I. Phase III, randomised, double-blind, placebo-controlled trial of Neuroaspis plp10 as an adjuvant treatment for relapsing multiple sclerosis: the MINERAL Study. BMJ Neurol Open 2022; 4:e000334. [PMID: 36353267 PMCID: PMC9639060 DOI: 10.1136/bmjno-2022-000334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Objectives To assess the effectiveness of Neuroaspis plp10 nutritional supplement when added to interferon (IFN)-β treatment in patients with relapsing-remitting multiple sclerosis (RRMS). Design A 30-month phase III multicentre, randomised, double-blind, placebo-controlled trial. Randomisation stratified by centre using a computer-generated procedure with Neuroaspis plp10 versus placebo in 1:1 ratio. The first 6 months were used as both the pre-entry and normalisation period. Setting 3 teaching hospitals in Greece and 1 Neurology Institute in Cyprus. Participants 61 patients with RRMS on IFN-β were randomly assigned to receive Neuroaspis plp10 (n=32) or placebo (n=29), 20 mL, orally, once daily, for 30 months. Intervention Neuroaspis plp10, a cocktail mixture, containing specific PUFA (12 150 mg) and γ-tocopherol (760 mg) versus virgin olive oil (placebo). Main outcome measure The primary end point was the annual relapse rate (ARR) whereas the secondary ones were the rate of sustained progression of disability, as measured by the Expanded Disability Status Scale (EDSS) and the brain T2 and gadolinium-enhancing lesions, at 2 years. Results For the intention-to-treat analyses Neuroaspis plp10 significantly reduced the ARR by 80%, (RRR, 0.20; 95% CI: 0.09 to 0.45; p=0.0001) and the risk of sustained progression of disability by 73% (HR, 0.27; 95% CI: 0.09 to 0.83; p=0.022) versus placebo, at 2 years. The number of T1 gadolinium-enhancing lesions and the number of new/enlarged T2-hyperintense lesions were significantly reduced (p=0.01 and p<0.0001, respectively). Both T1-enhancing and new/enlarging T2-hyperintense lesions were significantly reduced (p=0.05 and p<0.0001, respectively). No significant adverse events were reported. Conclusions Neuroaspis plp10 added to IFN-β was significantly more effective than IFN-β alone in patients with RRMS. Trial registration number ISRCTN06166891.
Collapse
Affiliation(s)
- Marios C Pantzaris
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christos Bakirtzis
- Department of Neurology Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, AHEPA University Hospital, Aristotle University, Thessaloniki, Greece
| | - Georgios Hadjigeorgiou
- Medical School, University of Cyprus, Nicosia, Cyprus
- Department of Neurology, General University Hospital of Larissa, Larissa, Greece
| | - Efthimos Dardiotis
- Department of Neurology, General University Hospital of Larissa, Larissa, Greece
| | - George Loucaides
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Evangelia Ntzani
- Department of Neurology, Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, University of Ioannina School of Medicine (UISM), Ioannina, Greece
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Savvas Omorfos
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Paola Valsasina
- Division of Neuroscience, Neuroimaging Research Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Messina
- Division of Neuroscience, Neuroimaging Research Unit, San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Preziosa
- Division of Neuroscience, Neuroimaging Research Unit, San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria A Rocca
- Division of Neuroscience, Neuroimaging Research Unit, San Raffaele Scientific Institute, Milan, Italy
- Division of Neuroscience, Universita Vita Salute San Raffaele, Milano, Lombardia, Italy
| | | |
Collapse
|
6
|
Dietary fat intake and risk of Parkinson disease: results from the Swedish National March Cohort. Eur J Epidemiol 2022; 37:603-613. [PMID: 35416636 PMCID: PMC9288363 DOI: 10.1007/s10654-022-00863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/15/2022] [Indexed: 11/28/2022]
Abstract
Background Following progressive aging of the population worldwide, the prevalence of Parkinson disease is expected to increase in the next decades. Primary prevention of the disease is hampered by limited knowledge of preventable causes. Recent evidence regarding diet and Parkinson disease is inconsistent and suggests that dietary habits such as fat intake may have a role in the etiology. Objective To investigate the association between intake of total and specific types of fat with the incidence of Parkinson disease. Methods Participants from the Swedish National March Cohort were prospectively followed-up from 1997 to 2016. Dietary intake was assessed at baseline using a validated food frequency questionnaire. Food items intake was used to estimate fat intake, i.e. the exposure variable, using the Swedish Food Composition Database. Total, saturated, monounsaturated and polyunsaturated fat intake were categorized into quartiles. Parkinson disease incidence was ascertained through linkages to Swedish population-based registers. Cox proportional hazards regression models were used to estimate hazard ratios (HR) with 95% confidence intervals (CI) of the association between fat intake from total or specific types of fats and the incidence of Parkinson disease. The lowest intake category was used as reference. Isocaloric substitution models were also fitted to investigate substitution effects by replacing energy from fat intake with other macronutrients or specific types of fat. Results 41,597 participants were followed up for an average of 17.6 years. Among them, 465 developed Parkinson disease. After adjusting for potential confounders, the highest quartile of saturated fat intake was associated with a 41% increased risk of Parkinson disease compared to the lowest quartile (HR Q4 vs. Q1: 1.41; 95% CI: 1.04–1.90; p for trend: 0.03). Total, monounsaturated or polyunsaturated fat intake were not significantly associated with Parkinson disease. The isocaloric substitution models did not show any effect. Conclusions We found that a higher consumption of large amounts of saturated fat might be associated with an increased risk of Parkinson disease. A diet low in saturated fat might be beneficial for disease prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s10654-022-00863-8.
Collapse
|
7
|
Chromiec PA, Urbaś ZK, Jacko M, Kaczor JJ. The Proper Diet and Regular Physical Activity Slow Down the Development of Parkinson Disease. Aging Dis 2021; 12:1605-1623. [PMID: 34631210 PMCID: PMC8460298 DOI: 10.14336/ad.2021.0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
From year to year, we know more about neurodegeneration and Parkinson’s disease (PD). A positive influence of various types of physical activity is more often described in the context of neuroprotection and prevention as well as the form of rehabilitation in Parkinson’s patients. Moreover, when we look at supplementation, clinical nutrition and dietetics, we will see that balancing consumed products and supplementing the vitamins or minerals is necessary. Considering the biochemical pathways in skeletal muscle, we may see that many researchers desire to identify molecular mediators that have an impact through exercise and balanced diet on human health or development of the neurodegenerative disease. Therefore, it is mandatory to study the potential mechanism(s) related to diet and factors resulted from physical activity as molecular mediators, which play a therapeutic role in PD. This review summarizes the available literature on mechanisms and specific pathways involved in diet-exercise relationship and discusses how therapy, including appropriate exercises and diet that influence molecular mediators, may significantly slow down the progress of neurodegenerative processes. We suggest that a proper diet combined with physical activity will be a good solution for psycho-muscle BALANCE not only in PD but also in other neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Zofia Kinga Urbaś
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Martyna Jacko
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| | - Jan Jacek Kaczor
- 2Department of Bioenergetics and Physiology of Exercise, Medical University of Gdansk, Debinki 7, Gdansk, 80-211, Poland
| |
Collapse
|
8
|
Tournissac M, Vu TM, Vrabic N, Hozer C, Tremblay C, Mélançon K, Planel E, Pifferi F, Calon F. Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. ALZHEIMERS RESEARCH & THERAPY 2021; 13:103. [PMID: 34020681 PMCID: PMC8140479 DOI: 10.1186/s13195-021-00842-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
Background Old age, the most important risk factor for Alzheimer’s disease (AD), is associated with thermoregulatory deficits. Brown adipose tissue (BAT) is the main thermogenic driver in mammals and its stimulation, through β3 adrenergic receptor (β3AR) agonists or cold acclimation, counteracts metabolic deficits in rodents and humans. Studies in animal models show that AD neuropathology leads to thermoregulatory deficits, and cold-induced tau hyperphosphorylation is prevented by BAT stimulation through cold acclimation. Since metabolic disorders and AD share strong pathogenic links, we hypothesized that BAT stimulation through a β3AR agonist could exert benefits in AD as well. Methods CL-316,243, a specific β3AR agonist, was administered to the triple transgenic mouse model of AD (3xTg-AD) and non-transgenic controls from 15 to 16 months of age at a dose of 1 mg/kg/day i.p. Results Here, we show that β3AR agonist administration decreased body weight and improved peripheral glucose metabolism and BAT thermogenesis in both non-transgenic and 3xTg-AD mice. One-month treatment with a β3AR agonist increased recognition index by 19% in 16-month-old 3xTg-AD mice compared to pre-treatment (14-month-old). Locomotion, anxiety, and tau pathology were not modified. Finally, insoluble Aβ42/Aβ40 ratio was decreased by 27% in the hippocampus of CL-316,243-injected 3xTg-AD mice. Conclusions Overall, our results indicate that β3AR stimulation reverses memory deficits and shifts downward the insoluble Aβ42/Aβ40 ratio in 16-month-old 3xTg-AD mice. As β3AR agonists are being clinically developed for metabolic disorders, repurposing them in AD could be a valuable therapeutic strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00842-3.
Collapse
Affiliation(s)
- Marine Tournissac
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Tra-My Vu
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Nika Vrabic
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Clara Hozer
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Koralie Mélançon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada.,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.,Département de psychiatrie et neurosciences, Faculté de médecine, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada
| | - Fabien Pifferi
- UMR CNRS/MNHN 7179, Mécanismes Adaptatifs et Évolution, 1 Avenue du Petit Château, 91800, Brunoy, France
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, 1050 Avenue de la Médecine, Quebec, QC, G1V 0A6, Canada. .,Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval (Pavillon CHUL), 2705 Boulevard Laurier, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
9
|
Guschina IA, Ninkina N, Roman A, Pokrovskiy MV, Buchman VL. Triple-Knockout, Synuclein-Free Mice Display Compromised Lipid Pattern. Molecules 2021; 26:3078. [PMID: 34064018 PMCID: PMC8196748 DOI: 10.3390/molecules26113078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies have implicated synucleins in several reactions during the biosynthesis of lipids and fatty acids in addition to their recognised role in membrane lipid binding and synaptic functions. These are among aspects of decreased synuclein functions that are still poorly acknowledged especially in regard to pathogenesis in Parkinson's disease. Here, we aimed to add to existing knowledge of synuclein deficiency (i.e., the lack of all three family members), with respect to changes in fatty acids and lipids in plasma, liver, and two brain regions in triple synuclein-knockout (TKO) mice. We describe changes of long-chain polyunsaturated fatty acids (LCPUFA) and palmitic acid in liver and plasma, reduced triacylglycerol (TAG) accumulation in liver and non-esterified fatty acids in plasma of synuclein free mice. In midbrain, we observed counterbalanced changes in the relative concentrations of phosphatidylcholine (PC) and cerebrosides (CER). We also recorded a notable reduction in ethanolamine plasmalogens in the midbrain of synuclein free mice, which is an important finding since the abnormal ether lipid metabolism usually associated with neurological disorders. In summary, our data demonstrates that synuclein deficiency results in alterations of the PUFA synthesis, storage lipid accumulation in the liver, and the reduction of plasmalogens and CER, those polar lipids which are principal compounds of lipid rafts in many tissues. An ablation of all three synuclein family members causes more profound changes in lipid metabolism than changes previously shown to be associated with γ-synuclein deficiency alone. Possible mechanisms by which synuclein deficiency may govern the reported modifications of lipid metabolism in TKO mice are proposed and discussed.
Collapse
Affiliation(s)
- Irina A. Guschina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
| | - Natalia Ninkina
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Andrei Roman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| | - Mikhail V. Pokrovskiy
- Research Institute of Living Systems Pharmacology, Belgorod State National Research University, 85 Pobedy Street, Belgorod 308015, Belgorod Oblast, Russia;
| | - Vladimir L. Buchman
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; (N.N.); (A.R.); (V.L.B.)
- Institute of Physiologically Active Compounds Russian Academy of Sciences (IPAC RAS), 1 Severniy Proezd, Chernogolovka 142432, Moscow Region, Russia
| |
Collapse
|
10
|
Leclerc M, Dudonné S, Calon F. Can Natural Products Exert Neuroprotection without Crossing the Blood-Brain Barrier? Int J Mol Sci 2021; 22:ijms22073356. [PMID: 33805947 PMCID: PMC8037419 DOI: 10.3390/ijms22073356] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/17/2022] Open
Abstract
The scope of evidence on the neuroprotective impact of natural products has been greatly extended in recent years. However, a key question that remains to be answered is whether natural products act directly on targets located in the central nervous system (CNS), or whether they act indirectly through other mechanisms in the periphery. While molecules utilized for brain diseases are typically bestowed with a capacity to cross the blood–brain barrier, it has been recently uncovered that peripheral metabolism impacts brain functions, including cognition. The gut–microbiota–brain axis is receiving increasing attention as another indirect pathway for orally administered compounds to act on the CNS. In this review, we will briefly explore these possibilities focusing on two classes of natural products: omega-3 polyunsaturated fatty acids (n-3 PUFAs) from marine sources and polyphenols from plants. The former will be used as an example of a natural product with relatively high brain bioavailability but with tightly regulated transport and metabolism, and the latter as an example of natural compounds with low brain bioavailability, yet with a growing amount of preclinical and clinical evidence of efficacy. In conclusion, it is proposed that bioavailability data should be sought early in the development of natural products to help identifying relevant mechanisms and potential impact on prevalent CNS disorders, such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Manon Leclerc
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Stéphanie Dudonné
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada;
- Axe Neurosciences, Centre de Recherche du CHU de Québec–Université Laval, Québec, QC G1V 4G2, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, QC G1V 0A6, Canada;
- OptiNutriBrain-Laboratoire International Associé (NutriNeuro France-INAF Canada), Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48697); Fax: +1-(418)-654-2761
| |
Collapse
|
11
|
Chitre NM, Wood BJ, Ray A, Moniri NH, Murnane KS. Docosahexaenoic acid protects motor function and increases dopamine synthesis in a rat model of Parkinson's disease via mechanisms associated with increased protein kinase activity in the striatum. Neuropharmacology 2020; 167:107976. [PMID: 32001239 PMCID: PMC7110909 DOI: 10.1016/j.neuropharm.2020.107976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a devastating neurodegenerative disease that leads to motor deficits and selective destruction of nigrostriatal dopaminergic neurons. PD is typically treated by dopamine replacement agents; however, dopamine replacement loses effectiveness in the later stages of the disease. Here, we describe the neuroprotective effects of the omega-3 fatty acid docosahexaenoic acid (DHA) in the medial forebrain bundle 6-hydroxydopamine (6-OHDA) model of advanced-stage PD in rats. We show that daily administration of DHA protects against core symptoms of PD, including deficits in postural stability, gait integrity, and dopamine neurochemistry in motor areas of the striatum. Our results also demonstrate that DHA increases striatal dopamine synthesis via phosphorylation of the rate-limiting catecholamine synthesizing enzyme tyrosine hydroxylase, in a manner dependent on the second messenger-linked protein kinases PKA and PKC. We also show that DHA specifically reverses dopamine loss in the nigrostriatal pathway, with no effect in the mesolimbic or mesocortical pathways. This suggests that DHA is unlikely to produce pharmacotherapeutic or adverse effects that depend on dopamine pathways other than the nigrostriatal pathway. To our knowledge, previous reports have not examined the effects of DHA in such an advanced-stage model, documented that the dopamine synthesizing effects of DHA in vivo are mediated through the activation of protein kinases and regulation of TH activity, or demonstrated specificity to the nigrostriatal pathway. These novel findings corroborate the beneficial effects of omega-3 fatty acids seen in PD patients and suggest that DHA provides a novel means of protecting patients for dopamine neurodegeneration.
Collapse
Affiliation(s)
- Neha Milind Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, USA
| | - Bo Jarrett Wood
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, USA
| | - Azizi Ray
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, USA
| | - Nader H Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, USA
| | - Kevin Sean Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Hachem M, Belkouch M, Lo Van A, Picq M, Bernoud-Hubac N, Lagarde M. Brain targeting with docosahexaenoic acid as a prospective therapy for neurodegenerative diseases and its passage across blood brain barrier. Biochimie 2020; 170:203-211. [PMID: 32014503 DOI: 10.1016/j.biochi.2020.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) is the main omega-3 polyunsaturated fatty acid in brain tissues necessary for common brain growth and function. DHA can be provided to the body through two origins: an exogenous origin, from direct dietary intakes and an endogenous one, from the bioconversion of the essential α-linolenic acid (ALA, 18:3n-3) in the liver. In humans, the biosynthesis of DHA from its precursor ALA is very low. A reduction in the cerebral amount of DHA is detected in patients suffering from neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Considering the vital functions of DHA for the brain, new methodologies to target the brain with DHA offers encouraging perceptions in the improvement of precautionary and therapeutic approaches for neurodegenerative diseases. The aim of the present review was to provide better understanding of the cerebral uptake of DHA in different form including free fatty acids, Lysophosphatidylcholines LysoPC-DHA as well as structured phospholipids. First, we explored the special structure of the blood-brain barrier BBB, BBB being a physical and metabolic barrier with restrictive properties. Then, we discussed the incorporation of DHA into the membrane phospholipids of the brain, the neuroprotective and therapeutic effect of DHA for neurological diseases.
Collapse
Affiliation(s)
- Mayssa Hachem
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France.
| | - Mounir Belkouch
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| | - Amanda Lo Van
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| | - Madeleine Picq
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| | | | - Michel Lagarde
- Univ-Lyon, Inserm UMR 1060, Inra UMR 1397, IMBL, INSA-Lyon, 69100, Villeurbanne, France
| |
Collapse
|
13
|
Tamtaji OR, Naderi Taheri M, Notghi F, Alipoor R, Bouzari R, Asemi Z. The effects of acupuncture and electroacupuncture on Parkinson's disease: Current status and future perspectives for molecular mechanisms. J Cell Biochem 2019; 120:12156-12166. [PMID: 30938859 DOI: 10.1002/jcb.28654] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Among the progressive neurodegenerative disorders, Parkinson's disease (PD) is the second most common. Different factors have critical role in pathophysiology of PD such as apoptosis pathways, inflammatory cytokines, oxidative stress, and neurotransmitters and its receptors abnormalities. Acupuncture and electroacupuncture were considered as nondrug therapies for PD. Although numerous studies has been conducted for assessing the mechanism underlying electroacupuncture and acupuncture, various principal aspects of these treatment procedures remain not well-known. There have also been few investigations on the molecular mechanism of acupuncture and electroacupuncture therapy effects in PD. This review evaluates the effects of electroacupuncture and acupuncture on the molecular mechanism in PD.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mojtaba Naderi Taheri
- Nursing and Midwifery Care Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Deptartment of Community Health and Geriatric Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fahimeh Notghi
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reihanesadat Bouzari
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
14
|
Chang KH, Cheng ML, Chiang MC, Chen CM. Lipophilic antioxidants in neurodegenerative diseases. Clin Chim Acta 2018; 485:79-87. [DOI: 10.1016/j.cca.2018.06.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022]
|
15
|
Gu M, Li Y, Tang H, Zhang C, Li W, Zhang Y, Li Y, Zhao Y, Song C. Endogenous Omega (n)-3 Fatty Acids in Fat-1 Mice Attenuated Depression-Like Behavior, Imbalance between Microglial M1 and M2 Phenotypes, and Dysfunction of Neurotrophins Induced by Lipopolysaccharide Administration. Nutrients 2018; 10:nu10101351. [PMID: 30248907 PMCID: PMC6213921 DOI: 10.3390/nu10101351] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/27/2018] [Accepted: 09/04/2018] [Indexed: 12/21/2022] Open
Abstract
n-3 polyunsaturated fatty acids (PUFAs) have been reported to improve depression. However, PUFA purities, caloric content, and ratios in different diets may affect the results. By using Fat-1 mice which convert n-6 to n-3 PUFAs in the brain, this study further evaluated anti-depressant mechanisms of n-3 PUFAs in a lipopolysaccharide (LPS)-induced model. Adult male Fat-1 and wild-type (WT) mice were fed soybean oil diet for 8 weeks. Depression-like behaviors were measured 24 h after saline or LPS central administration. In WT littermates, LPS reduced sucrose intake, but increased immobility in forced-swimming and tail suspension tests. Microglial M1 phenotype CD11b expression and concentrations of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-17 were elevated, while M2 phenotype-related IL-4, IL-10, and transforming growth factor (TGF)-β1 were decreased. LPS also reduced the expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (Trk B), while increasing glial fibrillary acidic protein expression and pro-BDNF, p75, NO, and iNOS levels. In Fat-1 mice, LPS-induced behavioral changes were attenuated, which were associated with decreased pro-inflammatory cytokines and reversed changes in p75, NO, iNOS, and BDNF. Gas chromatography assay confirmed increased n-3 PUFA levels and n-3/n-6 ratios in the brains of Fat-1 mice. In conclusion, endogenous n-3 PUFAs may improve LPS-induced depression-like behavior through balancing M1 and M2-phenotypes and normalizing BDNF function.
Collapse
Affiliation(s)
- Minqing Gu
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yuyu Li
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Haiting Tang
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Cai Zhang
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Wende Li
- Guangdong Key Laboratory for Research and Development of Natural Drug, Guangdong Medical College, Zhanjiang 524023, China.
- Guangdong Key laboratory of Laboratory Animal, Guangdong Laboratory Animals Monitoring Institute, Guangzhou 510663, China.
| | - Yongping Zhang
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Yajuan Li
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yuntao Zhao
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Cai Song
- Research Institute for Marine Drug and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
- Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
16
|
Fecchio C, Palazzi L, de Laureto PP. α-Synuclein and Polyunsaturated Fatty Acids: Molecular Basis of the Interaction and Implication in Neurodegeneration. Molecules 2018; 23:molecules23071531. [PMID: 29941855 PMCID: PMC6099649 DOI: 10.3390/molecules23071531] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 12/31/2022] Open
Abstract
α-Synuclein (α-syn) is a 140-amino acid protein, the physiological function of which has yet to be clarified. It is involved in several neurodegenerative disorders, and the interaction of the protein with brain lipids plays an important role in the pathogenesis of Parkinson’s disease (PD). Polyunsaturated fatty acids (PUFA) are highly abundant in the brain where they play critical roles in neuronal membrane fluidity and permeability, serve as energy reserves and function as second messengers in cell signaling. PUFA concentration and composition in the brain are altered with age when also an increase of lipid peroxidation is observed. Considering that PD is clearly correlated with oxidative stress, PUFA abundance and composition became of great interest in neurodegeneration studies because of PUFA’s high propensity to oxidize. The high levels of the PUFA docosahexaenoic acid (DHA) in brain areas containing α-syn inclusions in patients with PD further support the hypothesis of possible interactions between α-syn and DHA. Additionally, a possible functional role of α-syn in sequestering the early peroxidation products of fatty acids was recently proposed. Here, we provide an overview of the current knowledge regarding the molecular interactions between α-syn and fatty acids and the effect exerted by the protein on their oxidative state. We highlight recent findings supporting a neuroprotective role of the protein, linking α-syn, altered lipid composition in neurodegenerative disorders and PD development.
Collapse
Affiliation(s)
- Chiara Fecchio
- Department of Biomedical Sciences, University of Padova; Padova 35131, Italy.
| | - Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences, CRIBI, University of Padova; Padova 35131, Italy.
| | | |
Collapse
|
17
|
Bandu R, Mok HJ, Kim KP. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. MASS SPECTROMETRY REVIEWS 2018; 37:107-138. [PMID: 27276657 DOI: 10.1002/mas.21510] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/19/2016] [Indexed: 05/02/2023]
Abstract
Lipids, particularly phospholipids (PLs), are key components of cellular membrane. PLs play important and diverse roles in cells such as chemical-energy storage, cellular signaling, cell membranes, and cell-cell interactions in tissues. All these cellular processes are pertinent to cells that undergo transformation, cancer progression, and metastasis. Thus, there is a strong possibility that some classes of PLs are expected to present in cancer cells and tissues in cellular physiology. The mass spectrometric soft-ionization techniques, electrospray ionization (ESI), and matrix-assisted laser desorption/ionization (MALDI) are well-established in the proteomics field, have been used for lipidomic analysis in cancer research. This review focused on the applications of mass spectrometry (MS) mainly on ESI-MS and MALDI-MS in the structural characterization, molecular composition and key roles of various PLs present in cancer cells, tissues, blood, and urine, and on their importance for cancer-related problems as well as challenges for development of novel PL-based biomarkers. The profiling of PLs helps to rationalize their functions in biological systems, and will also provide diagnostic information to elucidate mechanisms behind the control of cancer, diabetes, and neurodegenerative diseases. The investigation of cellular PLs with MS methods suggests new insights on various cancer diseases and clinical applications in the drug discovery and development of biomarkers for various PL-related different cancer diseases. PL profiling in tissues, cells and body fluids also reflect the general condition of the whole organism and can indicate the existence of cancer and other diseases. PL profiling with MS opens new prospects to assess alterations of PLs in cancer, screening specific biomarkers and provide a basis for the development of novel therapeutic strategies. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:107-138, 2018.
Collapse
Affiliation(s)
- Raju Bandu
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yong-in City, 446-701, Korea
| |
Collapse
|
18
|
Pawar AB, Sengupta D. Effect of Membrane Composition on Receptor Association: Implications of Cancer Lipidomics on ErbB Receptors. J Membr Biol 2018; 251:359-368. [DOI: 10.1007/s00232-018-0015-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
19
|
McNamara RK, Schurdak JD, Asch RH, Lindquist DM. Omega-3 fatty acid deficiency impairs frontostriatal recruitment following repeated amphetamine treatment in rats: A 7 Tesla in vivo phMRI study. Nutr Neurosci 2017; 22:587-595. [PMID: 29286866 DOI: 10.1080/1028415x.2017.1419550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Although attention deficit hyperactivity disorder is associated with deficits in docosahexaenoic acid (DHA), an omega-3 fatty acid implicated in dopamine and glutamate synaptic plasticity, its role in neuroplastic brain changes that occur following repeated amphetamine (AMPH) treatment are not known. This study used pharmacological magnetic resonance imaging to investigate the impact of repeated AMPH exposure and alterations in brain DHA levels on AMPH-induced brain activation patterns. Male rats were fed a diet with no n-3 fatty acids (Deficient, DEF, n = 20), a diet fortified with preformed DHA (fish oil, FO, n = 20), or a control diet fortified with alpha-linolenic acid (n = 20) from P21 to P90. During adolescence (P40-60), one-half of each diet group received daily AMPH injections escalated weekly (0.5, 1.0, 2.5, 5.0 mg/kg/d) or drug vehicle. Following a 30-d abstinence period blood oxygen level dependent (BOLD) responses were determined in a 7 T Bruker Biospec system following an AMPH challenge (7.5 mg/kg, i.v). Postmortem erythrocyte and forebrain DHA composition were determined by gas chromatography. Compared with control rats, forebrain and erythrocyte DHA levels were significantly lower in DEF rats and significantly higher in FO rats. Across AMPH doses DEF rats exhibited greater locomotor activity compared to control and FO rats. In AMPH-naïve rats, the AMPH challenge increased BOLD activity in the substantia nigra and basal forebrain and no diet group differences were observed. In AMPH-pretreated control and FO rats, the AMPH challenge similarly increased BOLD activation in the bilateral caudate putamen, thalamus, and motor and cingulate cortices. In contrast, BOLD activation in AMPH-pretreated DEF rats was similar to AMPH-naïve DEF animals, and AMPH-pretreated DEF rats exhibited attenuated frontostriatal BOLD activation compared with AMPH-pretreated control and FO rats. These findings demonstrate that chronic escalating AMPH treatment induces enduring frontostriatal recruitment and that peri-adolescent deficits in brain DHA accrual impair this response.
Collapse
Affiliation(s)
- Robert K McNamara
- a Department of Psychiatry and Behavioral Neuroscience , University of Cincinnati College of Medicine , Cincinnati , OH 45267 , USA
| | - Jennifer D Schurdak
- a Department of Psychiatry and Behavioral Neuroscience , University of Cincinnati College of Medicine , Cincinnati , OH 45267 , USA
| | - Ruth H Asch
- a Department of Psychiatry and Behavioral Neuroscience , University of Cincinnati College of Medicine , Cincinnati , OH 45267 , USA
| | - Diana M Lindquist
- b Imaging Research Center, Department of Radiology , Cincinnati Children's Hospital Medical Center , Cincinnati , OH 45229 , USA
| |
Collapse
|
20
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2017; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
21
|
Impact of DHA intake in a mouse model of synucleinopathy. Exp Neurol 2017; 301:39-49. [PMID: 29229294 DOI: 10.1016/j.expneurol.2017.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/26/2017] [Accepted: 12/06/2017] [Indexed: 11/22/2022]
Abstract
Polyunsaturated fatty acids omega-3 (n-3 PUFA), such as docosahexaenoic acid (DHA), have been shown to prevent, and partially reverse, neurotoxin-induced nigrostriatal denervation in animal models of Parkinson's disease (PD). However, the accumulation of α-synuclein (αSyn) in cerebral tissues is equally important to the pathophysiology. To determine whether DHA intake improves various aspects related to synucleinopathy, ninety male mice overexpressing human αSyn under the Thy-1 promoter (Thy1-αSyn) were fed one of three diets (specially formulated control, low n-3 PUFA or high DHA) and compared to non-transgenic C57/BL6 littermate mice exposed to a control diet. Thy1-αSyn mice displayed impaired motor skills, lower dopaminergic neuronal counts within the substantia nigra (-13%) in parallel to decreased levels of the striatal dopamine transporter (DAT) (-24%), as well as reduced NeuN (-41%) and synaptic proteins PSD-95 (-51%), synaptophysin (-80%) and vesicular acetylcholine transporter (VChAT) (-40%) in the cerebral cortex compared to C57/BL6 mice. However, no significant difference in dopamine concentrations was observed by HPLC analysis between Thy1-αSyn and non-transgenic C57/BL6 littermates under the control diet. The most striking finding was a favorable effect of DHA on the survival/longevity of Thy1-αSyn mice (+51% survival rate at 12months of age). However, dietary DHA supplementation did not have a significant effect on other parameters examined in this study, despite increased striatal dopamine concentrations. While human αSyn monomers and oligomers were detected in the cortex of Thy1-αSyn mice, the effects of the diets were limited to a small increase of 42kDa oligomers in insoluble protein fractions upon n-3 PUFA deprivation. Overall, our data indicate that a diet rich in n-3 PUFA has a beneficial effect on the longevity of a murine model of α-synucleinopathy without a major impact on the dopamine system and motor impairments, nor αSyn levels.
Collapse
|
22
|
Zárate R, el Jaber-Vazdekis N, Tejera N, Pérez JA, Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin Transl Med 2017; 6:25. [PMID: 28752333 PMCID: PMC5532176 DOI: 10.1186/s40169-017-0153-6] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
In the last decades, the development of new technologies applied to lipidomics has revitalized the analysis of lipid profile alterations and the understanding of the underlying molecular mechanisms of lipid metabolism, together with their involvement in the occurrence of human disease. Of particular interest is the study of omega-3 and omega-6 long chain polyunsaturated fatty acids (LC-PUFAs), notably EPA (eicosapentaenoic acid, 20:5n-3), DHA (docosahexaenoic acid, 22:6n-3), and ARA (arachidonic acid, 20:4n-6), and their transformation into bioactive lipid mediators. In this sense, new families of PUFA-derived lipid mediators, including resolvins derived from EPA and DHA, and protectins and maresins derived from DHA, are being increasingly investigated because of their active role in the "return to homeostasis" process and resolution of inflammation. Recent findings reviewed in the present study highlight that the omega-6 fatty acid ARA appears increased, and omega-3 EPA and DHA decreased in most cancer tissues compared to normal ones, and that increments in omega-3 LC-PUFAs consumption and an omega-6/omega-3 ratio of 2-4:1, are associated with a reduced risk of breast, prostate, colon and renal cancers. Along with their lipid-lowering properties, omega-3 LC-PUFAs also exert cardioprotective functions, such as reducing platelet aggregation and inflammation, and controlling the presence of DHA in our body, especially in our liver and brain, which is crucial for optimal brain functionality. Considering that DHA is the principal omega-3 FA in cortical gray matter, the importance of DHA intake and its derived lipid mediators have been recently reported in patients with major depressive and bipolar disorders, Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. The present study reviews the relationships between major diseases occurring today in the Western world and LC-PUFAs. More specifically this review focuses on the dietary omega-3 LC-PUFAs and the omega-6/omega-3 balance, in a wide range of inflammation disorders, including autoimmune diseases. This review suggests that the current recommendations of consumption and/or supplementation of omega-3 FAs are specific to particular groups of age and physiological status, and still need more fine tuning for overall human health and well being.
Collapse
Affiliation(s)
- Rafael Zárate
- Canary Islands Cancer Research Institute (ICIC), Ave. La Trinidad 61, Torre A. Arévalo, 7th floor, 38204 La Laguna, Tenerife Spain
| | - Nabil el Jaber-Vazdekis
- Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Noemi Tejera
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7UQ UK
| | - José A. Pérez
- Department of Animal Biology, Soil Science and Geology (Animal Physiology Unit), Faculty of Sciences, Universidad de La Laguna, Ave. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife Spain
| | - Covadonga Rodríguez
- Department of Animal Biology, Soil Science and Geology (Animal Physiology Unit), Faculty of Sciences, Universidad de La Laguna, Ave. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife Spain
- Institute of Biomedical Technologies (ITB), Universidad de La Laguna, Campus de Ofra, 38071 La Laguna, Tenerife Spain
| |
Collapse
|
23
|
Kerdiles O, Layé S, Calon F. Omega-3 polyunsaturated fatty acids and brain health: Preclinical evidence for the prevention of neurodegenerative diseases. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Ostermann AI, Waindok P, Schmidt MJ, Chiu CY, Smyl C, Rohwer N, Weylandt KH, Schebb NH. Modulation of the endogenous omega-3 fatty acid and oxylipin profile in vivo-A comparison of the fat-1 transgenic mouse with C57BL/6 wildtype mice on an omega-3 fatty acid enriched diet. PLoS One 2017; 12:e0184470. [PMID: 28886129 PMCID: PMC5590967 DOI: 10.1371/journal.pone.0184470] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Dietary intervention and genetic fat-1 mice are two models for the investigation of effects associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14–30 days to a high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachidonic acid metabolites were overall decreased while EPA and DHA oxylipins increased with feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabolites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interventions, supporting the applicability of this model in n3-PUFA research. However, for specific questions, e.g. the role of EPA derived mediators or concentration dependent effects of (individual) PUFA, feeding studies are necessary.
Collapse
Affiliation(s)
- Annika I. Ostermann
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Patrick Waindok
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Moritz J. Schmidt
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Cheng-Ying Chiu
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Christopher Smyl
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Nadine Rohwer
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Karsten-H. Weylandt
- Medical Department, Division of Hepatology and Gastroenterology (including Metabolic Diseases), Charité University Medicine Berlin, Campus Virchow Klinikum, Berlin, Germany
- Experimental and Clinical Research Centre, Charité University Medicine, Campus Buch, Berlin, Germany
- Medical Department, Division of Gastroenterology, Oncology, Hematology, Rheumatology and Diabetes, Ruppiner Kliniken, Brandenburg Medical School, Neuruppin, Germany
| | - Nils Helge Schebb
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- * E-mail:
| |
Collapse
|
25
|
Zhang S, Lu F, Liu Q, Liu Y, Guan X, Wei Y, Tan S, Shi D. Efficient generation of sFat-1 transgenic rabbits rich in n-3 polyunsaturated fatty acids by intracytoplasmic sperm injection. Reprod Fertil Dev 2017; 28:310-8. [PMID: 25027718 DOI: 10.1071/rd13413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 05/20/2014] [Indexed: 01/28/2023] Open
Abstract
N-3 polyunsaturated fatty acids (n-3 PUFAs) have their first double bond at the third carbon from the methyl end of the fatty-acid chain and had been proven to be beneficial to human health. However, mammals cannot produce n-3 PUFAs by themselves because they lack the n-3 fatty-acid desaturase (Fat-1) gene. Thus, the possibility of producing sFat-1 transgenic rabbits was explored in this study. The transgenic cassette of pPGK1-sFat-1-CMV-EGFP was constructed and transgenic rabbit embryos were produced by intracytoplasmic sperm injection (ICSI). When 123 EGFP-positive embryos at the 2-8-cell stage were transplanted into the oviduct of four oestrous-synchronised recipients, two of them became pregnant and gave birth to seven pups. However, transfer of embryos into the uterus of oestrous-synchronised recipients and oviduct or uterus of oocyte donor rabbits did not result in pregnancy. The integration of the sFat-1 gene was confirmed in six of the seven live pups by PCR and Southern blot. The expression of the sFat-1 gene in the six transgenic pups was also detected by reverse transcription polymerase chain reaction (RT-PCR). Gas chromatography-mass spectrometry analysis revealed that transgenic rabbits exhibited an ~15-fold decrease in the ratio of n-6:n-3 PUFAs in muscle compared with wild-type rabbits and non-transgenic rabbits. These results demonstrate that sFat-1 transgenic rabbits can be produced by ICSI and display a low ratio of n-6:n-3 PUFAs.
Collapse
Affiliation(s)
- Shun Zhang
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yubing Liu
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Xiaomei Guan
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Yingming Wei
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Shijian Tan
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilisation of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
| |
Collapse
|
26
|
Astaxanthin and Docosahexaenoic Acid Reverse the Toxicity of the Maxi-K (BK) Channel Antagonist Mycotoxin Penitrem A. Mar Drugs 2016; 14:md14110208. [PMID: 27834847 PMCID: PMC5128751 DOI: 10.3390/md14110208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/15/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022] Open
Abstract
Penitrem A (PA) is a food mycotoxin produced by several terrestrial and few marine Penicillium species. PA is a potent tremorgen through selective antagonism of the calcium-dependent potassium BK (Maxi-K) channels. Discovery of natural products that can prevent the toxic effects of PA is important for food safety. Astaxanthin (AST) is a marine natural xanthophyll carotenoid with documented antioxidant activity. Unlike other common antioxidants, AST can cross blood brain barriers (BBBs), inducing neuroprotective effects. Docosahexaenoic acid (DHA) is polyunsaturated ω-3 fatty acid naturally occurring in fish and algae. DHA is essential for normal neurological and cellular development. This study evaluated the protective activity of AST and DHA against PA-induced toxicity, in vitro on Schwann cells CRL-2765 and in vivo in the worm Caenorhbitidis elegans and Sprague Dawley rat models. PA inhibited the viability of Schwann cells, with an IC50 of 22.6 μM. Dose-dependent treatments with 10–100 μM DHA significantly reversed the PA toxicity at its IC50 dose, and improved the survival of Schwann cells to 70.5%–98.8%. Similarly, dose-dependent treatments with 10–20 μM AST reversed the PA toxicity at its IC50 dose and raised these cells’ survival to 61.7%–70.5%. BK channel inhibition in the nematode C. elegans is associated with abnormal reversal locomotion. DHA and AST counteracted the in vivo PA BK channel antagonistic activity in the C. elegans model. Rats fed a PA-contaminated diet showed high levels of glutamate (GLU), aspartate (ASP), and gamma amino butyric acid (GABA), with observed necrosis or absence of Purkinjie neurons, typical of PA-induced neurotoxicity. Dopamine (DA), serotonin (5-HT), and norepinephrine (NE) levels were abnormal, Nitric Oxide (NO) and Malondialdehyde (MDA) levels were significantly increased, and total antioxidant capacity (TAC) level in serum and brain homogenates was significantly decreased in PA-treated rats. DHA and AST treatments effectively counteracted the toxic effects of PA and normalized most biochemical parameters in rats. DHA and AST can be useful food additives to prevent and reverse PA food-induced toxicity.
Collapse
|
27
|
Joffre C, Grégoire S, De Smedt V, Acar N, Bretillon L, Nadjar A, Layé S. Modulation of brain PUFA content in different experimental models of mice. Prostaglandins Leukot Essent Fatty Acids 2016; 114:1-10. [PMID: 27926457 DOI: 10.1016/j.plefa.2016.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to genetic model of PUFA modulation; 4) different in n-3 PUFA deficient aged C57BL6/J when compared to SAMP8 mouse model of aging. From these experiments, we highlight the difficulty to compare results obtained in different mouse models, different strains, different brain regions and different ages.
Collapse
Affiliation(s)
- Corinne Joffre
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.
| | - Stéphane Grégoire
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Véronique De Smedt
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Niyazi Acar
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Lionel Bretillon
- UMR CSGA 1324 INRA - 6265 CNRS - Université de Bourgogne, Eye, Nutrition and Signalization Research Group, F-21000 Dijon, France
| | - Agnès Nadjar
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux Cedex, Franceb University of Bordeaux, Bordeaux, France; Université de Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| |
Collapse
|
28
|
Doucet-Beaupré H, Gilbert C, Profes MS, Chabrat A, Pacelli C, Giguère N, Rioux V, Charest J, Deng Q, Laguna A, Ericson J, Perlmann T, Ang SL, Cicchetti F, Parent M, Trudeau LE, Lévesque M. Lmx1a and Lmx1b regulate mitochondrial functions and survival of adult midbrain dopaminergic neurons. Proc Natl Acad Sci U S A 2016; 113:E4387-96. [PMID: 27407143 PMCID: PMC4968767 DOI: 10.1073/pnas.1520387113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The LIM-homeodomain transcription factors Lmx1a and Lmx1b play critical roles during the development of midbrain dopaminergic progenitors, but their functions in the adult brain remain poorly understood. We show here that sustained expression of Lmx1a and Lmx1b is required for the survival of adult midbrain dopaminergic neurons. Strikingly, inactivation of Lmx1a and Lmx1b recreates cellular features observed in Parkinson's disease. We found that Lmx1a/b control the expression of key genes involved in mitochondrial functions, and their ablation results in impaired respiratory chain activity, increased oxidative stress, and mitochondrial DNA damage. Lmx1a/b deficiency caused axonal pathology characterized by α-synuclein(+) inclusions, followed by a progressive loss of dopaminergic neurons. These results reveal the key role of these transcription factors beyond the early developmental stages and provide mechanistic links between mitochondrial dysfunctions, α-synuclein aggregation, and the survival of dopaminergic neurons.
Collapse
Affiliation(s)
- Hélène Doucet-Beaupré
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada
| | - Catherine Gilbert
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada
| | - Marcos Schaan Profes
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada
| | - Audrey Chabrat
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada
| | - Consiglia Pacelli
- Department of Pharmacology, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Neurosciences, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Nicolas Giguère
- Department of Pharmacology, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Neurosciences, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Véronique Rioux
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada
| | - Julien Charest
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada
| | - Qiaolin Deng
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ariadna Laguna
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; The Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; The Ludwig Institute for Cancer Research, 171 77 Stockholm, Sweden
| | - Siew-Lan Ang
- The Francis Crick Institute, London, NW1 2BE, United Kingdom
| | - Francesca Cicchetti
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de recherche du Centre Hospitalier Universitaire de Québec, Quebec, QC G1V 4G2, Canada
| | - Martin Parent
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Department of Neurosciences, Central Nervous System Research Group, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec QC G1V 0A6, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec, QC G1J 2G3, Canada;
| |
Collapse
|
29
|
Coulombe K, Saint-Pierre M, Cisbani G, St-Amour I, Gibrat C, Giguère-Rancourt A, Calon F, Cicchetti F. Partial neurorescue effects of DHA following a 6-OHDA lesion of the mouse dopaminergic system. J Nutr Biochem 2016; 30:133-42. [DOI: 10.1016/j.jnutbio.2015.11.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/10/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023]
|
30
|
Vandal M, White PJ, Tournissac M, Tremblay C, St-Amour I, Drouin-Ouellet J, Bousquet M, Traversy MT, Planel E, Marette A, Calon F. Impaired thermoregulation and beneficial effects of thermoneutrality in the 3×Tg-AD model of Alzheimer's disease. Neurobiol Aging 2016; 43:47-57. [PMID: 27255814 DOI: 10.1016/j.neurobiolaging.2016.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
The sharp rise in the incidence of Alzheimer's disease (AD) at an old age coincides with a reduction in energy metabolism and core body temperature. We found that the triple-transgenic mouse model of AD (3×Tg-AD) spontaneously develops a lower basal body temperature and is more vulnerable to a cold environment compared with age-matched controls. This was despite higher nonshivering thermogenic activity, as evidenced by brown adipose tissue norepinephrine content and uncoupling protein 1 expression. A 24-hour exposure to cold (4 °C) aggravated key neuropathologic markers of AD such as: tau phosphorylation, soluble amyloid beta concentrations, and synaptic protein loss in the cortex of 3×Tg-AD mice. Strikingly, raising the body temperature of aged 3×Tg-AD mice via exposure to a thermoneutral environment improved memory function and reduced amyloid and synaptic pathologies within a week. Our results suggest the presence of a vicious cycle between impaired thermoregulation and AD-like neuropathology, and it is proposed that correcting thermoregulatory deficits might be therapeutic in AD.
Collapse
Affiliation(s)
- Milene Vandal
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Philip J White
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Duke University Medical Center, NC, USA; Faculté de medicine, Université Laval, Québec, Québec, Canada; Institut universitaire de pneumologie et de cardiologie de Québec, Québec, Québec, Canada
| | - Marine Tournissac
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Cyntia Tremblay
- Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada
| | - Isabelle St-Amour
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Département de Recherche et Développement, Héma-Québec, Québec, Québec, Canada
| | - Janelle Drouin-Ouellet
- Faculté de medicine, Université Laval, Québec, Québec, Canada; John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
| | - Melanie Bousquet
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada
| | - Marie-Thérèse Traversy
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada
| | - Emmanuel Planel
- Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Faculté de medicine, Université Laval, Québec, Québec, Canada
| | - Andre Marette
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada; Faculté de medicine, Université Laval, Québec, Québec, Canada; Institut universitaire de pneumologie et de cardiologie de Québec, Québec, Québec, Canada
| | - Frederic Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Axe Neurosciences, Centre de recherche du CHU-Q (Pavillon CHUL), Québec, Québec, Canada; Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
31
|
Dong J, Li S, Mo JL, Cai HB, Le WD. Nurr1-Based Therapies for Parkinson's Disease. CNS Neurosci Ther 2016; 22:351-9. [PMID: 27012974 DOI: 10.1111/cns.12536] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have documented that orphan nuclear receptor Nurr1 (also known as NR4A2) plays important roles in the midbrain dopamine (DA) neuron development, differentiation, and survival. Furthermore, it has been reported that the defects in Nurr1 are associated with Parkinson's disease (PD). Thus, Nurr1 might be a potential therapeutic target for PD. Emerging evidence from in vitro and in vivo studies has recently demonstrated that Nurr1-activating compounds and Nurr1 gene therapy are able not only to enhance DA neurotransmission but also to protect DA neurons from cell injury induced by environmental toxin or microglia-mediated neuroinflammation. Moreover, modulators that interact with Nurr1 or regulate its function, such as retinoid X receptor, cyclic AMP-responsive element-binding protein, glial cell line-derived neurotrophic factor, and Wnt/β-catenin pathway, have the potential to enhance the effects of Nurr1-based therapies in PD. This review highlights the recent progress in preclinical studies of Nurr1-based therapies and discusses the outlook of this emerging therapy as a promising new generation of PD medication.
Collapse
Affiliation(s)
- Jie Dong
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Song Li
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jing-Lin Mo
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Huai-Bin Cai
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Wei-Dong Le
- The Center for Translational Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, China.,Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Schulte EC, Altmaier E, Berger HS, Do KT, Kastenmüller G, Wahl S, Adamski J, Peters A, Krumsiek J, Suhre K, Haslinger B, Ceballos-Baumann A, Gieger C, Winkelmann J. Alterations in Lipid and Inositol Metabolisms in Two Dopaminergic Disorders. PLoS One 2016; 11:e0147129. [PMID: 26808974 PMCID: PMC4726488 DOI: 10.1371/journal.pone.0147129] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/28/2015] [Indexed: 12/23/2022] Open
Abstract
Background Serum metabolite profiling can be used to identify pathways involved in the pathogenesis of and potential biomarkers for a given disease. Both restless legs syndrome (RLS) and Parkinson`s disease (PD) represent movement disorders for which currently no blood-based biomarkers are available and whose pathogenesis has not been uncovered conclusively. We performed unbiased serum metabolite profiling in search of signature metabolic changes for both diseases. Methods 456 metabolites were quantified in serum samples of 1272 general population controls belonging to the KORA cohort, 82 PD cases and 95 RLS cases by liquid-phase chromatography and gas chromatography separation coupled with tandem mass spectrometry. Genetically determined metabotypes were calculated using genome-wide genotyping data for the 1272 general population controls. Results After stringent quality control, we identified decreased levels of long-chain (polyunsaturated) fatty acids of individuals with PD compared to both RLS (PD vs. RLS: p = 0.0001 to 5.80x10-9) and general population controls (PD vs. KORA: p = 6.09x10-5 to 3.45x10-32). In RLS, inositol metabolites were increased specifically (RLS vs. KORA: p = 1.35x10-6 to 3.96x10-7). The impact of dopaminergic drugs was reflected in changes in the phenylalanine/tyrosine/dopamine metabolism observed in both individuals with RLS and PD. Conclusions A first discovery approach using serum metabolite profiling in two dopamine-related movement disorders compared to a large general population sample identified significant alterations in the polyunsaturated fatty acid metabolism in PD and implicated the inositol metabolism in RLS. These results provide a starting point for further studies investigating new perspectives on factors involved in the pathogenesis of the two diseases as well as possible points of therapeutic intervention.
Collapse
Affiliation(s)
- Eva C. Schulte
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
- Institut für Humangenetik, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Elisabeth Altmaier
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hannah S. Berger
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
- Institut für Humangenetik, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kieu Trinh Do
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Simone Wahl
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institute of Epidemiology II, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar Foundation–Education City, PO Box 24144, Doha, Qatar
| | - Bernhard Haslinger
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Andres Ceballos-Baumann
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
- Schön Klinik München Schwabing, Munich, Germany
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Juliane Winkelmann
- Neurologische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, 81675, Munich, Germany
- Institut für Humangenetik, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- Institut für Humangenetik, Technische Universität München, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurology and Neurosciences, Stanford University, Palo Alto, CA, 94304, United States of America
- * E-mail: ;
| |
Collapse
|
33
|
Archer T, Kostrzewa RM. Exercise and Nutritional Benefits in PD: Rodent Models and Clinical Settings. Curr Top Behav Neurosci 2016; 29:333-351. [PMID: 26728168 DOI: 10.1007/7854_2015_409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Physical exercise offers a highly effective health-endowering activity as has been evidence using rodent models of Parkinson's disease (PD). It is a particularly useful intervention in individuals employed in sedentary occupations or afflicted by a neurodegenerative disorder, such as PD. The several links between exercise and quality-of-life, disorder progression and staging, risk factors and symptoms-biomarkers in PD all endower a promise for improved prognosis. Nutrition provides a strong determinant for disorder vulnerability and prognosis with fish oils and vegetables with a mediterranean diet offering both protection and resistance. Three factors determining the effects of exercise on disorder severity of patients may be presented: (i) Exercise effects upon motor impairment, gait, posture and balance, (ii) Exercise reduction of oxidative stress, stimulation of mitochondrial biogenesis and up-regulation of autophagy, and (iii) Exercise stimulation of dopamine (DA) neurochemistry and trophic factors. Running-wheel performance, as measured by distance run by individual mice from different treatment groups, was related to DA-integrity, indexed by striatal DA levels. Finally, both nutrition and exercise may facilitate positive epigenetic outcomes, such as lowering the dosage of L-Dopa required for a therapeutic effect.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Gothenburg, Sweden.
| | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37604, USA
| |
Collapse
|
34
|
Cisbani G, Drouin-Ouellet J, Gibrat C, Saint-Pierre M, Lagacé M, Badrinarayanan S, Lavallée-Bourget M, Charest J, Chabrat A, Boivin L, Lebel M, Bousquet M, Lévesque M, Cicchetti F. Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease. Neurobiol Dis 2015; 82:430-444. [DOI: 10.1016/j.nbd.2015.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022] Open
|
35
|
Li X, Liu H, Fischhaber PL, Tang TS. Toward therapeutic targets for SCA3: Insight into the role of Machado-Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog Neurobiol 2015; 132:34-58. [PMID: 26123252 DOI: 10.1016/j.pneurobio.2015.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/30/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
Machado-Joseph disease (MJD, also known as spinocerebellar ataxia type 3, SCA3), an autosomal dominant neurological disorder, is caused by an abnormal expanded polyglutamine (polyQ) repeat in the ataxin-3 protein. The length of the expanded polyQ stretch correlates positively with the severity of the disease and inversely with the age at onset. To date, we cannot fully explain the mechanism underlying neurobiological abnormalities of this disease. Yet, accumulating reports have demonstrated the functions of ataxin-3 protein in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, all of which suggest a role of ataxin-3 in the clearance of misfolded proteins. Notably, the SCA3 pathogenic form of ataxin-3 (ataxin-3(exp)) impairs the misfolded protein clearance via mechanisms that are either dependent or independent of its deubiquitinase (DUB) activity, resulting in the accumulation of misfolded proteins and the progressive loss of neurons in SCA3. Some drugs, which have been used as activators/inducers in the chaperone system, ubiquitin-proteasome system, and aggregation-autophagy, have been demonstrated to be efficacious in the relief of neurodegeneration diseases like Huntington's disease (HD), Parkinson's (PD), Alzheimer's (AD) as well as SCA3 in animal models and clinical trials, putting misfolded protein clearance on the list of potential therapeutic targets. Here, we undertake a comprehensive review of the progress in understanding the physiological functions of ataxin-3 in misfolded protein clearance and how the polyQ expansion impairs misfolded protein clearance. We then detail the preclinical studies targeting the elimination of misfolded proteins for SCA3 treatment. We close with future considerations for translating these pre-clinical results into therapies for SCA3 patients.
Collapse
Affiliation(s)
- Xiaoling Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongmei Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paula L Fischhaber
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262, USA.
| | - Tie-Shan Tang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
36
|
Trépanier MO, Hopperton KE, Orr SK, Bazinet RP. N-3 polyunsaturated fatty acids in animal models with neuroinflammation: An update. Eur J Pharmacol 2015; 785:187-206. [PMID: 26036964 DOI: 10.1016/j.ejphar.2015.05.045] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 05/21/2015] [Indexed: 12/19/2022]
Abstract
Neuroinflammation is a characteristic of a multitude of neurological and psychiatric disorders. Modulating inflammatory pathways offers a potential therapeutic target in these disorders. Omega-3 polyunsaturated fatty acids have anti-inflammatory and pro-resolving properties in the periphery, however, their effect on neuroinflammation is less studied. This review summarizes 61 animal studies that tested the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory outcomes in vivo in various models including stroke, spinal cord injury, aging, Alzheimer's disease, Parkinson's disease, lipopolysaccharide and IL-1β injections, diabetes, neuropathic pain, traumatic brain injury, depression, surgically induced cognitive decline, whole body irradiation, amyotrophic lateral sclerosis, N-methyl-D-aspartate-induced excitotoxicity and lupus. The evidence presented in this review suggests anti-neuroinflammatory properties of omega-3 polyunsaturated fatty acids, however, it is not clear by which mechanism omega-3 polyunsaturated fatty acids exert their effect. Future research should aim to isolate the effect of omega-3 polyunsaturated fatty acids on neuroinflammatory signaling in vivo and elucidate the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Sarah K Orr
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
37
|
Khan MZ, He L. The role of polyunsaturated fatty acids and GPR40 receptor in brain. Neuropharmacology 2015; 113:639-651. [PMID: 26005184 DOI: 10.1016/j.neuropharm.2015.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/02/2015] [Accepted: 05/08/2015] [Indexed: 01/15/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) are found in abundance in the nervous system. They perform significant functions for example boosting synaptogenesis, neurogenesis, inducing antinociception, stimulating gene expression and neuronal activity, preventing apoptosis and neuroinflammation. G-protein-coupled receptor 40 (GPR40), also called free fatty acid receptor 1 (FFA1), is ubiquitously expressed in various regions of the human brain including the olfactory bulb, midbrain, medulla oblongata, hippocampus, hypothalamus, cerebral cortex, cerebellum and in the spinal cord. GPR40, when binding with polyunsaturated fatty acids (PUFAs) has shown promising therapeutic potential. This review presents current knowledge regarding the pharmacological properties of GPR40 and addresses its functions in brain, with a focus on neurodevelopment & neurogenesis. Furthermore, the demonstration of GPR40 involvement in several neuropathological conditions such as apoptosis, inflammatory pain, Alzheimer's disease and Parkinson's disease. Although the results are encouraging, further research is needed to clarify their role in the treatment of inflammatory pain, Alzheimer's disease and Parkinson's disease. This article is part of the Special Issue entitled 'Lipid Sensing G Protein-Coupled Receptors in the CNS'.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
38
|
Lee HJ, Han J, Jang Y, Kim SJ, Park JH, Seo KS, Jeong S, Shin S, Lim K, Heo JY, Kweon GR. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis. Biochem Biophys Res Commun 2014; 457:95-100. [PMID: 25545062 DOI: 10.1016/j.bbrc.2014.12.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 11/16/2022]
Abstract
Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson's disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson's disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.
Collapse
Affiliation(s)
- Hyoung Jun Lee
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeongsu Han
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yunseon Jang
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Soo Jeong Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hoon Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kang Sik Seo
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Soyeon Jeong
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Infection Signaling Network Research Center, Chungnam National University, Daejeon, Republic of Korea
| | - Soyeon Shin
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Infection Signaling Network Research Center, Chungnam National University, Daejeon, Republic of Korea
| | - Kyu Lim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Infection Signaling Network Research Center, Chungnam National University, Daejeon, Republic of Korea
| | - Jun Young Heo
- Brainscience Institute, Chungnam National University, Daejeon, Republic of Korea.
| | - Gi Ryang Kweon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, Republic of Korea; Infection Signaling Network Research Center, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
39
|
Campdelacreu J. Parkinson's disease and Alzheimer disease: environmental risk factors. NEUROLOGÍA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.nrleng.2012.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
40
|
Pang SC, Wang HP, Li KY, Zhu ZY, Kang JX, Sun YH. Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:580-593. [PMID: 24832481 DOI: 10.1007/s10126-014-9577-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.
Collapse
Affiliation(s)
- Shao-Chen Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|
41
|
Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J Neurosci 2014; 34:7124-36. [PMID: 24849348 DOI: 10.1523/jneurosci.3439-13.2014] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hyperphosphorylation and accumulation of tau aggregates are prominent features in tauopathies, including Alzheimer's disease, but the impact of loss of tau function on synaptic and cognitive deficits remains poorly understood. We report that old (19-20 months; OKO) but not middle-aged (8-9 months; MKO) tau knock-out mice develop Morris Water Maze (MWM) deficits and loss of hippocampal acetylated α-tubulin and excitatory synaptic proteins. Mild motor deficits and reduction in tyrosine hydroxylase (TH) in the substantia nigra were present by middle age, but did not affect MWM performance, whereas OKO mice showed MWM deficits paralleling hippocampal deficits. Deletion of tau, a microtubule-associated protein (MAP), resulted in increased levels of MAP1A, MAP1B, and MAP2 in MKO, followed by loss of MAP2 and MAP1B in OKO. Hippocampal synaptic deficits in OKO mice were partially corrected with dietary supplementation with docosahexaenoic acid (DHA) and both MWM and synaptic deficits were fully corrected by combining DHA with α-lipoic acid (ALA), which also prevented TH loss. DHA or DHA/ALA restored phosphorylated and total GSK3β and attenuated hyperactivation of the tau C-Jun N-terminal kinases (JNKs) while increasing MAP1B, dephosphorylated (active) MAP2, and acetylated α-tubulin, suggesting improved microtubule stability and maintenance of active compensatory MAPs. Our results implicate the loss of MAP function in age-associated hippocampal deficits and identify a safe dietary intervention, rescuing both MAP function and TH in OKO mice. Therefore, in addition to microtubule-stabilizing therapeutic drugs, preserving or restoring compensatory MAP function may be a useful new prevention strategy.
Collapse
|
42
|
Luo C, Ren H, Wan JB, Yao X, Zhang X, He C, So KF, Kang JX, Pei Z, Su H. Enriched endogenous omega-3 fatty acids in mice protect against global ischemia injury. J Lipid Res 2014; 55:1288-97. [PMID: 24875538 DOI: 10.1194/jlr.m046466] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 12/13/2022] Open
Abstract
Transient global cerebral ischemia, one of the consequences of cardiac arrest and cardiovascular surgery, usually leads to delayed death of hippocampal cornu Ammonis1 (CA1) neurons and cognitive deficits. Currently, there are no effective preventions or treatments for this condition. Omega-3 (ω-3) PUFAs have been shown to have therapeutic potential in a variety of neurological disorders. Here, we report that the transgenic mice that express the fat-1 gene encoding for ω-3 fatty acid desaturase, which leads to an increase in endogenous ω-3 PUFAs and a concomitant decrease in ω-6 PUFAs, were protected from global cerebral ischemia injury. The results of the study show that the hippocampal CA1 neuronal loss and cognitive deficits induced by global ischemia insult were significantly less severe in fat-1 mice than in WT mice controls. The protection against global cerebral ischemia injury was closely correlated with increased production of resolvin D1, suppressed nuclear factor-kappa B activation, and reduced generation of pro-inflammatory mediators in the hippocampus of fat-1 mice compared with WT mice controls. Our study demonstrates that fat-1 mice with high endogenous ω-3 PUFAs exhibit protective effects on hippocampal CA1 neurons and cognitive functions in a global ischemia injury model.
Collapse
Affiliation(s)
- Chuanming Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huixia Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiaoli Yao
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaojing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, PR China
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, the Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital Sun Yat-Sen University, Guangzhou 510080, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| |
Collapse
|
43
|
Hammamieh R, Chakraborty N, Gautam A, Miller SA, Muhie S, Meyerhoff J, Jett M. Transcriptomic analysis of the effects of a fish oil enriched diet on murine brains. PLoS One 2014; 9:e90425. [PMID: 24632812 PMCID: PMC3954562 DOI: 10.1371/journal.pone.0090425] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022] Open
Abstract
The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (∼40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation—the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result-driven repositioning of fish oil utilization may revitalize its therapeutic efficacy.
Collapse
Affiliation(s)
- Rasha Hammamieh
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Nabarun Chakraborty
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Aarti Gautam
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Stacy-Ann Miller
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Seid Muhie
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - James Meyerhoff
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Marti Jett
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| |
Collapse
|
44
|
Vandal M, Alata W, Tremblay C, Rioux-Perreault C, Salem N, Calon F, Plourde M. Reduction in DHA transport to the brain of mice expressing human APOE4 compared to APOE2. J Neurochem 2014; 129:516-26. [PMID: 24345162 DOI: 10.1111/jnc.12640] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 12/27/2022]
Abstract
Benefits on cognition from docosahexaenoic acid (DHA, 22 : 6 n-3) intake are absent in humans carrying apolipoprotein E ε4 allele (APOE4), the most important genetic risk factor for Alzheimer's disease (AD). To test the hypothesis that carrying APOE4 impairs DHA distribution, we evaluated plasma and brain fatty acid profiles and uptake of [(14) C]-DHA using in situ cerebral perfusion through the blood-brain barrier in 4- and 13-month-old male and female APOE-targeted replacement mice (APOE2, APOE3, and APOE4), fed with a DHA-depleted diet. Cortical and plasma DHA were 9% lower and 34% higher in APOE4 compared to APOE2 mice, respectively. Brain uptake of [(14) C]-DHA was 24% lower in APOE4 versus APOE2 mice. A significant relationship was established between DHA and apoE concentrations in the cortex of mice (r(2) = 0.21) and AD patients (r(2) = 0.32). Altogether, our results suggest that lower brain uptake of DHA in APOE4 than in APOE2 mice may limit the accumulation of DHA in cerebral tissues. These data provide a mechanistic explanation for the lack of benefit of DHA in APOE4 carriers on cognitive function and the risk of AD. Using human APOE2, 3, and 4 isoform-specific transgenic mice, we found a lower brain uptake of docosahexaenoic acid (DHA) in APOE4 than in APOE2 mice that may limit the biodistribution of DHA in cerebral tissues. These data provide a mechanistic explanation for the lack of benefit of DHA in APOE4 carriers on cognitive function and the risk of Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Milène Vandal
- Centre de recherche du centre Hospitalier de l'Université Laval (CHUL), Québec City, Québec, Canada; Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec City, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Janssen CI, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 2014; 53:1-17. [DOI: 10.1016/j.plipres.2013.10.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022]
|
46
|
Zhou L, Wang L, Kang JX, Xie W, Li X, Wu C, Xu B, Wu J. Production of fat-1 transgenic rats using a post-natal female germline stem cell line. ACTA ACUST UNITED AC 2013; 20:271-81. [DOI: 10.1093/molehr/gat081] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Lim SN, Gladman SJ, Dyall SC, Patel U, Virani N, Kang JX, Priestley JV, Michael-Titus AT. Transgenic mice with high endogenous omega-3 fatty acids are protected from spinal cord injury. Neurobiol Dis 2013; 51:104-12. [DOI: 10.1016/j.nbd.2012.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/23/2012] [Accepted: 10/24/2012] [Indexed: 12/24/2022] Open
|
48
|
Luchtman DW, Meng Q, Wang X, Shao D, Song C. ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells. J Neurochem 2013; 124:855-68. [PMID: 23106698 DOI: 10.1111/jnc.12068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/22/2012] [Accepted: 10/23/2012] [Indexed: 11/27/2022]
Abstract
Eicosapentaenoic acid (EPA), a neuroactive omega-3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH-SY5Y cells and primary mesencephalic neurons treated with MPP(+) . In both in-vitro models of PD, EPA attenuated an MPP(+) -induced reduction in cell viability. EPA also prevented the presence of electron-dense cytoplasmic inclusions in SH-SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP(+) -induced increase in Tyrosine-related kinase B (TrkB) receptors. In SH-SY5Y cells, EPA down-regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo-oxygenase-2 (COX-2), as MPP(+) increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX-2 in the potentially pro-inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl-2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.
Collapse
Affiliation(s)
- Dirk W Luchtman
- National Research Institute for Nutrisciences and Health and Department of Biomedical Science, University of Prince Edward Island, Charlottetown, Canada
| | | | | | | | | |
Collapse
|
49
|
Lee JW, Nishiumi S, Yoshida M, Fukusaki E, Bamba T. Simultaneous profiling of polar lipids by supercritical fluid chromatography/tandem mass spectrometry with methylation. J Chromatogr A 2013; 1279:98-107. [PMID: 23380365 DOI: 10.1016/j.chroma.2013.01.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 12/22/2012] [Accepted: 01/03/2013] [Indexed: 12/29/2022]
Abstract
Supercritical fluid chromatography/tandem mass spectrometry (SFC/MS/MS) with methylation was used for the simultaneous profiling of diverse polar lipids in a mixture. A high throughput, high resolution analysis of nineteen classes of polar lipids including phospholipids, lysophospholipids, and sphingolipids was performed in 6 min. Methylation by trimethylsilyl-diazomethane suppressed peak tailing and improved detection sensitivity of phosphatidylserine (PS), phosphatidic acid (PA), lysophosphatidylserine (LPS), lysophosphatidylinositol (LPI), lysophosphatidic acid (LPA), ceramide-1-phosphate (Cer1P), sphingosine-1-phosphate (So1P), and sphinganine-1-phosphate (Sa1P). The limits of detection for PS, PA, LPS, LPI, LPA, Cer1P, So1P, and Sa1P were enhanced 7.5-, 26.7-, 600-, 116.7-, 500-, 75-, 3000-, and 4500-fold, respectively. Global qualitative and quantitative analysis of not only the high-abundance species but also the low-abundance species in the polar lipids was achieved. When the method was applied to mouse liver, 4 PSs, 24 PAs, 3 lysophosphatidylethanolamines, 11 LPSs, 6 lysophosphatidylglycerols, 4 LPIs, 13 LPAs, 7 sphingomyelins, 11 Cer1Ps, So1P, and Sa1P were additionally analyzed. Furthermore, the quantification of various molecular species in each polar lipid was carried out.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
50
|
Eckert GP, Lipka U, Muller WE. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria. Prostaglandins Leukot Essent Fatty Acids 2013; 88:105-14. [PMID: 22727983 DOI: 10.1016/j.plefa.2012.05.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction represents a common early pathological event in brain aging and in neurodegenerative diseases, e.g., in Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD), as well as in ischemic stroke. In vivo and ex vivo experiments using animal models of aging and AD, PD, and HD mainly showed improvement of mitochondrial function after treatment with polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA). Thereby, PUFA are particular beneficial in animals treated with mitochondria targeting toxins. However, DHA showed adverse effects in a transgenic PD mouse model and it is not clear if a diet high or low in PUFA might provide neuroprotective effects in PD. Post-treatment with PUFA revealed conflicting results in ischemic animal models, but intravenous administered DHA provided neuroprotective efficacy after acute occlusion of the middle cerebral artery. In summary, the majority of preclinical data indicate beneficial effects of n-3 PUFA in neurodegenerative diseases, whereas most controlled clinical trials did not meet the expectations. Because of the high half-life of DHA in the human brain clinical studies may have to be initiated much earlier and have to last much longer to be more efficacious.
Collapse
Affiliation(s)
- Gunter P Eckert
- Department of Pharmacology, Biocenter, Campus Riedberg, Goethe-University, Frankfurt, Biocentre Geb. N260, R.1.09, Max-von-Laue Str. 9, D-60438 Frankfurt, Germany.
| | | | | |
Collapse
|