1
|
Rehman WU, Yarkoni M, Ilyas MA, Athar F, Javaid M, Ehsan M, Khalid MT, Pasha A, Selma AB, Yarkoni A, Patel K, Sabouni MA, Rehman AU. Cholesteryl Ester Transfer Protein Inhibitors and Cardiovascular Outcomes: A Systematic Review and Meta-Analysis. J Cardiovasc Dev Dis 2024; 11:152. [PMID: 38786974 PMCID: PMC11122262 DOI: 10.3390/jcdd11050152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Atherosclerosis is a multi-factorial disease, and low-density lipoprotein cholesterol (LDL-C) is a critical risk factor in developing atherosclerotic cardiovascular disease (ASCVD). Cholesteryl-ester transfer-protein (CETP), synthesized by the liver, regulates LDL-C and high-density lipoprotein cholesterol (HDL-C) through the bidirectional transfer of lipids. The novelty of CETP inhibitors (CETPis) has granted new focus towards increasing HDL-C, besides lowering LDL-C strategies. To date, five CETPis that are projected to improve lipid profiles, torcetrapib, dalcetrapib, evacetrapib, anacetrapib, and obicetrapib, have reached late-stage clinical development for ASCVD risk reduction. Early trials failed to reduce atherosclerotic cardiovascular occurrences. Given the advent of some recent large-scale clinical trials (ACCELERATE, HPS3/TIMI55-REVEAL Collaborative Group), conducting a meta-analysis is essential to investigate CETPis' efficacy. METHODS We conducted a thorough search of randomized controlled trials (RCTs) that commenced between 2003 and 2023; CETPi versus placebo studies with a ≥6-month follow-up and defined outcomes were eligible. PRIMARY OUTCOMES major adverse cardiovascular events (MACEs), cardiovascular disease (CVD)-related mortality, all-cause mortality. SECONDARY OUTCOMES stroke, revascularization, hospitalization due to acute coronary syndrome, myocardial infarction (MI). RESULTS Nine RCTs revealed that the use of a CETPi significantly reduced CVD-related mortality (RR = 0.89; 95% CI: 0.81-0.98; p = 0.02; I2 = 0%); the same studies also reduced the risk of MI (RR = 0.92; 95% CI: 0.86-0.98; p = 0.01; I2 = 0%), which was primarily attributed to anacetrapib. The use of a CETPi did not reduce the likelihood any other outcomes. CONCLUSIONS Our meta-analysis shows, for the first time, that CETPis are associated with reduced CVD-related mortality and MI.
Collapse
Affiliation(s)
- Wajeeh ur Rehman
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Merav Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Muhammad Abdullah Ilyas
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Farwa Athar
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Mahnoor Javaid
- School of Medicine, CMH Lahore Medical College, Lahore 54000, Pakistan;
| | - Muhammad Ehsan
- Department of Medicine, King Edward Medical University, Lahore 54000, Pakistan; (M.A.I.); (F.A.); (M.E.)
| | - Muhammad Talha Khalid
- Department of Medicine, United Health Services, Johnson City, NY 13790, USA; (M.T.K.); (A.B.S.)
| | - Ahmed Pasha
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Abdelhamid Ben Selma
- Department of Medicine, United Health Services, Johnson City, NY 13790, USA; (M.T.K.); (A.B.S.)
| | - Alon Yarkoni
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Keyoor Patel
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| | - Mouhamed Amr Sabouni
- Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Afzal ur Rehman
- Heart and Vascular Institute, United Health Services, Johnson City, NY 13790, USA; (A.P.); (A.Y.); (K.P.); (A.u.R.)
| |
Collapse
|
2
|
Deng H, Liang WY, Chen LQ, Yuen TH, Sahin B, Vasilescu DM, Trinder M, Walley K, Rensen PC, Boyd JH, Brunham LR. CETP inhibition enhances monocyte activation and bacterial clearance and reduces streptococcus pneumonia-associated mortality in mice. JCI Insight 2024; 9:e173205. [PMID: 38646937 PMCID: PMC11141867 DOI: 10.1172/jci.insight.173205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Sepsis is a leading cause of mortality worldwide, and pneumonia is the most common cause of sepsis in humans. Low levels of high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of death from sepsis, and increasing levels of HDL-C by inhibition of cholesteryl ester transfer protein (CETP) decreases mortality from intraabdominal polymicrobial sepsis in APOE*3-Leiden.CETP mice. Here, we show that treatment with the CETP inhibitor (CETPi) anacetrapib reduced mortality from Streptococcus pneumoniae-induced sepsis in APOE*3-Leiden.CETP and APOA1.CETP mice. Mechanistically, CETP inhibition reduced the host proinflammatory response via attenuation of proinflammatory cytokine transcription and release. This effect was dependent on the presence of HDL, leading to attenuation of immune-mediated organ damage. In addition, CETP inhibition promoted monocyte activation in the blood prior to the onset of sepsis, resulting in accelerated macrophage recruitment to the lung and liver. In vitro experiments demonstrated that CETP inhibition significantly promoted the activation of proinflammatory signaling in peripheral blood mononuclear cells and THP1 cells in the absence of HDL; this may represent a mechanism responsible for improved bacterial clearance during sepsis. These findings provide evidence that CETP inhibition represents a potential approach to reduce mortality from pneumosepsis.
Collapse
Affiliation(s)
- Haoyu Deng
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Le Qi Chen
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Tin Ho Yuen
- Department of Microbiology and Immunology, Faculty of Science, and
| | - Basak Sahin
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | | | - Mark Trinder
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
- Department of Experimental Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith Walley
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Patrick C.N. Rensen
- Department of Medicine, Division of Endocrinology, and
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - John H. Boyd
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| | - Liam R. Brunham
- Department of Medicine, Faculty of Medicine
- Centre for Heart and Lung Innovation, St. Paul’s Hospital
| |
Collapse
|
3
|
Revanasiddappa PD. Structural insights on the deformations induced by various mutations on cholesteryl ester transfer protein. Biophys Chem 2023; 301:107093. [PMID: 37639752 DOI: 10.1016/j.bpc.2023.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Cholesteryl Ester Transfer Protein (CETP) is a plasma glycoprotein that intervenes the reverse cholesterol transport (RCT) by equimolar exchange of Cholesteryl esters (CE) and Triglycerides (TGs) between anti-atherogenic High-Density Lipoproteins (HDLs) and pro-atherogenic Low-Density Lipoproteins (LDLs) resulting in the increased concentration of CEs in LDL. This is a potential cause for the formation of atherosclerotic plaques in blood vessels leading to fatality. Therefore, blocking the function of CETP has emerged as a novel strategy for suppressing atherosclerotic plaques. The crystal structure of CETP revealed two Cholesteryl esters (CEs) in the hydrophobic tunnel and two phospholipids (PLs) plugged on the concave surface. Previous lipid transfer assay experimental studies have shown a substantial reduction in the neutral lipid transfer in [R201S] and [I443W, V198W] mutants. However, the protein conformational arrangements due to the mutations present in the CETP system leading to a decrease in the transfer rate of neutral lipids is not explored. Thus, I explored the reason behind the decreased transfer rate in mutants using molecular dynamics (MD) simulations and free energy calculations. Resulting evidences show that R201S mutant induces unfavorable bending angle to CETP with a decreased binding efficiency between N-terminal phospholipid of CETP with S201. Also, an unfavorable conformation state of TGs is formed which makes them difficult to transfer across CETP. Likewise, [I443W, V198W] mutant induces unfavorable CE, TG, and bending angle conformation to CETP impeding neutral lipid transfer. Thus, my results provide sufficient insights on the causation for a decreased transfer rate as reported earlier. The detailed understanding obtained here could help in developing a new strategy in preventing the function of CETP by blocking the role of potential hot spot residues.
Collapse
|
4
|
Phénix J, Côté J, Dieme D, Recinto SJ, Oestereich F, Efrem S, Haddad S, Bouchard M, Munter LM. CETP inhibitor evacetrapib enters mouse brain tissue. Front Pharmacol 2023; 14:1171937. [PMID: 37533630 PMCID: PMC10390775 DOI: 10.3389/fphar.2023.1171937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/26/2023] [Indexed: 08/04/2023] Open
Abstract
High levels of plasma cholesterol, especially high levels of low-density lipoprotein cholesterol (LDL-C), have been associated with an increased risk of Alzheimer's disease. The cholesteryl ester transfer protein (CETP) in plasma distributes cholesteryl esters between lipoproteins and increases LDL-C in plasma. Epidemiologically, decreased CETP activity has been associated with sustained cognitive performance during aging, longevity, and a lower risk of Alzheimer's disease. Thus, pharmacological CETP inhibitors could be repurposed for the treatment of Alzheimer's disease as they are safe and effective at lowering CETP activity and LDL-C. Although CETP is mostly expressed by the liver and secreted into the bloodstream, it is also expressed by astrocytes in the brain. Therefore, it is important to determine whether CETP inhibitors can enter the brain. Here, we describe the pharmacokinetic parameters of the CETP inhibitor evacetrapib in the plasma, liver, and brain tissues of CETP transgenic mice. We show that evacetrapib crosses the blood-brain barrier and is detectable in brain tissue 0.5 h after a 40 mg/kg i.v. injection in a non-linear function. We conclude that evacetrapib may prove to be a good candidate to treat CETP-mediated cholesterol dysregulation in Alzheimer's disease.
Collapse
Affiliation(s)
- Jasmine Phénix
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems Group, Montreal, QC, Canada
| | - Jonathan Côté
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Public Health Research Center (CReSP), Université de Montréal, Montreal, QC, Canada
| | - Denis Dieme
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Public Health Research Center (CReSP), Université de Montréal, Montreal, QC, Canada
| | - Sherilyn J. Recinto
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems Group, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Felix Oestereich
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems Group, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sasen Efrem
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems Group, Montreal, QC, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Public Health Research Center (CReSP), Université de Montréal, Montreal, QC, Canada
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, QC, Canada
- Public Health Research Center (CReSP), Université de Montréal, Montreal, QC, Canada
| | - Lisa Marie Munter
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Cell Information Systems Group, Montreal, QC, Canada
- Centre de Recherche en Biologie Structurale (CRBS), Montreal, QC, Canada
| |
Collapse
|
5
|
Wong SK, Ramli FF, Ali A, Ibrahim N‘I. Genetics of Cholesterol-Related Genes in Metabolic Syndrome: A Review of Current Evidence. Biomedicines 2022; 10:biomedicines10123239. [PMID: 36551995 PMCID: PMC9775320 DOI: 10.3390/biomedicines10123239] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) refers to a cluster of metabolic dysregulations, which include insulin resistance, obesity, atherogenic dyslipidemia and hypertension. The complex pathogenesis of MetS encompasses the interplay between environmental and genetic factors. Environmental factors such as excessive nutrients and sedentary lifestyle are modifiable and could be improved by lifestyle modification. However, genetic susceptibility to MetS, a non-modifiable factor, has attracted the attention of researchers, which could act as the basis for future diagnosis, prognosis, and therapy for MetS. Several cholesterol-related genes associated with each characteristic of MetS have been identified, such as apolipoprotein, lipoprotein lipase (LPL), cholesteryl ester transfer protein (CETP) and adiponectin. This review aims to summarize the genetic information of cholesterol-related genes in MetS, which may potentially serve as biomarkers for early prevention and management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
- Clinical Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
- Correspondence: ; Tel.: +60-39145-9545
| |
Collapse
|
6
|
Porashar B, Biswas S, Sahu AK, Chutia A, Saikia AK. Temperature Tunable Synthesis of Tetrahydro-4 H-pyrrolo[3,2- c]quinolin-4-ones and Dihydro-1 H-benzo[ b]azepines from 2-Aminobenzonitriles and Donor–Acceptor Cyclopropanes. Org Lett 2022; 24:9038-9042. [DOI: 10.1021/acs.orglett.2c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bikoshita Porashar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Archana Kumari Sahu
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Archana Chutia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Anil K. Saikia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
7
|
Nelson AJ, Sniderman AD, Ditmarsch M, Dicklin MR, Nicholls SJ, Davidson MH, Kastelein JJP. Cholesteryl Ester Transfer Protein Inhibition Reduces Major Adverse Cardiovascular Events by Lowering Apolipoprotein B Levels. Int J Mol Sci 2022; 23:ijms23169417. [PMID: 36012684 PMCID: PMC9409323 DOI: 10.3390/ijms23169417] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) facilitates the exchange of cholesteryl esters and triglycerides (TG) between high-density lipoprotein (HDL) particles and TG-rich, apolipoprotein (apo) B-containing particles. Initially, these compounds were developed to raise plasma HDL cholesterol (HDL-C) levels, a mechanism that was previously thought to lower the risk of atherosclerotic cardiovascular disease (ASCVD). More recently, the focus changed and the use of pharmacologic CETP inhibitors to reduce low-density lipoprotein cholesterol (LDL-C), non-HDL-C and apoB concentrations became supported by several lines of evidence from animal models, observational investigations, randomized controlled trials and Mendelian randomization studies. Furthermore, a cardiovascular outcome trial of anacetrapib demonstrated that CETP inhibition significantly reduced the risk of major coronary events in patients with ASCVD in a manner directly proportional to the substantial reduction in LDL-C and apoB. These data have dramatically shifted the attention on CETP away from raising HDL-C instead to lowering apoB-containing lipoproteins, which is relevant since the newest CETP inhibitor, obicetrapib, reduces LDL-C by up to 51% and apoB by up to 30% when taken in combination with a high-intensity statin. An ongoing cardiovascular outcome trial of obicetrapib in patients with ASCVD is expected to provide further evidence of the ability of CETP inhibitors to reduce major adverse cardiovascular events by lowering apoB. The purpose of the present review is to provide an up-to-date understanding of CETP inhibition and its relationship to ASCVD risk reduction.
Collapse
Affiliation(s)
- Adam J. Nelson
- Victorian Heart Institute, Monash University, Clayton, VIC 3800, Australia
| | - Allan D. Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | | | | | | | | | - John J. P. Kastelein
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Balasubramaniam D, Schroeder O, Russell AM, Fitchett JR, Austin AK, Beyer TP, Chen YQ, Day JW, Ehsani M, Heng AR, Zhen EY, Davies J, Glaesner W, Jones BE, Siegel RW, Qian YW, Konrad RJ. An anti-ANGPTL3/8 antibody decreases circulating triglycerides by binding to a LPL-inhibitory leucine zipper-like motif. J Lipid Res 2022; 63:100198. [PMID: 35307397 PMCID: PMC9036128 DOI: 10.1016/j.jlr.2022.100198] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Triglycerides (TG) are required for fatty acid transport and storage and are essential for human health. Angiopoietin-like-protein 8 (ANGPTL8) has previously been shown to form a complex with ANGPTL3 that increases circulating TG by potently inhibiting LPL. We also recently showed that the TG-lowering apolipoprotein A5 (ApoA5) decreases TG levels by suppressing ANGPTL3/8-mediated LPL inhibition. To understand how LPL binds ANGPTL3/8 and ApoA5 blocks this interaction, we used hydrogen-deuterium exchange mass-spectrometry and molecular modeling to map binding sites of LPL and ApoA5 on ANGPTL3/8. Remarkably, we found that LPL and ApoA5 both bound a unique ANGPTL3/8 epitope consisting of N-terminal regions of ANGPTL3 and ANGPTL8 that are unmasked upon formation of the ANGPTL3/8 complex. We further used ANGPTL3/8 as an immunogen to develop an antibody targeting this same epitope. After refocusing on antibodies that bound ANGPTL3/8, as opposed to ANGPTL3 or ANGPTL8 alone, we utilized bio-layer interferometry to select an antibody exhibiting high-affinity binding to the desired epitope. We revealed an ANGPTL3/8 leucine zipper-like motif within the anti-ANGPTL3/8 epitope, the LPL-inhibitory region, and the ApoA5-interacting region, suggesting the mechanism by which ApoA5 lowers TG is via competition with LPL for the same ANGPTL3/8-binding site. Supporting this hypothesis, we demonstrate that the anti-ANGPTL3/8 antibody potently blocked ANGPTL3/8-mediated LPL inhibition in vitro and dramatically lowered TG levels in vivo. Together, these data show that an anti-ANGPTL3/8 antibody targeting the same leucine zipper-containing epitope recognized by LPL and ApoA5 markedly decreases TG by suppressing ANGPTL3/8-mediated LPL inhibition.
Collapse
Affiliation(s)
| | - Oliver Schroeder
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Anna M Russell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Aaron K Austin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Thomas P Beyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jonathan W Day
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Aik Roy Heng
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Eugene Y Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Julian Davies
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Wolfgang Glaesner
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Bryan E Jones
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert W Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Yue-Wei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Nurmohamed NS, Ditmarsch M, Kastelein JJP. CETP-inhibitors: from HDL-C to LDL-C lowering agents? Cardiovasc Res 2021; 118:2919-2931. [PMID: 34849601 PMCID: PMC9648826 DOI: 10.1093/cvr/cvab350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) is a liver-synthesized glycoprotein whose main functions are facilitating transfer of both cholesteryl esters from high-density lipoprotein (HDL) particles to apolipoprotein B (apoB)-containing particles as well as transfer of triglycerides from apoB-containing particles to HDL particles. Novel crystallographic data have shown that CETP exchanges lipids in the circulation by a dual molecular mechanism. Recently, it has been suggested that the atherosclerotic cardiovascular disease (ASCVD) benefit from CETP inhibition is the consequence of the achieved low-density lipoprotein cholesterol (LDL-C) and apoB reduction, rather than through the HDL cholesterol (HDL-C) increase. The use of CETP inhibitors is supported by genetic evidence from Mendelian randomization studies, showing that LDL-C lowering by CETP gene variants achieves equal ASCVD risk reduction as LDL-C lowering through gene proxies for statins, ezetimibe, and proprotein convertase subtilisin–kexin Type 9 inhibitors. Although first-generation CETP inhibitors (torcetrapib, dalcetrapib) were mainly raising HDL-C or had off-target effects, next generation CETP inhibitors (anacetrapib, evacetrapib) were also effective in reducing LDL-C and apoB and have been proven safe. Anacetrapib was the first CETP inhibitor to be proven effective in reducing ASCVD risk. In addition, CETP inhibitors have been shown to lower the risk of new-onset diabetes, improve glucose tolerance, and insulin sensitivity. The newest-generation CETP inhibitor obicetrapib, specifically designed to lower LDL-C and apoB, has achieved significant reductions of LDL-C up to 45%. Obicetrapib, about to enter phase III development, could become the first CETP inhibitor as add-on therapy for patients not reaching their guideline LDL-C targets.
Collapse
Affiliation(s)
- Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - John J P Kastelein
- Department of Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Liu X, Wang J, Dong G. Modular Entry to Functionalized Tetrahydrobenzo[ b]azepines via the Palladium/Norbornene Cooperative Catalysis Enabled by a C7-Modified Norbornene. J Am Chem Soc 2021; 143:9991-10004. [PMID: 34161077 PMCID: PMC9142336 DOI: 10.1021/jacs.1c04575] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tetrahydrobenzo[b]azepines (THBAs) are commonly found in many bioactive compounds; however, the modular preparation of functionalized THBAs remains challenging to date. Here, we report a straightforward method to synthesize THBAs directly from simple aryl iodides via palladium/norbornene (Pd/NBE) cooperative catalysis. Capitalizing on an olefin-tethered electrophilic amine reagent, an ortho amination followed by 7-exo-trig Heck cyclization furnishes the seven-membered heterocycle. To overcome the difficulty with ortho-unsubstituted aryl iodide substrates, we discovered a unique C7-bromo-substituted NBE (N1) to offer the desired reactivity and selectivity. In addition to THBAs, synthesis of other benzo-seven-membered ring compounds can also be promoted by N1. Combined experimental and computational studies show that the C7-bromo group in N1 plays an important and versatile role in this catalysis, including promoting β-carbon elimination, suppressing benzocyclobutene formation, and stabilizing reaction intermediates. The mechanistic insights gained could guide future catalyst design. The synthetic utility has been demonstrated in a streamlined synthesis of tolvaptan and forming diverse pharmaceutically relevant THBA derivatives. Finally, a complementary and general catalytic condition to access C6-substituted THBAs from ortho-substituted aryl iodides has also been developed.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
11
|
Bahbah EI, Shehata MSA, Alnahrawi SI, Sayed A, Menshawey A, Fisal A, Morsi M, Gabr ME, Elbasit MSA. Safety and Efficacy of Evacetrapib in Patients with Inadequately-controlled Hypercholesterolemia and High Cardiovascular Risk; A meta-analysis of Randomized Placebo-controlled Trials. Prostaglandins Leukot Essent Fatty Acids 2021; 168:102282. [PMID: 33882411 DOI: 10.1016/j.plefa.2021.102282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/25/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL-C) is causally related to cardiovascular disease. Inhibition of cholesteryl ester transfer protein with Evacetrapib may provide an additional treatment option for patients who do not reach their LDL-C goal with statins or patients who cannot tolerate statins. We aimed to evaluate the safety and efficacy of Evacetrapib in patients with inadequately-controlled hypercholesterolemia and high cardiovascular risk. METHOD A computer literature search for PubMed, Scopus, and Science Direct was carried out from inception to 2019 and was updated from January 2019 till March 2021. We included only RCTs. Data were pooled as a mean difference in a random-effect model using the Mantel-Haenzel (M-H) method. We used Open Meta [Analyst] software (by the center of evidence-based medicine, Oxford University, UK). RESULTS Five studies (n = 12,937 patients) reported in five articles were included in this meta-analysis. The overall pooled estimate showed that LDL-C was significantly lower in the evacetrapib group than the placebo group (MD -34.07 mg/dL, 95% CI [-40.66, -27.49], p<0.0001). The pooled estimate showed that Apo-B was significantly lower in the evacetrapib130 mg group than the placebo group (MD -22.64 mg/dL, 95% CI [-30.70, -14.58], p<0.0001). HDL-C was significantly higher in the evacetrapib group over the placebo group (MD 93.31 mg/dL, 95% CI [56.07, 130.56], p<0.0001). CONCLUSION Current evidence from five RCTs (12,539 participants) suggests that evacetrapib has favorable outcomes in patients with inadequately-controlled Hypercholesterolemia and high cardiovascular risks. Evacetrapib could significantly increase the HDL and Apo-A1 levels and lower the LDL cholesterol and Apo-B levels with an acceptable safety profile.
Collapse
Affiliation(s)
- Eshak I Bahbah
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mohamed S A Shehata
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Safwat Ibrahim Alnahrawi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| | - Ahmed Sayed
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Menshawey
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ahmed Fisal
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mahmoud Morsi
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Faculty of Medicine, Menofia University, Menofia, Egypt
| | - Mohamed Essam Gabr
- Montefiore medical center, Albert Einstien college of medicine (Wakefield Division), Bronx, NY
| | - Mohamed Salah Abd Elbasit
- Medical Research Group of Egypt (MRGE), Cairo, Egypt; Department of Cardiology, National Heart Institute, Egypt
| |
Collapse
|
12
|
Su X, Li G, Deng Y, Chang D. Cholesteryl ester transfer protein inhibitors in precision medicine. Clin Chim Acta 2020; 510:733-740. [PMID: 32941836 DOI: 10.1016/j.cca.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 01/04/2023]
Abstract
Dyslipidemia is associated with atherosclerosis and cardiovascular disease development, posing serious risks to human health. Cholesteryl ester transfer protein (CETP) is responsible for exchange of neutral lipids, such as cholesteryl ester and TG, between plasma high density lipoprotein (HDL) particles and Apolipoprotein B-100 (ApoB-100) containing lipoprotein particles. Genetic studies suggest that single-nucleotide polymorphism (SNPs) with loss of activity CETP is associated with increased HDL-C, reduced LDL-C, and cardiovascular risk. In animal studies, mostly in rabbits, which have similar CETP activity to humans, inhibition of CETP through antisense oligonucleotides reduced aortic arch atherosclerosis. Concerning this notion, inhibiting the CETP is considered as a promise approach to reduce cardiovascular events, and several CETP inhibitors have been recently studied as a cholesterol modifying agent to reduce cardiovascular mortality in high risk cardiovascular disease patients. However, in Phase III cardiovascular outcome trials, three CETP inhibitors, named Torcetrapib, Dalcetrapib, and Evacetrapib, did not provide expected cardiovascular benefits and failed to improve outcomes of patient with cardiovascular diseases (CVD). Although REVEAL trail has recently shown that Anacetrapib could reduce major coronary events, it was also shown to induce excessive lipid accumulation in adipose tissue; thereby, the further regulatory approval will not be sought. On the other hand, growing evidence indicated that the function of CETP inhibitors on modulating the cardiovascular events are determined by correlated single nucleotide polymorphism (SNP) in the ADCY9 gene. However, the underlying mechanisms whereby CETP inhibitors interact with the genotype are not yet elucidated, which could potentially be related to the genotype-dependent cholesterol efflux capacity of HDL particles. In the present review, we summarize the current understanding of the functions of CETP and the outcomes of the phase III randomized controlled trials of CETP inhibitors. In addition, we also put forward the implications from results of the trials which potentially suggest that the CETP inhibitors could be a promising precise therapeutic medicine for CVD based on genetic background.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Guiyang Li
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yingjian Deng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Dong Chang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
13
|
Wang S, Guillot R, Carpentier J, Sarazin Y, Bour C, Gandon V, Lebœuf D. Synthesis of Bridged Tetrahydrobenzo[
b
]azepines and Derivatives through an Aza‐Piancatelli Cyclization/Michael Addition Sequence. Angew Chem Int Ed Engl 2019; 59:1134-1138. [DOI: 10.1002/anie.201911761] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/29/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Shengdong Wang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | | | - Yann Sarazin
- Univ Rennes CNRS UMR 6226 ISCR (Institut des Sciences Chimiques de Rennes) 35000 Rennes France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| |
Collapse
|
14
|
Wang S, Guillot R, Carpentier J, Sarazin Y, Bour C, Gandon V, Lebœuf D. Synthesis of Bridged Tetrahydrobenzo[
b
]azepines and Derivatives through an Aza‐Piancatelli Cyclization/Michael Addition Sequence. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shengdong Wang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | | | - Yann Sarazin
- Univ Rennes CNRS UMR 6226 ISCR (Institut des Sciences Chimiques de Rennes) 35000 Rennes France
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| | - David Lebœuf
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) CNRS UMR 8182 Université Paris-Sud Université Paris-Saclay Bâtiment 420 91405 Orsay France
| |
Collapse
|
15
|
Abstract
The article discusses the basic properties of fluorine atom that have made it so useful in drug development. It presents several examples of therapeutically useful drugs acting against many life-threatening diseases along with the mechanism as to how fluorine influences the drug activity. It has been pointed out that fluorine, due to its ability to increase the lipophilicity of the molecule, greatly affects the hydrophobic interaction between the drug molecule and the receptor. Because of its small size, it hardly produces any steric effect, rather due to electronic properties enters into electrostatic and hydrogen-bond interactions. Thus, it greatly affects the drug-receptor interaction and leads to increase the activity of the drugs.
Collapse
Affiliation(s)
- Satya Prakash Gupta
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| |
Collapse
|
16
|
Dixit SM, Ahsan M, Senapati S. Steering the Lipid Transfer To Unravel the Mechanism of Cholesteryl Ester Transfer Protein Inhibition. Biochemistry 2019; 58:3789-3801. [PMID: 31418269 DOI: 10.1021/acs.biochem.9b00301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human plasma cholesteryl ester transfer protein (CETP) mediates the transfer of neutral lipids from antiatherogenic high-density lipoproteins (HDLs) to proatherogenic low-density lipoproteins (LDLs). Recent cryo-electron microscopy studies have suggested that CETP penetrates its N- and C-terminal domains in HDL and LDL to form a ternary complex, which facilitates the lipid transfer between different lipoproteins. Inhibition of CETP lipid transfer activity has been shown to increase the plasma HDL-C levels and, therefore, became an effective strategy for combating cardiovascular diseases. Thus, understanding the molecular mechanism of inhibition of lipid transfer through CETP is of paramount importance. Recently reported inhibitors, torcetrapib and anacetrapib, exhibited low potency in addition to severe side effects, which essentially demanded a thorough knowledge of the inhibition mechanism. Here, we employ steered molecular dynamics simulations to understand how inhibitors interfere with the neutral lipid transfer mechanism of CETP. Our study revealed that inhibitors physically occlude the tunnel posing a high energy barrier for lipid transfer. In addition, inhibitors bring about the conformational changes in CETP that hamper CE passage and expose protein residues that disrupt the optimal hydrophobicity of the CE transfer path. The atomic level details presented here could accelerate the designing of safe and efficacious CETP inhibitors.
Collapse
Affiliation(s)
- Sneha M Dixit
- Department of Biotechnology, BJM School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Mohd Ahsan
- Department of Biotechnology, BJM School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sanjib Senapati
- Department of Biotechnology, BJM School of Biosciences , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
17
|
Smith DA, van Waterschoot RA, Parrott NJ, Olivares-Morales A, Lavé T, Rowland M. Importance of target-mediated drug disposition for small molecules. Drug Discov Today 2018; 23:2023-2030. [DOI: 10.1016/j.drudis.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 11/30/2022]
|
18
|
van der Laan SW, Harshfield EL, Hemerich D, Stacey D, Wood AM, Asselbergs FW. From lipid locus to drug target through human genomics. Cardiovasc Res 2018; 114:1258-1270. [PMID: 29800275 DOI: 10.1093/cvr/cvy120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
In the last decade, over 175 genetic loci have robustly been associated to levels of major circulating blood lipids. Most loci are specific to one or two lipids, whereas some (SUGP1, ZPR1, TRIB1, HERPUD1, and FADS1) are associated to all. While exposing the polygenic architecture of circulating lipids and the underpinnings of dyslipidaemia, these genome-wide association studies (GWAS) have provided further evidence of the critical role that lipids play in coronary heart disease (CHD) risk, as indicated by the 2.7-fold enrichment for macrophage gene expression in atherosclerotic plaques and the association of 25 loci (such as PCSK9, APOB, ABCG5-G8, KCNK5, LPL, HMGCR, NPC1L1, CETP, TRIB1, ABO, PMAIP1-MC4R, and LDLR) with CHD. These GWAS also confirmed known and commonly used therapeutic targets, including HMGCR (statins), PCSK9 (antibodies), and NPC1L1 (ezetimibe). As we head into the post-GWAS era, we offer suggestions for how to move forward beyond genetic risk loci, towards refining the biology behind the associations and identifying causal genes and therapeutic targets. Deep phenotyping through lipidomics and metabolomics will refine and increase the resolution to find causal and druggable targets, and studies aimed at demonstrating gene transcriptional and regulatory effects of lipid associated loci will further aid in identifying these targets. Thus, we argue the need for deeply phenotyped, large genetic association studies to reduce costs and failures and increase the efficiency of the drug discovery pipeline. We conjecture that in the next decade a paradigm shift will tip the balance towards a data-driven approach to therapeutic target development and the application of precision medicine where human genomics takes centre stage.
Collapse
Affiliation(s)
- Sander W van der Laan
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Eric L Harshfield
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
- Department of Clinical Neurosciences, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Daiane Hemerich
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - David Stacey
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Angela M Wood
- Department of Public Health and Primary Care, University of Cambridge, 2 Worts Causeway, Cambridge CB1 8RN, UK
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Farr Institute of Health Informatics Research, Institute of Health Informatics, University College London, London, UK
| |
Collapse
|
19
|
Shrestha S, Wu BJ, Guiney L, Barter PJ, Rye KA. Cholesteryl ester transfer protein and its inhibitors. J Lipid Res 2018; 59:772-783. [PMID: 29487091 PMCID: PMC5928430 DOI: 10.1194/jlr.r082735] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/10/2018] [Indexed: 12/22/2022] Open
Abstract
Most of the cholesterol in plasma is in an esterified form that is generated in potentially cardioprotective HDLs. Cholesteryl ester transfer protein (CETP) mediates bidirectional transfers of cholesteryl esters (CEs) and triglycerides (TGs) between plasma lipoproteins. Because CE originates in HDLs and TG enters the plasma as a component of VLDLs, activity of CETP results in a net mass transfer of CE from HDLs to VLDLs and LDLs, and of TG from VLDLs to LDLs and HDLs. As inhibition of CETP activity increases the concentration of HDL-cholesterol and decreases the concentration of VLDL- and LDL-cholesterol, it has the potential to reduce atherosclerotic CVD. This has led to the development of anti-CETP neutralizing monoclonal antibodies, vaccines, and antisense oligonucleotides. Small molecule inhibitors of CETP have also been developed and four of them have been studied in large scale cardiovascular clinical outcome trials. This review describes the structure of CETP and its mechanism of action. Details of its regulation and nonlipid transporting functions are discussed, and the results of the large scale clinical outcome trials of small molecule CETP inhibitors are summarized.
Collapse
Affiliation(s)
- Sudichhya Shrestha
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Ben J Wu
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Liam Guiney
- Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Philip J Barter
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
20
|
Present therapeutic role of cholesteryl ester transfer protein inhibitors. Pharmacol Res 2017; 128:29-41. [PMID: 29287689 DOI: 10.1016/j.phrs.2017.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022]
Abstract
Therapeutic interventions aimed at increasing high-density lipoprotein (HDL) levels in order to reduce the residual cardiovascular (CV) risk of optimally drug treated patients have not provided convincing results, so far. Transfer of cholesterol from extrahepatic tissues to the liver appears to be the major atheroprotective function of HDL, and an elevation of HDL levels could represent an effective strategy. Inhibition of the cholesteryl ester transfer protein (CETP), raising HDL-cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, reduces low-density lipoprotein-cholesterol (LDL-C) and apoB levels, thus offering a promising approach. Despite the beneficial influence on cholesterol metabolism, off-target effects and lack of reduction in CV events and mortality (with torcetrapib, dalcetrapib and evacetrapib) highlighted the complex mechanism of CETP inhibition. After the failure of the above mentioned inhibitors in phase III clinical development, possibly due to the short duration of the trials masking benefit, the secondary prevention REVEAL trial has recently shown that the inhibitor anacetrapib significantly raised HDL-C (+104%), reduced LDL-C (-18%), with a protective effect on major coronary events (RR, 0.91; 95%CI, 0.85-0.97; p = 0.004). Whether LDL-C lowering fully accounts for the CV benefit or if HDL-C-rise is a crucial factor still needs to be determined, although the reduction of non-HDL (-18%) and Lp(a) (-25%), should be also taken into account. In spite of the positive results of the REVEAL Study, Merck decided not to proceed in asking regulatory approval for anacetrapib. Dalcetrapib (Dal-GenE study) and CKD-519 remain the two molecules within this area still in clinical development.
Collapse
|
21
|
Androulakis E, Zacharia E, Papageorgiou N, Lioudaki E, Bertsias D, Charakida M, Siasos G, Tousoulis D. High-density Lipoprotein and Low-density Lipoprotein Therapeutic Approaches in Acute Coronary Syndromes. Curr Cardiol Rev 2017; 13:168-182. [PMID: 28190386 PMCID: PMC5633711 DOI: 10.2174/1573403x13666170209145622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low-density lipoprotein cholesterol (LDL), and especially its oxidized form, renders the atherosclerotic plaque vulnerable to rupture in acute coronary syndromes (ACS). On the other hand, high-density lipoprotein (HDL) is considered an anti-atherogenic molecule. The more recent HDL-targeted drugs may prove to be superior to those used before. Indeed, delipidated HDL and HDL mimetics are efficient in increasing HDL levels, while the apoA-I upregulation with RVX-208 appears to offer a clinical benefit which is beyond the HDL related effects. HDL treatment however has not shown a significant improvement in the outcomes of patients with ACS so far, studies have therefore focused again on LDL. In addition to statins and ezetimibe, novel drugs such as PSCK9 inhibitors and apolipoprotein B inhibitors appear to be both effective and safe for patients with hyperlipidemia. CONCLUSION Data suggest these could potentially improve the cardiovascular outcomes of patient with ACS. Yet, there is still research to be done, in order to confirm whether ACS patients would benefit from LDL- or HDL-targeted therapies or a combination of both.
Collapse
Affiliation(s)
| | - Effimia Zacharia
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Nikolaos Papageorgiou
- Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, EC1A 7BE, London, United Kingdom
| | - Eirini Lioudaki
- Epsom and St Helier University Hospitals, London, United Kingdom
| | - Dimitris Bertsias
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Marietta Charakida
- Department of Cardiovascular Imaging, King's College London, United Kingdom
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, University of Athens, Athens, Greece
| |
Collapse
|
22
|
Christen T, Trompet S, Noordam R, Blauw LL, Gast KB, Rensen PCN, Willems van Dijk K, Rosendaal FR, de Mutsert R, Jukema JW. Mendelian randomization analysis of cholesteryl ester transfer protein and subclinical atherosclerosis: A population-based study. J Clin Lipidol 2017; 12:137-144.e1. [PMID: 29174438 DOI: 10.1016/j.jacl.2017.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several trials to prevent cardiovascular disease by inhibiting cholesteryl ester transfer protein (CETP) have failed, except Randomized EValuation of the Effects of Anacetrapib through Lipid-modification. Thus far, it is unclear to what extent CETP is causally related to measures of atherosclerosis. OBJECTIVE The aim of the article was to study the causal relationship between genetically determined CETP concentration and carotid intima-media thickness (cIMT) in a population-based cohort study. METHODS In the Netherlands Epidemiology of Obesity study, participants were genotyped, and cIMT was measured by ultrasonography. We examined the relation between a weighted genetic risk score for CETP concentration, based on 3 single-nucleotide polymorphisms that have previously been shown to largely determine CETP concentration and cIMT using Mendelian randomization in the total population and in strata by sex, Framingham 10-year risk, (pre)diabetes, high-density lipoprotein cholesterol, triglycerides, and statin use. RESULTS We analyzed 5655 participants (56% women) with a mean age of 56 (range 44-66) years, body mass index of 26 (range 17-61) kg/m2, and serum CETP of 2.47 (range 0.68-5.33) μg/mL. There was no evidence for a causal relation between genetically determined CETP and cIMT in the total population, but associations were differently directed in men (16 μm per μg/mL increase in genetically determined CETP; 95% confidence interval: -8, 39) and women (-8 μm; -25, 9). Genetically determined CETP appeared to be associated with cIMT in normoglycemic men (26 μm; -1, 52) and in (pre)diabetic women (48 μm; -2, 98). CONCLUSION In this population-based study, there was no causal relation between genetically determined CETP concentration and cIMT in the total population although we observed directionally differing effects in men and women. Stratified results suggested associations in individuals with different cardiometabolic risk factor profiles, which require replication.
Collapse
Affiliation(s)
- Tim Christen
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Lisanne L Blauw
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Division of Endocrinology, Department of Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Karin B Gast
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | |
Collapse
|
23
|
Xu B, Gillard BK, Gotto AM, Rosales C, Pownall HJ. ABCA1-Derived Nascent High-Density Lipoprotein-Apolipoprotein AI and Lipids Metabolically Segregate. Arterioscler Thromb Vasc Biol 2017; 37:2260-2270. [PMID: 29074589 DOI: 10.1161/atvbaha.117.310290] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Reverse cholesterol transport comprises cholesterol efflux from ABCA1-expressing macrophages to apolipoprotein (apo) AI, giving nascent high-density lipoprotein (nHDL), esterification of nHDL-free cholesterol (FC), selective hepatic extraction of HDL lipids, and hepatic conversion of HDL cholesterol to bile salts, which are excreted. We tested this model by identifying the fates of nHDL-[3H]FC, [14C] phospholipid (PL), and [125I]apo AI in serum in vitro and in vivo. APPROACH AND RESULTS During in vitro incubation of human serum, nHDL-[3H]FC and [14C]PL rapidly transfer to HDL and low-density lipoproteins (t1/2=2-7 minutes), whereas nHDL-[125I]apo AI transfers solely to HDL (t1/2<10 minutes) and to the lipid-free form (t1/2>480 minutes). After injection into mice, nHDL-[3H]FC and [14C]PL rapidly transfer to liver (t1/2=≈2-3 minutes), whereas apo AI clears with t1/2=≈460 minutes. The plasma nHDL-[3H]FC esterification rate is slow (0.46%/h) compared with hepatic uptake. PL transfer protein enhances nHDL-[14C]PL but not nHDL-[3H]FC transfer to cultured Huh7 hepatocytes. CONCLUSIONS nHDL-FC, PL, and apo AI enter different pathways in vivo. Most nHDL-[3H]FC and [14C]PL are rapidly extracted by the liver via SR-B1 (scavenger receptor class B member 1) and spontaneous transfer; hepatic PL uptake is promoted by PL transfer protein. nHDL-[125I]apo AI transfers to HDL and to the lipid-free form that can be recycled to nHDL formation. Cholesterol esterification by lecithin:cholesterol acyltransferase is a minor process in nHDL metabolism. These findings could guide the design of therapies that better mobilize peripheral tissue-FC to hepatic disposal.
Collapse
Affiliation(s)
- Bingqing Xu
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Baiba K Gillard
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Antonio M Gotto
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Corina Rosales
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.)
| | - Henry J Pownall
- From the Center for Bioenergetics and Department of Medicine, Houston Methodist Research Institute, TX (B.X., B.K.G., A.M.G., C.R., H.J.P.); and Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China (B.X.).
| |
Collapse
|
24
|
Yang Z, Cao Y, Hao D, Yuan X, Zhang L, Zhang S. Binding profiles of cholesterol ester transfer protein with current inhibitors: a look at mechanism and drawback. J Biomol Struct Dyn 2017; 36:2567-2580. [PMID: 28777919 DOI: 10.1080/07391102.2017.1363661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhiwei Yang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yang Cao
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Dongxiao Hao
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Shengli Zhang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| |
Collapse
|
25
|
Li N, Gilpin CJ, Taylor LS. Understanding the Impact of Water on the Miscibility and Microstructure of Amorphous Solid Dispersions: An AFM-LCR and TEM-EDX Study. Mol Pharm 2017; 14:1691-1705. [PMID: 28394617 DOI: 10.1021/acs.molpharmaceut.6b01151] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Miscibility is critical for amorphous solid dispersions (ASDs). Phase-separated ASDs are more prone to crystallization, and thus can lose their solubility advantage leading to product failure. Additionally, dissolution performance can be diminished as a result of phase separation in the ASD matrix. Water is known to induce phase separation during storage for some ASDs. However, the impact of water introduced during preparation has not been as thoroughly investigated to date. The purpose of this study was to develop a mechanistic understanding of the effect of water on the phase behavior and microstructure of ASDs. Evacetrapib and two polymers were selected as the model system. Atomic force microscopy coupled with Lorentz contact resonance, and transmission electron microscopy with energy dispersive X-ray spectroscopy were employed to evaluate the microstructure and composition of phase-separated ASDs. It was found that phase separation could be induced via two routes: solution-state phase separation during ASD formation caused by water absorption during film formation by a hydrophilic solvent, or solid-phase separation following exposure to high RH during storage. Water contents of as low as 2% in the organic solvent system used to dissolve the drug and polymer were found to result in phase separation in the resultant ASD film. These findings have profound implications on lab-scale ASD preparation and potentially also for industrial production. Additionally, these high-resolution imaging techniques combined with orthogonal analyses are powerful tools to visualize structural changes in ASDs, which in turn will enable better links to be made between ASD structure and performance.
Collapse
Affiliation(s)
- Na Li
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Christopher J Gilpin
- Life Science Microscopy Facility, Purdue University , 625 Agriculture Mall Drive, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University , 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Breslin WJ, Hilbish KG, Cannady EA, Edwards TL. Fertility and Embryo-Fetal Development Assessment in Rats and Rabbits with Evacetrapib: A Cholesteryl Ester Transfer Protein Inhibitor. Birth Defects Res 2017; 109:513-527. [PMID: 28398618 DOI: 10.1002/bdr2.1022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The purpose of these studies was to evaluate the effects of evacetrapib on male and female fertility and on embryo-fetal development (EFD). METHODS Evacetrapib, a potent and selective inhibitor of cholesteryl ester transfer protein (CETP), was administered daily by oral gavage starting 2 weeks (for female) or 4 weeks (for male) before mating, during cohabitation, and until necropsy in the male rat fertility study or through gestation day (GD) 17 in the female rat combined fertility/EFD study. For rabbit EFD studies, animals were dosed from GDs 7 to 19 or from 1 week before mating through GD 19. Dose levels of evacetrapib ranged from 60 to 600 mg/kg for rats and from 1 to 100 mg/kg/day for rabbits. RESULTS Parental findings in rats included decreased body weight and food consumption and moribund euthanasia in animals given 600 mg/kg/day and decreased food consumption at 300 mg/kg/day. There were no adverse effects on estrus cycling, fertility indices, sperm parameters, maternal reproductive parameters, male reproductive tissue, or fetal viability, growth, or external/visceral morphology. An increase in the incidence of 14th rudimentary ribs, a minor, transient variation considered nonadverse, was the only significant developmental finding in rats given 600 mg/kg/day. Slight decreases in body weight and food consumption at 100 mg/kg/day were the only maternal effects observed in rabbits with no adverse developmental effects noted. CONCLUSION No adverse effects on fertility or EFD were observed in rats at doses up to 600 mg/kg/day and no adverse effects on EFD were noted in rabbits at doses up to 100 mg/kg/day. Birth Defects Research 109:513-527, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William J Breslin
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | - Kim G Hilbish
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | - Ellen A Cannady
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | | |
Collapse
|
27
|
Breslin WJ, Hilbish KG, Cannady EA, Edwards TL. Prenatal and Postnatal Assessment in Rabbits with Evacetrapib: A Cholesteryl Ester Transfer Protein Inhibitor. Birth Defects Res 2017; 109:486-496. [PMID: 28398632 DOI: 10.1002/bdr2.1017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Evacetrapib, a potent and selective inhibitor of cholesteryl ester transfer protein (CETP), was under development for the treatment of cardiovascular (CV) disease. The purpose of this pre-postnatal study in rabbits was to evaluate the effects of evacetrapib on pregnancy, parturition, and lactation of the maternal animals and on the growth, viability, development, and reproductive performance of the first filial (F1) offspring. The rabbit is considered a relevant species for toxicity testing with evacetrapib as it demonstrates significant CETP expression, whereas mice and rats do not express significant levels of CETP. METHODS Evacetrapib was administered daily by oral gavage from gestation day (GD) 7 through lactation day (LD) 41 at dose levels of 0, 10, 30, and 100 mg/kg/day. RESULTS There were no adverse effects on maternal survival, clinical signs, gestation length, parturition, and litter size. There were no effects on F1 clinical observations, body weight, sexual maturation, conditioned eye blink, functional observational battery, or pathology findings. Treatment-related decreases in F1 postnatal survival and equivocal reductions in F1 mating, fertility, and copulation/conception indices without changes in sperm parameters or pathology of reproductive organs were noted in F1 animals. CONCLUSIONS The maternal no observed adverse effect level (NOAEL) after evacetrapib administration in female rabbits was 100 mg/kg/day. Based on the decreased F1 postnatal survival and equivocal changes in F1 fertility, the NOAEL for F1 neonatal developmental was 30 mg/kg/day. Birth Defects Research 109:486-496, 2017.© 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William J Breslin
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | - Kim G Hilbish
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | - Ellen A Cannady
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana
| | | |
Collapse
|
28
|
Abstract
INTRODUCTION Cardiovascular morbidity and mortality are of increasing concern, not only to patients but also to the health care profession and service providers. The preventative benefit of treatment of dyslipidaemia is unquestioned but there is a large, so far unmet need to improve clinical outcome. There are exciting new discoveries of targets that may translate into improved clinical outcome. Areas covered: This review highlights some new pathways in cholesterol and triglyceride metabolism and examines new targets, new drugs and new molecules. The review includes the results of recent trials of relatively new drugs that have shown benefit in cardiovascular endpoint outcomes, drugs that have been licenced without endpoint trials yet available and new drugs that have not yet been licenced but have produced exciting results in animal studies and some in early phase 2 human studies. Expert opinion: The new areas that have been discovered as the cause of dyslipidaemia have opened up a host of new targets for new drugs including antisense RNA's, microRNA's and human monoclonal antibodies. The plethora of new targets and new drugs has made it an extraordinarily exciting time in the development of therapeutics to combat atherosclerosis.
Collapse
Affiliation(s)
- Gerald H Tomkin
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| | - Daphne Owens
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| |
Collapse
|
29
|
|
30
|
Di Bartolo BA, Schwarz N, Andrews J, Nicholls SJ. Infusional high-density lipoproteins therapies as a novel strategy for treating atherosclerosis. Arch Med Sci 2017; 13:210-214. [PMID: 28144273 PMCID: PMC5206363 DOI: 10.5114/aoms.2016.60941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/18/2015] [Indexed: 01/18/2023] Open
Abstract
High-density lipoproteins (HDL) have received considerable interest as a target for the development of novel anti-atherosclerotic agents beyond conventional approaches to lipid lowering. While a number of approaches have focused on modifying remodeling and expression pathways implicated in the regulation of HDL levels, an additional approach involves simply infusions of delipidated HDL. Several groups have advanced HDL infusions to clinical development with intriguing signs suggesting potentially favorable impacts at the level of the artery wall. The findings of early studies of infusional HDL therapies will be reviewed.
Collapse
Affiliation(s)
- Belinda A Di Bartolo
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Nisha Schwarz
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Jordan Andrews
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
31
|
Simic B, Mocharla P, Crucet M, Osto E, Kratzer A, Stivala S, Kühnast S, Speer T, Doycheva P, Princen HM, van der Hoorn JW, Jukema JW, Giral H, Tailleux A, Landmesser U, Staels B, Lüscher TF. Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase. Atherosclerosis 2017; 257:186-194. [PMID: 28152406 DOI: 10.1016/j.atherosclerosis.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High-density lipoprotein cholesterol (HDL-C) is inversely related to cardiovascular risk. HDL-C raising ester transfer protein (CETP) inhibitors, are novel therapeutics. We studied the effects of CETP inhibitors anacetrapib and evacetrapib on triglycerides, cholesterol and lipoproteins, cholesterol efflux, paraoxonase activity (PON-1), reactive oxygen species (ROS), and endothelial function in E3L and E3L.CETP mice. METHODS Triglycerides and cholesterol were measured at weeks 5, 14 and 21 in E3L.CETP mice on high cholesterol diet and treated with anacetrapib (3 mg/kg/day), evacetrapib (3 mg/kg/day) or placebo. Cholesterol efflux was assessed ex-vivo in mice treated with CETP inhibitors for 3 weeks on a normal chow diet. Endothelial function was analyzed at week 21 in isolated aortic rings, and serum lipoproteins assessed by fast-performance liquid chromatography. RESULTS Anacetrapib and evacetrapib increased HDL-C levels (5- and 3.4-fold, resp.) and reduced triglycerides (-39% vs. placebo, p = 0.0174). Total cholesterol levels were reduced only in anacetrapib-treated mice (-32%, p = 0.0386). Cholesterol efflux and PON-1 activity (+45% and +35% vs. control, p < 0.005, resp.) were increased, while aortic ROS production was reduced with evacetrapib (-49% vs. control, p = 0.020). Anacetrapib, but not evacetrapib, impaired endothelium dependent vasorelaxation (p < 0.05). In contrast, no such effects were observed in E3L mice for all parameters tested. CONCLUSIONS Notwithstanding a marked rise in HDL-C, evacetrapib did not improve endothelial function, while anacetrapib impaired it, suggesting that CETP inhibition does not provide vascular protection. Anacetrapib exerts unfavorable endothelial effects beyond CETP inhibition, which may explain the neutral results of large clinical trials in spite of increased HDL-C.
Collapse
Affiliation(s)
- Branko Simic
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| | - Pavani Mocharla
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Adelheid Kratzer
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Susan Kühnast
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | - Thimoteus Speer
- Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany
| | - Petia Doycheva
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Hans M Princen
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Hector Giral
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Anne Tailleux
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Ulf Landmesser
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Bart Staels
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| |
Collapse
|
32
|
Chwastek M, Pieczykolan M, Stecko S. The Synthesis of 5-Amino-dihydrobenzo[b]oxepines and 5-Amino-dihydrobenzo[b]azepines via Ichikawa Rearrangement and Ring-Closing Metathesis. J Org Chem 2016; 81:9046-9074. [PMID: 27574830 DOI: 10.1021/acs.joc.6b01691] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of Ichikawa's rearrangement and a ring-closing metathesis reaction of allyl carbamates is presented as a method for the preparation of 5-amino-substituted 2,5-dihydro-benzo[b]oxepines, 2,5-dihydro-benzo[b]azepines, and 2,5-dihydro-benzo[b]thiepins. It was demonstrated that the use of nonracemic allyl carbamates enables the synthesis of enantioenriched benzo-fused seven-membered heterocycles. Finally, it was shown that further functionalization of the obtained structures allows access to pharmacologically active 5-amino-substituted 2,3,4,5-tetrahydro-1-benzo[b]oxepine scaffolds.
Collapse
Affiliation(s)
- Monika Chwastek
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Pieczykolan
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sebastian Stecko
- Institute of Organic Chemistry, Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
33
|
Abstract
INTRODUCTION About 10,000 compounds will be tested for an individual drug to eventually reach the market. It might be helpful recapitulating previous failures and identifying the main factors of the disappointments. AREAS COVERED In this review, the author(s) detailed the 7 cardiovascular compounds discontinued after reaching animal studies or Phase I-III clinical trials during 2015. Meanwhile, the reasons for these discontinuations were reported. Among these drugs, most discontinuations (6 drugs) were attributed to lack of efficacy. In general, failures due to lack of efficacy and safety demonstrate the need for the development of more predictive animal models. However, recent related studies showed that the absence of toxicity in animals provided little or virtually no evidential weight that adverse drug reactions would also be absent in humans. In this case, microdosing and collaborating more closely with biotech companies may be the better choices to improve the success ratio. EXPERT OPINION Future researches may benefit from the seven developments and investigators conducting similar studies may learn from these failures.
Collapse
Affiliation(s)
- Hong-Ping Zhao
- a Center for Instrumental Analysis, Key Laboratory of Drug Quality Control & Pharmacovigilance, Ministry of Education , China Pharmaceutical University , Nanjing , China
| | - Yan Dai
- a Center for Instrumental Analysis, Key Laboratory of Drug Quality Control & Pharmacovigilance, Ministry of Education , China Pharmaceutical University , Nanjing , China
| | - Bing-Ren Xiang
- a Center for Instrumental Analysis, Key Laboratory of Drug Quality Control & Pharmacovigilance, Ministry of Education , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
34
|
Jiang J, Finlay H, Johnson JA, Harikrishnan L, Kamau M, Qiao J, Wang T, Adam L, Taylor D, Yang R, Sleph P, Chen AYA, Yin X, Wexler R, Salvati ME. Discovery of hydroxyl 1,2-diphenylethanamine analogs as potent cholesterol ester transfer protein inhibitors. Bioorg Med Chem Lett 2016; 26:3278-3281. [PMID: 27256912 DOI: 10.1016/j.bmcl.2016.05.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/26/2022]
Abstract
Hydroxyl 1,2-diphenylethanamine analogs were identified as potent inhibitors of cholesterol ester transfer protein (CETP), a therapeutic target to raise HDL cholesterol. In an effort to improve the pharmaceutical properties in the previously disclosed DiPhenylPyridineEthanamine (DPPE) series, polar groups were introduced to the N-linked quaternary center. Optimization of analogues for potency, in vitro liability profile and efficacy led to identification of lead compound 16 which demonstrated robust pharmacodynamic effects in human CETP/apo-B100 dual transgenic mice.
Collapse
Affiliation(s)
- Ji Jiang
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA.
| | - Heather Finlay
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - James A Johnson
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Lalgudi Harikrishnan
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Muthoni Kamau
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Jennifer Qiao
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Tammy Wang
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Leonard Adam
- Department of Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - David Taylor
- Department of Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Richard Yang
- Department of Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Paul Sleph
- Department of Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Alice Ye A Chen
- Department of Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Xiaohong Yin
- Department of Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Ruth Wexler
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | - Mark E Salvati
- Department of Chemistry, Bristol-Myers Squibb Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| |
Collapse
|
35
|
Small DS, Royalty J, Cannady EA, Hale C, Wang MD, Downs D, Suico JG. Impact of Increased Gastric pH on the Pharmacokinetics of Evacetrapib in Healthy Subjects. Pharmacotherapy 2016; 36:749-56. [PMID: 27284735 PMCID: PMC5108428 DOI: 10.1002/phar.1778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
STUDY OBJECTIVE To examine the effect of increased gastric pH on exposure to evacetrapib, a cholesteryl ester transfer protein inhibitor evaluated for the treatment of atherosclerotic heart disease. DESIGN Open-label, two-treatment, two-period, fixed-sequence crossover study. SETTING Clinical research unit. SUBJECTS Thirty-four healthy subjects. INTERVENTION In period 1, subjects received a single oral dose of evacetrapib 130 mg on day 1, followed by 7 days of analysis for evacetrapib plasma concentrations. In period 2, subjects received a once/day oral dose of omeprazole 40 mg on days 8-20, with a single oral dose of evacetrapib 130 mg administered 2 hours after the omeprazole dose on day 14, followed by 7 days of pharmacokinetic sampling. Subjects were discharged on day 21 and returned for a follow-up visit at least 14 days after the last dose of evacetrapib in period 2. Gastric pH was measured before subjects received each evacetrapib dose. MEASUREMENTS AND MAIN RESULTS Noncompartmental pharmacokinetic parameters were estimated from plasma concentration-time data and compared between periods 1 and 2. Geometric mean ratios with 90% confidence intervals (CIs) were reported. Safety and tolerability were also assessed. The mean age of the 34 subjects was 40.9 years; mean body mass index was 27.2 kg/m(2) . Omeprazole treatment increased mean gastric pH across all subjects by 2.80 and increased evacetrapib area under the concentration versus time curve from time zero extrapolated to infinity (AUC0-∞ ) and maximum observed drug concentration (Cmax ) by 15% (90% CI -2 to 35) and 30% (90% CI 3-63), respectively. For both parameters, the upper bound of the 90% CI of the ratio of geometric least-squares means exceeded 1.25 but was less than 2, indicating a weak interaction. To assess the effect of gastric pH on subjects who responded best to omeprazole treatment, the analyses were repeated to include only the 22 subjects whose predose gastric pH was 3.0 or lower in period 1 and 4.0 or higher in period 2. In this subpopulation, mean gastric pH increased by 4.15 during omeprazole treatment, and evacetrapib AUC0-∞ and Cmax increased by 22% (90% CI 4-42) and 35% (90% CI 1-80), respectively. Despite the small mathematical differences between the analyses, the overall effect in both was a minimal increase in evacetrapib exposure. Of 35 adverse events reported during the study, 4 (11.4%) were considered to be treatment-related, and most were mild in severity. CONCLUSION The impact of increased gastric pH on evacetrapib pharmacokinetics would not be expected to be clinically relevant. The magnitude of change in pH did not affect the degree of the interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Delyn Downs
- Eli Lilly and Company, Indianapolis, Indiana
| | | |
Collapse
|
36
|
Cannady EA, Aburub A, Ward C, Hinds C, Czeskis B, Ruterbories K, Suico JG, Royalty J, Ortega D, Pack BW, Begum SL, Annes WF, Lin Q, Small DS. Absolute bioavailability of evacetrapib in healthy subjects determined by simultaneous administration of oral evacetrapib and intravenous [(13) C8 ]-evacetrapib as a tracer. J Labelled Comp Radiopharm 2016; 59:238-44. [PMID: 26639670 PMCID: PMC5064742 DOI: 10.1002/jlcr.3358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/09/2015] [Accepted: 11/08/2015] [Indexed: 01/14/2023]
Abstract
This open-label, single-period study in healthy subjects estimated evacetrapib absolute bioavailability following simultaneous administration of a 130-mg evacetrapib oral dose and 4-h intravenous (IV) infusion of 175 µg [(13) C8 ]-evacetrapib as a tracer. Plasma samples collected through 168 h were analyzed for evacetrapib and [(13) C8 ]-evacetrapib using high-performance liquid chromatography/tandem mass spectrometry. Pharmacokinetic parameter estimates following oral and IV doses, including area under the concentration-time curve (AUC) from zero to infinity (AUC[0-∞]) and to the last measureable concentration (AUC[0-tlast ]), were calculated. Bioavailability was calculated as the ratio of least-squares geometric mean of dose-normalized AUC (oral : IV) and corresponding 90% confidence interval (CI). Bioavailability of evacetrapib was 44.8% (90% CI: 42.2-47.6%) for AUC(0-∞) and 44.3% (90% CI: 41.8-46.9%) for AUC(0-tlast ). Evacetrapib was well tolerated with no reports of clinically significant safety assessment findings. This is among the first studies to estimate absolute bioavailability using simultaneous administration of an unlabeled oral dose with a (13) C-labeled IV microdose tracer at about 1/1000(th) the oral dose, with measurement in the pg/mL range. This approach is beneficial for poorly soluble drugs, does not require additional toxicology studies, does not change oral dose pharmacokinetics, and ultimately gives researchers another tool to evaluate absolute bioavailability.
Collapse
Affiliation(s)
- Ellen A Cannady
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Aktham Aburub
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Chris Ward
- Clinical Operations, Covance Inc., Leeds, UK
| | - Chris Hinds
- Covance Laboratories Ltd., Covance Inc., Alnwick, UK
| | - Boris Czeskis
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Kenneth Ruterbories
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Jeffrey G Suico
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | | | - Demetrio Ortega
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Brian W Pack
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | | | - William F Annes
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Qun Lin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - David S Small
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW A low level of plasma high density lipoprotein cholesterol (HDL-C) is a strong and independent risk factor for atherosclerotic cardiovascular disease (ASCVD). However, several large studies recently revealed that pharmacologic interventions that increase HDL-C concentration have not improved cardiovascular outcomes when added to standard therapy. In addition, specific genetic variants that raise HDL-C levels are not clearly associated with reduced risk of coronary heart disease. These observations have challenged the 'HDL hypothesis' that HDL-C is causally related to ASCVD and that intervention to raise HDL-C will reduce ASCVD events. This article will present the current data on the HDL hypothesis and provide a revised paradigm of considering HDL in the atherosclerotic pathway. RECENT FINDINGS Recent evidence has shed light on the complex nature of HDL-C metabolism and function. There are compelling data that the ability of HDL to promote cholesterol efflux from macrophages, the first step in the 'reverse cholesterol transport' (RCT) pathway, is inversely associated with risk for ASCVD even after controlling for HDL-C. This has led to the 'HDL flux hypothesis' that therapeutic intervention that targets macrophage cholesterol efflux and RCT may reduce risk. Preclinical studies of such interventions show promise and early phase clinical studies, though small, are encouraging. SUMMARY The role of HDL-C in modulating atherosclerotic disease is as yet uncertain. However, new findings and therapies targeting HDL-C show early promise and may provide an important intervention in attenuating the burden of ASCVD in the future.
Collapse
|
38
|
Chirasani VR, Sankar R, Senapati S. Mechanism of Inhibition of Cholesteryl Ester Transfer Protein by Small Molecule Inhibitors. J Phys Chem B 2016; 120:8254-63. [DOI: 10.1021/acs.jpcb.6b01928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Venkat R. Chirasani
- Bhupat
and Jyoti Mehta School
of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Revathi Sankar
- Bhupat
and Jyoti Mehta School
of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sanjib Senapati
- Bhupat
and Jyoti Mehta School
of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
39
|
Kosmas CE, DeJesus E, Rosario D, Vittorio TJ. CETP Inhibition: Past Failures and Future Hopes. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:37-42. [PMID: 26997876 PMCID: PMC4790583 DOI: 10.4137/cmc.s32667] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/05/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022]
Abstract
The atheroprotective role of high-density lipoprotein cholesterol (HDL-C) in cardiovascular disease has been unequivocally established, and epidemiological data have clearly demonstrated a strong inverse relationship between HDL-C levels and the risk of cardiovascular events, which is independent of the low-density lipoprotein cholesterol (LDL-C) levels. Thus, it would be logical to hypothesize that raising HDL-C might potentially lead to a reduction of cardiovascular risk. Cholesteryl ester transfer protein (CETP) promotes the transfer of cholesteryl esters from HDL to very low-density lipoprotein and LDL. Therefore, CETP inhibition raises HDL-C levels and decreases LDL-C levels. The first trials with CETP inhibitors failed to show a reduction in cardiovascular events. However, newer CETP inhibitors with more favorable effects on lipids are presently being tested in clinical trials with the hope that their use may lead to a reduction in cardiovascular risk. This review aims to provide the current evidence regarding CETP inhibition, as well as the clinical and scientific data pertaining to the new CETP inhibitors in development.
Collapse
Affiliation(s)
- Constantine E Kosmas
- Department of Medicine, Division of Cardiology, Mount Sinai Hospital, New York, NY, USA
| | - Eddy DeJesus
- Department of Medicine, Bronx-Lebanon Hospital Center, New York, NY, USA
| | - Digna Rosario
- Cardiology Clinic, Cardiology Unlimited, PC, New York, NY, USA
| | - Timothy J Vittorio
- Center for Advanced Cardiac Therapeutics, St. Francis Hospital - The Heart Center®, Roslyn, NY, USA
| |
Collapse
|
40
|
Small DS, Zhang W, Royalty J, Cannady EA, Downs D, Ortega D, Suico JG. Effect of hepatic or renal impairment on the pharmacokinetics of evacetrapib. Eur J Clin Pharmacol 2016; 72:563-72. [PMID: 26857125 PMCID: PMC4834099 DOI: 10.1007/s00228-016-2017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 01/24/2016] [Indexed: 11/28/2022]
Abstract
PURPOSE The aim of this study is to investigate the effect of hepatic or renal impairment on the pharmacokinetics of a single 130-mg evacetrapib dose. METHODS Two open-label, parallel-design studies in males and females with normal hepatic function or Child-Pugh mild, moderate, or severe hepatic impairment, or with normal renal function or severe renal impairment. Non-compartmental pharmacokinetic parameters were estimated from plasma concentration-time data. Evacetrapib safety and tolerability were assessed. RESULTS Pharmacokinetic parameter estimates were comparable between controls and mildly hepatically impaired subjects. Geometric mean area under the concentration-time curve (AUC) was greater, half-life (t1/2) was longer, and maximum concentration (Cmax) was lower in subjects with moderate and severe hepatic impairment than in controls. Apparent clearance (CL/F) did not differ between controls and those with mild hepatic impairment, but CL/F decreased for moderate and severe impairment. Spearman correlation coefficient showed no relationship between CL/F and Child-Pugh score. In the renal study, AUC and t1/2 were similar between groups, while Cmax was 15 % lower in subjects with severe impairment. CL/F in severely renally impaired subjects differed by <6 % from that in controls. Spearman correlation coefficient showed no apparent relationship between CL/F and estimated creatinine clearance or glomerular filtration rate. Neither study noted changes in clinical laboratory parameters or clinically significant findings. Adverse event incidence was low, and all were mild or moderate in severity. CONCLUSION Evacetrapib exposure did not differ between mild hepatic impairment and normal hepatic function, but increased along the progression from mild to moderate to severe hepatic impairment. Severe renal impairment did not affect evacetrapib exposure.
Collapse
Affiliation(s)
- David S Small
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA.
| | - Wei Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | | | - Ellen A Cannady
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Delyn Downs
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Demetrio Ortega
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Jeffrey G Suico
- Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| |
Collapse
|
41
|
Zhou Y, Wang J, Gu Z, Wang S, Zhu W, Aceña JL, Soloshonok VA, Izawa K, Liu H. Next Generation of Fluorine-Containing Pharmaceuticals, Compounds Currently in Phase II-III Clinical Trials of Major Pharmaceutical Companies: New Structural Trends and Therapeutic Areas. Chem Rev 2016; 116:422-518. [PMID: 26756377 DOI: 10.1021/acs.chemrev.5b00392] [Citation(s) in RCA: 1806] [Impact Index Per Article: 225.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhou
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhanni Gu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shuni Wang
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wei Zhu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - José Luis Aceña
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,Department of Organic Chemistry, Autónoma University of Madrid , Cantoblanco, 28049 Madrid, Spain
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU , Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Kunisuke Izawa
- Hamari Chemicals Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka, Japan 533-0024
| | - Hong Liu
- Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
42
|
Barter PJ, Rye KA. Targeting High-density Lipoproteins to Reduce Cardiovascular Risk: What Is the Evidence? Clin Ther 2015; 37:2716-31. [DOI: 10.1016/j.clinthera.2015.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/27/2015] [Indexed: 11/28/2022]
|
43
|
Abstract
PURPOSE OF REVIEW Increasing interest has focused on the strategies that target the atheroprotective properties of HDL in order to reduce cardiovascular risk. The potential impact of strategies to acutely promote HDL functionality will be reviewed. RECENT FINDINGS Population and animal studies suggest that HDLs have a protective impact on atherosclerotic plaque. However, the failure of recent clinical trials of HDL cholesterol-raising agents has raised concerns that this may not be a viable strategy to reduce cardiovascular risk. Increasing attention has highlighted the importance of the functional quality, as opposed to quantity, of HDL with evidence of impaired HDL function in the setting of acute coronary syndromes (ACSs). The finding that infusing HDL in patients with recent acute ischemic events promotes the rapid regression of coronary atherosclerosis suggests a potentially useful strategy for ACS patients, although this remains to be fully established in large clinical outcome trials. SUMMARY Infusing HDL has favorable effects on coronary atherosclerosis in ACS patients, suggesting a potentially beneficial therapeutic strategy to acutely promote HDL functionality.
Collapse
Affiliation(s)
- MyNgan Duong
- aSouth Australian Health and Medical Research InstitutebDepartment of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
44
|
Systematic review of CETP inhibitors for increasing high-density lipoprotein cholesterol: where do these agents stand in the approval process? Am J Ther 2015; 22:147-58. [PMID: 23567794 DOI: 10.1097/mjt.0b013e31828b8463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The role that low levels of high-density lipoprotein cholesterol (HDL-C) plays in coronary artery disease and ischemic heart disease is well established. As such, therapies targeting low HDL-C levels have been of great therapeutic interest. These therapies include nonpharmacological methods such as exercise, tobacco cessation, weight reduction, moderate alcohol intake, and increasing dietary monounsaturated fatty acids and polyunsaturated fatty acids. Additionally, pharmacological methods of increasing HDL-C have been of great interest, with 2 classes of drugs, fibric acid derivatives and nicotinic acid, and have mixed trial results when used on top of standard lipid therapy. However, a new class of medications, cholesteryl ester transfer protein inhibitors, has shown increases in HDL-C of over 100%. However, early trial results with torcetrapib showed an increase in mortality, although this was attributed to off-target toxicity. Dalcetrapib was found to be safer than torcetrapib, but data released in 2012 showed no additional benefit in patients suffering an acute coronary syndrome event. Two newer agents, anacetrapib and evacetrapib, in early-phase clinical trials have shown to be safer than torcetrapib and significantly more potent than dalcetrapib (both increase HDL-C by a greater amount and both have a significant effect on low-density lipoprotein cholesterol). It remains to be seen whether the use of cholesteryl ester transfer protein inhibitors will result in clinical benefit in large, randomized double-blind trials and whether any agents in this class will ever be approved for clinical use.
Collapse
|
45
|
Sando KR, Knight M. Nonstatin therapies for management of dyslipidemia: a review. Clin Ther 2015; 37:2153-79. [PMID: 26412799 DOI: 10.1016/j.clinthera.2015.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/29/2015] [Accepted: 09/01/2015] [Indexed: 02/08/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Recently published cholesterol treatment guidelines emphasize the use of statins as the preferred treatment strategy for both primary and secondary prevention of CVD. However, the optimal treatment strategy for patients who cannot tolerate statin therapy or those who need additional lipid-lowering therapy is unclear in light of recent evidence that demonstrates a lack of improved cardiovascular outcomes with combination therapy. The purpose of this review is to summarize and interpret evidence that evaluates nonstatin drug classes in reducing cardiovascular outcomes, to provide recommendations for use of nonstatin therapies in clinical practice, and to review emerging nonstatin therapies for management of dyslipidemia. METHODS Relevant articles were identified through searches of PubMed, International Pharmaceutical Abstracts, and the Cochrane Database of Systematic Reviews by using the terms niacin, omega-3 fatty acids (FAs), clofibrate, fibrate, fenofibrate, fenofibric acid, gemfibrozil, cholestyramine, colestipol, colesevelam, ezetimibe, proprotein convertase subtilisin/kexin 9 (PCSK9), cholesteryl ester transfer protein (CETP), and cardiovascular outcomes. Only English language, human clinical trials, meta-analyses, and systematic reviews were included. Additional references were identified from citations of published articles. FINDINGS Niacin may reduce cardiovascular events as monotherapy; however, recent trials in combination with statins have failed to show a benefit. Trials with omega-3 FAs have failed to demonstrate significant reductions in cardiovascular outcomes. Fibrates may improve cardiovascular outcomes as monotherapy; however, trials in combination with statins have failed to show a benefit, except in those with elevated triglycerides (>200 mg/dL) or low HDL-C (<40 mg/dL). There is a lack of data that evaluates bile acid sequestrant in combination with statin therapy on reducing cardiovascular events. Ezetimibe-statin combination therapy can reduce cardiovascular outcomes in those with chronic kidney disease and following vascular surgery or acute coronary syndrome. Long-term effects of emerging nonstatin therapies (CETP and PCSK9 inhibitors) are currently being evaluated in ongoing Phase III trials. IMPLICATIONS Nonstatin therapies have a limited role in reducing cardiovascular events in those maintained on guideline-directed statin therapy. In certain clinical situations, such as patients who are unable to tolerate statin therapy or recommended intensities of statin therapy, those with persistent severe elevations in triglycerides, or patients with high cardiovascular risk, some nonstatin therapies may be useful in reducing cardiovascular events. Future research is needed to evaluate the role of nonstatin therapies in those who are unable to tolerate guideline-directed statin doses.
Collapse
Affiliation(s)
- Karen R Sando
- College of Pharmacy, Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, Florida.
| | - Michelle Knight
- College of Pharmacy, Department of Pharmacotherapy & Translational Research, University of Florida, Gainesville, Florida
| |
Collapse
|
46
|
Newly developed apolipoprotein A-I mimetic peptide promotes macrophage reverse cholesterol transport in vivo. Int J Cardiol 2015; 192:82-8. [DOI: 10.1016/j.ijcard.2015.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/26/2015] [Accepted: 05/06/2015] [Indexed: 01/26/2023]
|
47
|
Cao P, Pan H, Xiao T, Zhou T, Guo J, Su Z. Advances in the Study of the Antiatherogenic Function and Novel Therapies for HDL. Int J Mol Sci 2015. [PMID: 26225968 PMCID: PMC4581191 DOI: 10.3390/ijms160817245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hypothesis that raising high-density lipoprotein cholesterol (HDL-C) levels could improve the risk for cardiovascular disease (CVD) is facing challenges. There is multitudinous clear clinical evidence that the latest failures of HDL-C-raising drugs show no clear association with risks for CVD. At the genetic level, recent research indicates that steady-state HDL-C concentrations may provide limited information regarding the potential antiatherogenic functions of HDL. It is evident that the newer strategies may replace therapeutic approaches to simply raise plasma HDL-C levels. There is an urgent need to identify an efficient biomarker that accurately predicts the increased risk of atherosclerosis (AS) in patients and that may be used for exploring newer therapeutic targets. Studies from recent decades show that the composition, structure and function of circulating HDL are closely associated with high cardiovascular risk. A vast amount of data demonstrates that the most important mechanism through which HDL antagonizes AS involves the reverse cholesterol transport (RCT) process. Clinical trials of drugs that specifically target HDL have so far proven disappointing, so it is necessary to carry out review on the HDL therapeutics.
Collapse
Affiliation(s)
- Peiqiu Cao
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Haitao Pan
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tiancun Xiao
- Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Ting Zhou
- Guangzhou Boxabio Ltd., D-106 Guangzhou International Business Incubator, Guangzhou 510530, China.
| | - Jiao Guo
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Key Research Center of Liver Regulation for Hyperlipemia SATCM/Class III, Laboratory of Metabolism SATCM, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
48
|
Wen AM, Wang Y, Jiang K, Hsu GC, Gao H, Lee KL, Yang AC, Yu X, Simon DI, Steinmetz NF. Shaping bio-inspired nanotechnologies to target thrombosis for dual optical-magnetic resonance imaging. J Mater Chem B 2015; 3:6037-6045. [PMID: 26509036 DOI: 10.1039/c5tb00879d] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Arterial and venous thrombosis are among the most common causes of death and hospitalization worldwide. Nanotechnology approaches hold great promise for molecular imaging and diagnosis as well as tissue-targeted delivery of therapeutics. In this study, we developed and investigated bioengineered nanoprobes for identifying thrombus formation; the design parameters of nanoparticle shape and surface chemistry, i.e. incorporation of fibrin-binding peptides CREKA and GPRPP, were investigated. Two nanoparticle platforms based on plant viruses were studied - icosahedral cowpea mosaic virus (CPMV) and elongated rod-shaped tobacco mosaic virus (TMV). These particles were loaded to carry contrast agents for dual-modality magnetic resonance (MR) and optical imaging, and both modalities demonstrated specificity of fibrin binding in vitro with the presence of targeting peptides. Preclinical studies in a carotid artery photochemical injury model of thrombosis confirmed thrombus homing of the nanoprobes, with the elongated TMV rods exhibiting significantly greater attachment to thrombi than icosahedral (sphere-like) CPMV. While in vitro studies confirmed fibrin-specificity conferred by the peptide ligands, in vivo studies indicated the nanoparticle shape had the greatest contribution toward thrombus targeting, with no significant contribution from either targeting ligand. These results demonstrate that nanoparticle shape plays a critical role in particle deposition at the site of vascular injury. Shaping nanotechnologies opens the door for the development of novel targeted diagnostic and therapeutic strategies (i.e., theranostics) for arterial and venous thrombosis.
Collapse
Affiliation(s)
- Amy M Wen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Yunmei Wang
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Kai Jiang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Greg C Hsu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106
| | - Huiyun Gao
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Karin L Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Alice C Yang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106
| | - Daniel I Simon
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106. ; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106. ; Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH 44106. ; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
49
|
Du Y, Wang L, Hong B. High-density lipoprotein-based drug discovery for treatment of atherosclerosis. Expert Opin Drug Discov 2015; 10:841-55. [PMID: 26022101 DOI: 10.1517/17460441.2015.1051963] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Although there has been great progress achieved by the use of intensive statin therapy, the burden of atherosclerotic cardiovascular disease (CVD) remains high. This has initiated the search for novel high-density lipoprotein (HDL)-based therapeutics. Recent years have witnessed a shift from traditional raising HDL-C levels to enhancing HDL functionality, in which the process of reverse cholesterol transport (RCT) has acquired much attention. AREAS COVERED In this review, the authors describe the key factors involved in RCT process for potential drug targets to reduce the CVD risk. Furthermore, the review provides a summary of the effective screening methods that have been developed to target RCT and their applications. This review also introduces some new strategies currently being clinically developed, which have the potential to improve HDL function in the RCT process. EXPERT OPINION It is rational that the functionality of HDL is more important than the plasma HDL-C level in the evaluation of pharmacological treatment in atherosclerosis. HDL-based strategies designed to promote macrophage RCT are a major area of current drug discovery and development for atherosclerotic diseases. A better understanding of the functionality of HDL and its relationship with atherosclerosis will expand our knowledge of the role of HDL in lipid metabolism, holding promise for a future successful HDL-based therapy.
Collapse
Affiliation(s)
- Yu Du
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , No.1 Tiantan Xili, Beijing 100050 , China
| | | | | |
Collapse
|
50
|
Viljoen A, Wierzbicki AS. Improving the odds: ezetimibe and cardiovascular disease. Int J Clin Pract 2015; 69:390-5. [PMID: 25816908 DOI: 10.1111/ijcp.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/17/2014] [Indexed: 12/25/2022] Open
Abstract
The beauty of science is that well-conducted experiments provide answers to questions which were posed in times of greater ignorance. Cardiovascular disease (CVD) is the leading cause of death worldwide and will be for some time. Cholesterol is a critical player which drives the underlying pathophysiological process of atherosclerosis. Statins are the first line treatment for lipids in CVD given their ability to low-density lipoprotein cholesterol (LDL-C) by up to 50%, and their proven benefits in both primary and secondary intervention . Despite the unprecedented efficacy of statins, additional treatments are sought to potentially reduce the residual risk that remains despite statin treatment such as that associated with reduced high-density lipoprotein cholesterol levels (HDL-C) or triglycerides . In the last 5 years, several trials have reported on their potential additional benefit beyond statin therapy. These include omega-3 fatty acids in patients with prediabetes or diabetes , fibrates in diabetes , nicotinic acid/niacin in cardiovascular disease and cholesterol ester transfer protein inhibitors in cardiovascular disease . Despite their promise, none of these treatments were able to demonstrate benefit beyond baseline statin therapy when compared with placebo . The idea that benefit beyond statin treatment may be an unachievable goal has dogged the medical community working on CVD prevention. The phrase, 'Statins for atherosclerosis - as good as it gets?' was coined in 2005 and has rung true up until now .
Collapse
Affiliation(s)
- A Viljoen
- Department of Metabolic Medicine/Chemical Pathology, Lister Hospital, Stevenage, Hertfordshire, UK
| | | |
Collapse
|