2
|
Huang J, Li G, Cao H, Yang F, Xing C, Zhuang Y, Zhang C, Liu P, Cao H, Hu G. The improving effects of biotin on hepatic histopathology and related apolipoprotein mRNA expression in laying hens with fatty liver hemorrhagic syndrome. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is a metabolic disease mostly observed in laying hens that causes an economic toll on the poultry industry. To investigate the improving effects of biotin on FLHS in laying hens, a total of 135 Hy-Line Brown layers of 300-d-old were randomly divided into three groups and treated for 60 d. The hens from these three groups were fed with different diets: control group (the basal diet), pathology group [high-energy-low-protein diet (HELP)], and treatment group (HELP containing a biotin dosage of 0.3 mg kg−1). The results showed that the mRNA expression level of apolipoprotein A I (apoA I) in pathology group significantly (P < 0.01) decreased on day 60 compared with the control group, while the mRNA level of apolipoprotein B100 (apoB100) increased significantly in pathology group on day 30, whereas it decreased significantly on day 60 (P < 0.05). Significantly increased mRNA levels of apoA I and apoB100 were observed in treatment group compared with the pathology group on days 30 and 60 (P < 0.05 or P < 0.01). These results indicated that biotin could effectively alleviate the pathological changes and abnormal expression of apoA I and apoB100 induced by FLHS, which might closely relate to the ability of biotin to promote egg production.
Collapse
Affiliation(s)
- Jiamei Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Hongfeng Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Fei Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| |
Collapse
|
5
|
Song Y, Ruan J, Luo J, Wang T, Yang F, Cao H, Huang J, Hu G. Abnormal histopathology, fat percent and hepatic apolipoprotein A I and apolipoprotein B100 mRNA expression in fatty liver hemorrhagic syndrome and their improvement by soybean lecithin. Poult Sci 2017; 96:3559-3563. [PMID: 28938763 DOI: 10.3382/ps/pex163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/01/2017] [Indexed: 11/20/2022] Open
Abstract
To investigate the etiopathogenesis of fatty liver hemorrhagic syndrome (FLHS) and the protective effects of soybean lecithin against FLHS in laying hens, 135 healthy 300-day-old Hyline laying hens were randomly divided into groups: control (group 1), diseased (group 2), and protected (group 3). Each group contained 45 layers with 3 replicates. The birds in these 3 groups were fed a control diet, a high-energy/low-protein (HELP) diet or the HELP diet supplemented with 3% soybean lecithin instead of maize. The fat percent in the liver was calculated. Histopathological changes in the liver were determined by staining, and the mRNA expression levels of apolipoproteinA I (apoA I) and apolipoprotein B100 (apoB100) in the liver were determined by RT-PCR. The results showed that the fat percent in the liver of group 2 was much higher (P < 0.01) than that of group 1 and group 2 on d 30 and 60. The histology of the liver in group 2 on d 30 and 60 displayed various degrees of liver lesions, while the hepatocytes showed a normal structure in group 3 with mild microvesicular steatosis in the liver cell on d 30 and 60. The mRNA expression levels of apoA I and apoB100 in the livers were variable throughout the experiment. The expression level of apoA I in group 2 significantly decreased on d 60 (P < 0.05); the expression level of apoB100 slightly increased on d 30 in group 2, while it sharply decreased on d 60. Compared to group 1, the expression level of apoB100 showed no significant difference in group 3 (P < 0.05). This study indicated that FLHS induced pathological changes and abnormal expression of apoA I and apoB100 in the livers of laying hens and that soybean lecithin alleviated these abnormal changes.
Collapse
Affiliation(s)
- Yalu Song
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Jiming Ruan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Tiancheng Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Fei Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Jianzhen Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| |
Collapse
|
9
|
Lyssenko NN, Nickel M, Tang C, Phillips MC. Factors controlling nascent high-density lipoprotein particle heterogeneity: ATP-binding cassette transporter A1 activity and cell lipid and apolipoprotein AI availability. FASEB J 2013; 27:2880-92. [PMID: 23543682 PMCID: PMC3688743 DOI: 10.1096/fj.12-216564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nascent high-density lipoprotein (HDL) particles arise in different sizes. We have sought to uncover factors that control this size heterogeneity. Gel filtration, native PAGE, and protein cross-linking were used to analyze the size heterogeneity of nascent HDL produced by BHK-ABCA1, RAW 264.7, J774, and HepG2 cells under different levels of two factors considered as a ratio, the availability of apolipoprotein AI (apoAI) -accessible cell lipid, and concentration of extracellular lipid-free apoAI. Increases in the available cell lipid:apoAI ratio due to either elevated ATP-binding cassette transporter A1 (ABCA1) expression and activity or raised cell density (i.e., increasing numerator) shifted the production of nascent HDL from smaller particles with fewer apoAI molecules per particle and fewer molecules of choline-phospholipid and cholesterol per apoAI molecule to larger particles that contained more apoAI and more lipid per molecule of apoAI. A further shift to larger particles was observed in BHK-ABCA1 cells when the available cell lipid:apoAI ratio was raised still higher by decreasing the apoAI concentration (i.e., the denominator). These changes in nascent HDL biogenesis were reminiscent of the transition that occurs in the size composition of reconstituted HDL in response to an increasing initial lipid:apoAI molar ratio. Thus, the ratio of available cell lipid:apoAI is a fundamental cause of nascent HDL size heterogeneity, and rHDL formation is a good model of nascent HDL biogenesis.—Lyssenko, N. N., Nickel, M., Tang, C., Phillips, M. C. Factors controlling nascent high-density lipoprotein particle heterogeneity: ATP-binding cassette transporter A1 activity and cell lipid and apolipoprotein AI availability.
Collapse
Affiliation(s)
- Nicholas N Lyssenko
- Lipid Research Group, Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
10
|
Nguyen D, Nickel M, Mizuguchi C, Saito H, Lund-Katz S, Phillips MC. Interactions of apolipoprotein A-I with high-density lipoprotein particles. Biochemistry 2013; 52:1963-72. [PMID: 23425306 PMCID: PMC3603221 DOI: 10.1021/bi400032y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Although the partitioning of apolipoprotein A-I (apoA-I) molecules in plasma between high-density lipoprotein (HDL)-bound and -unbound states is an integral part of HDL metabolism, the factors that control binding of apoA-I to HDL particles are poorly understood. To address this gap in knowledge, we investigated how the properties of the apoA-I tertiary structure domains and surface characteristics of spherical HDL particles influence apoA-I binding. The abilities of (14)C-labeled human and mouse apoA-I variants to associate with human HDL and lipid emulsion particles were determined using ultracentrifugation to separate free and bound protein. The binding of human apoA-I (243 amino acids) to HDL is largely mediated by its relatively hydrophobic C-terminal domain; the isolated N-terminal helix bundle domain (residues 1-190) binds poorly. Mouse apoA-I, which has a relatively polar C-terminal domain, binds to human HDL to approximately half the level of human apoA-I. The HDL binding abilities of apoA-I variants correlate strongly with their abilities to associate with phospholipid (PL)-stabilized emulsion particles, consistent with apoA-I-PL interactions at the particle surface being important. When equal amounts of HDL2 and HDL3 are present, all of the apoA-I variants partition preferentially to HDL3. Fluorescence polarization measurements using Laurdan-labeled HDL2 and HDL3 indicate that PL molecular packing is looser on the more negatively charged HDL3 particle surface, which promotes apoA-I binding. Overall, it is clear that both apoA-I structural features, especially the hydrophobicity of the C-terminal domain, and HDL surface characteristics such as the availability of free space influence the ability of apoA-I to associate with HDL particles.
Collapse
Affiliation(s)
- David Nguyen
- Lipid Research Group, Gastroenterology, Hepatology and Nutrition Division, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104-4318, United States
| | | | | | | | | | | |
Collapse
|