1
|
Li Y, Wang M, Du W, Qi L, Liu X, Fan X. The correlation between urinary iodine levels and gallstone risk: elevated iodine intake linked to gallstone occurrence. Front Nutr 2024; 11:1412814. [PMID: 39114128 PMCID: PMC11303756 DOI: 10.3389/fnut.2024.1412814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Background Essential trace elements are vital for human growth and development. Nevertheless, excessive intake can pose risks. As of yet, no research has looked at the possibility of a relationship between the prevalence of gallstones and urinary concentrations of nickel, molybdenum, and iodine. Objectives The purpose of this study was to examine the correlation between urinary levels of iodine, molybdenum, and nickel and the occurrence of gallstones in a U.S. population and to verify whether excessive iodine intake is associated with the occurrence of gallstones. Methods Data from 2,734 participants that were gathered between 2017 and 2020 were examined. Employing inductively coupled plasma mass spectrometry (ICP-MS), the levels of nickel (Ni), iodine (I), and molybdenum (Mo) in the urine were determined. Gallstones presence was determined using a standardized questionnaire. Restricted cubic spline analysis, subgroup analysis, and logistic regression analysis were used to evaluate the relationship between the occurrence of gallstones and urinary essential trace elements. Results The logistic regression analysis indicated an increased risk of gallstone development in Quartiles 2, Quartiles 3, and Quartiles 4 groups in comparison to the Quartiles 1 group, based on urinary iodine levels (OR = 1.69, 95% CI: 1.11-2.56; OR = 1.68, 95% CI: 1.10-2.55; OR = 1.65, 95% CI: 1.09-2.51). Urinary iodine levels were nonlinearly positively linked with the development of gallstones, according to restricted cubic spline analysis (P-Nonlinear = 0.032). Subgroup analyses showed that high levels of urinary iodine were associated with a high risk of gallstones in different populations, and were more pronounced in adults aged 60 years and older, in women, with a BMI ≥ 25, and in diabetic patients. Conclusion Our research revealed a correlation between an increased risk of gallstones and increasing urinary iodine levels. Urinary iodine levels serve as indicators of the body's iodine status, thus suggesting that excessive iodine intake may be linked to an elevated risk of gallstone formation.
Collapse
Affiliation(s)
- Yunfan Li
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Minchen Wang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenyi Du
- Department of General Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Liuyao Qi
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaopeng Liu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xin Fan
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Morita SY. Phospholipid biomarkers of coronary heart disease. J Pharm Health Care Sci 2024; 10:23. [PMID: 38734675 PMCID: PMC11088770 DOI: 10.1186/s40780-024-00344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
Coronary heart disease, also known as ischemic heart disease, is induced by atherosclerosis, which is initiated by subendothelial retention of lipoproteins. Plasma lipoproteins, including high density lipoprotein, low density lipoprotein (LDL), very low density lipoprotein, and chylomicron, are composed of a surface monolayer containing phospholipids and cholesterol and a hydrophobic core containing triglycerides and cholesteryl esters. Phospholipids play a crucial role in the binding of apolipoproteins and enzymes to lipoprotein surfaces, thereby regulating lipoprotein metabolism. High LDL-cholesterol is a well-known risk factor for coronary heart disease, and statins reduce the risk of coronary heart disease by lowering LDL-cholesterol levels. In contrast, the relationships of phospholipids in plasma lipoproteins with coronary heart disease have not yet been established. To further clarify the physiological and pathological roles of phospholipids, we have developed the simple high-throughput assays for quantifying all major phospholipid classes, namely phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin, and sphingomyelin, using combinations of specific enzymes and a fluorogenic probe. These enzymatic fluorometric assays will be helpful in elucidating the associations between phospholipid classes in plasma lipoproteins and coronary heart disease and in identifying phospholipid biomarkers. This review describes recent progress in the identification of phospholipid biomarkers of coronary heart disease.
Collapse
Affiliation(s)
- Shin-Ya Morita
- Department of Pharmacotherapeutics, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
3
|
Lee YS, Seki E. In Vivo and In Vitro Models to Study Liver Fibrosis: Mechanisms and Limitations. Cell Mol Gastroenterol Hepatol 2023; 16:355-367. [PMID: 37270060 PMCID: PMC10444957 DOI: 10.1016/j.jcmgh.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Liver fibrosis is a common result of liver injury owing to various kinds of chronic liver diseases. A deeper understanding of the pathophysiology of liver fibrosis and identifying potential therapeutic targets of liver fibrosis is important because liver fibrosis may progress to advanced liver diseases, such as cirrhosis and hepatocellular carcinoma. Despite numerous studies, the underlying mechanisms of liver fibrosis remain unclear. Mechanisms of the development and progression of liver fibrosis differ according to etiologies. Therefore, appropriate liver fibrosis models should be selected according to the purpose of the study and the type of underlying disease. Many in vivo animal and in vitro models have been developed to study liver fibrosis. However, there are no perfect preclinical models for liver fibrosis. In this review, we summarize the current in vivo and in vitro models for studying liver fibrosis and highlight emerging in vitro models, including organoids and liver-on-a-chip models. In addition, we discuss the mechanisms and limitations of each model.
Collapse
Affiliation(s)
- Young-Sun Lee
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California; Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
4
|
Effects of Biliary Phospholipids on Cholesterol Crystallization and Growth in Gallstone Formation. Adv Ther 2023; 40:743-768. [PMID: 36602656 DOI: 10.1007/s12325-022-02407-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
The prevalence of cholesterol gallstone disease is increasing, primarily due to the global epidemic of obesity associated with insulin resistance, and this trend leads to a considerable healthcare, financial, and social burden worldwide. Although phospholipids play an essential role in maintaining cholesterol solubility in bile through both mixed micelles and vesicles, little attention has been paid to the impact of biliary phospholipids on the pathogenesis of cholesterol gallstone formation. A reduction or deficiency of biliary phospholipids results in a distinctly abnormal metastable physical-chemical state of bile predisposing to supersaturation with cholesterol. Changes in biliary phospholipid concentrations influence cholesterol crystallization by yielding both liquid crystalline and "anhydrous" crystalline metastable intermediates, evolving into classical parallelogram-shaped cholesterol monohydrate crystals in supersaturated bile. As a result, five distinct crystallization pathways, A-E, have been defined, mainly based on the prime habits of liquid and solid crystals in the physiological or pathophysiological cholesterol saturation of gallbladder and hepatic bile. This review concisely summarizes the chemical structures and physical-chemical properties of biliary phospholipids and their physiological functions in bile formation and cholesterol solubility in bile, as well as comprehensively discusses the latest advances in the role of biliary phospholipids in cholesterol crystallization and growth in gallstone formation, largely based on the findings from clinical and animal studies and in vitro experiments. The insights gleaned from uncovering the cholelithogenic mechanisms are expected to form a fundamental framework for investigating the hitherto elusive events in the earliest stage of cholesterol nucleation and crystallization. This may help to identify better measures for early diagnosis and prevention in susceptible subjects and effective treatment of patients with gallstones.
Collapse
|
5
|
Gericke B, Wienböker I, Brandes G, Löscher W. Is P-Glycoprotein Functionally Expressed in the Limiting Membrane of Endolysosomes? A Biochemical and Ultrastructural Study in the Rat Liver. Cells 2022; 11:cells11091556. [PMID: 35563868 PMCID: PMC9102269 DOI: 10.3390/cells11091556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
The drug efflux transporter P-glycoprotein (Pgp; ABCB1) plays an important role in drug absorption, disposition, and elimination. There is an ongoing debate whether, in addition to its localization at the plasma membrane, Pgp may also be expressed at the limiting membrane of endolysosomes (ELs), mediating active EL drug sequestration. If true, this would be an important mechanism to prevent drugs from reaching their intracellular targets. However, direct evidence demonstrating the functional expression of Pgp at the limiting membrane of ELs is lacking. This prompted us to perform a biochemical and ultrastructural study on the intracellular localization of Pgp in native rat liver. For this purpose, we established an improved subcellular fractionation procedure for the enrichment of ELs and employed different biochemical and ultrastructural methods to characterize the Pgp localization and function in the enriched EL fractions. Whereas the biochemical methods seemed to indicate that Pgp is functionally expressed at EL limiting membranes, transmission electron microscopy (TEM) indicated that this only occurs rarely, if at all. Instead, Pgp was found in the limiting membrane of early endosomes and intraluminal vesicles. In additional TEM experiments, using a Pgp-overexpressing brain microvessel endothelial cell line (hCMEC/D3-MDR1-EGFP), we examined whether Pgp is expressed at the limiting membrane of ELs when cells are exposed to high levels of the Pgp substrate doxorubicin. Pgp was seen in early endosomes but only rarely in endolysosomes, whereas Pgp immunogold labeling was detected in large autophagosomes. In summary, our data demonstrate the importance of combining biochemical and ultrastructural methods to investigate the relationship between Pgp localization and function.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Inka Wienböker
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Gudrun Brandes
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany;
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, 30559 Hannover, Germany; (B.G.); (I.W.)
- Center for Systems Neuroscience, 30559 Hannover, Germany
- Correspondence:
| |
Collapse
|
6
|
RAB10 Interacts with ABCB4 and Regulates Its Intracellular Traffic. Int J Mol Sci 2021; 22:ijms22137087. [PMID: 34209301 PMCID: PMC8268348 DOI: 10.3390/ijms22137087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
ABCB4 (ATP-binding cassette subfamily B member 4) is an ABC transporter expressed at the canalicular membrane of hepatocytes where it ensures phosphatidylcholine secretion into bile. Genetic variations of ABCB4 are associated with several rare cholestatic diseases. The available treatments are not efficient for a significant proportion of patients with ABCB4-related diseases and liver transplantation is often required. The development of novel therapies requires a deep understanding of the molecular mechanisms regulating ABCB4 expression, intracellular traffic, and function. Using an immunoprecipitation approach combined with mass spectrometry analyses, we have identified the small GTPase RAB10 as a novel molecular partner of ABCB4. Our results indicate that the overexpression of wild type RAB10 or its dominant-active mutant significantly increases the amount of ABCB4 at the plasma membrane expression and its phosphatidylcholine floppase function. Contrariwise, RAB10 silencing induces the intracellular retention of ABCB4 and then indirectly diminishes its secretory function. Taken together, our findings suggest that RAB10 regulates the plasma membrane targeting of ABCB4 and consequently its capacity to mediate phosphatidylcholine secretion.
Collapse
|
7
|
Ikeda Y. [Mechanism of Taurohyodeoxycholate-induced Biliary Phospholipid Efflux -Understanding the Function of the ABCB4 Enhancer for Developing Therapeutic Agents against Bile Salt-induced Liver Injury]. YAKUGAKU ZASSHI 2020; 140:1329-1334. [PMID: 33132268 DOI: 10.1248/yakushi.20-00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Biliary lipids primarily consist of bile salts, phospholipids, and cholesterol. Bile salts have potent detergent properties and deleterious effects on the cell membrane and are cytotoxic to hepatocytes. We have previously reported that phosphatidylcholine (PC), the predominant bile phospholipid, protects hepatocytes from the cytotoxicity of bile salts, whereas cholesterol reverses the cytoprotective effects of PC against bile salts. ABCB4, a member of the ATP-binding cassette transporter family, secretes biliary phospholipids, especially PC, from the hepatocytes into the bile. Using Abcb4 knockout mice and HEK293 cells that stably expressed ABCB4, we examined the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate, and hyodeoxycholate on the ABCB4-mediated efflux of PC. We observed that the biliary secretion of PC in wild-type mice significantly increased following infusion of all the tested bile salts, especially taurohyodeoxycholate. On the other hand, the biliary secretion of PC in Abcb4 knockout mice was not affected by the bile salt infusions. The results also demonstrated that the efflux of PC from ABCB4-expressing HEK293 cells was significantly stimulated by taurohyodeoxycholate, which has a strong potential to form mixed micelles with PC. Furthermore, the results of our study emphasized the possibility that the specific interactions of bile salts with ABCB4 are necessary for the release of PC molecules from the binding pocket of ABCB4 into the aqueous environment. Further understanding of this mechanism will aid in the development of novel therapeutic agents for cholestatic liver diseases.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
8
|
Chhuon C, Zhang SY, Jung V, Lewandowski D, Lipecka J, Pawlak A, Sahali D, Ollero M, Guerrera IC. A sensitive S-Trap-based approach to the analysis of T cell lipid raft proteome. J Lipid Res 2020; 61:1512-1523. [PMID: 32769147 PMCID: PMC7604723 DOI: 10.1194/jlr.d120000672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The analysis of T cell lipid raft proteome is challenging due to the highly dynamic nature of rafts and the hydrophobic character of raft-resident proteins. We explored an innovative strategy for bottom-up lipid raftomics based on suspension-trapping (S-Trap) sample preparation. Mouse T cells were prepared from splenocytes by negative immunoselection, and rafts were isolated by a detergent-free method and OptiPrep gradient ultracentrifugation. Microdomains enriched in flotillin-1, LAT, and cholesterol were subjected to proteomic analysis through an optimized protocol based on S-Trap and high pH fractionation, followed by nano-LC-MS/MS. Using this method, we identified 2,680 proteins in the raft-rich fraction and established a database of 894 T cell raft proteins. We then performed a differential analysis on the raft-rich fraction from nonstimulated versus anti-CD3/CD28 T cell receptor (TCR)-stimulated T cells. Our results revealed 42 proteins present in one condition and absent in the other. For the first time, we performed a proteomic analysis on rafts from ex vivo T cells obtained from individual mice, before and after TCR activation. This work demonstrates that the proposed method utilizing an S-Trap-based approach for sample preparation increases the specificity and sensitivity of lipid raftomics.
Collapse
Affiliation(s)
- Cerina Chhuon
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Shao-Yu Zhang
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Vincent Jung
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- CEA/DRF/IBFJ/iRCM/LRTS, Fontenay-aux-Roses Cedex, France
- Université Paris-Sud, Paris, France
| | - Joanna Lipecka
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| | - André Pawlak
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
| | - Dil Sahali
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- AP-HP (Assistance Publique des Hôpitaux de Paris), Department of Nephrology and Renal Transplantation, Groupe Hospitalier Henri-Mondor, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Mario Ollero
- Institut Mondor de Recherche Biomédicale, INSERM, U955, Créteil, France
- Université Paris Est Créteil, Créteil, France
| | - Ida Chiara Guerrera
- Proteomic Platform Necker, Structure Fédérative de Recherche SFR Necker US24, Paris, France
| |
Collapse
|
9
|
Morita SY, Tsuji T, Terada T. Protocols for Enzymatic Fluorometric Assays to Quantify Phospholipid Classes. Int J Mol Sci 2020; 21:ijms21031032. [PMID: 32033167 PMCID: PMC7037927 DOI: 10.3390/ijms21031032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 12/15/2022] Open
Abstract
Phospholipids, consisting of a hydrophilic head group and two hydrophobic acyl chains, are essential for the structures of cell membranes, plasma lipoproteins, biliary mixed micelles, pulmonary surfactants, and extracellular vesicles. Beyond their structural roles, phospholipids have important roles in numerous biological processes. Thus, abnormalities in the metabolism and transport of phospholipids are involved in many diseases, including dyslipidemia, atherosclerosis, cholestasis, drug-induced liver injury, neurological diseases, autoimmune diseases, respiratory diseases, myopathies, and cancers. To further clarify the physiological, pathological, and molecular mechanisms and to identify disease biomarkers, we have recently developed enzymatic fluorometric assays for quantifying all major phospholipid classes, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol + cardiolipin, and sphingomyelin. These assays are specific, sensitive, simple, and high-throughput, and will be applicable to cells, intracellular organelles, tissues, fluids, lipoproteins, and extracellular vesicles. In this review, we present the detailed protocols for the enzymatic fluorometric measurements of phospholipid classes in cultured cells.
Collapse
|
10
|
Structure of the human lipid exporter ABCB4 in a lipid environment. Nat Struct Mol Biol 2019; 27:62-70. [PMID: 31873305 DOI: 10.1038/s41594-019-0354-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/22/2019] [Indexed: 02/08/2023]
Abstract
ABCB4 is an ATP-binding cassette transporter that extrudes phosphatidylcholine into the bile canaliculi of the liver. Its dysfunction or inhibition by drugs can cause severe, chronic liver disease or drug-induced liver injury. We determined the cryo-EM structure of nanodisc-reconstituted human ABCB4 trapped in an ATP-bound state at a resolution of 3.2 Å. The nucleotide binding domains form a closed conformation containing two bound ATP molecules, but only one of the ATPase sites contains bound Mg2+. The transmembrane domains adopt a collapsed conformation at the level of the lipid bilayer, but we observed a large, hydrophilic and fully occluded cavity at the level of the cytoplasmic membrane boundary, with no ligand bound. This indicates a state following substrate release but prior to ATP hydrolysis. Our results rationalize disease-causing mutations in human ABCB4 and suggest an 'alternating access' mechanism of lipid extrusion, distinct from the 'credit card swipe' model of other lipid transporters.
Collapse
|
11
|
Ikeda Y, Morita SY, Hatano R, Tsuji T, Terada T. Enhancing effect of taurohyodeoxycholate on ABCB4-mediated phospholipid efflux. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1495-1502. [PMID: 31176036 DOI: 10.1016/j.bbalip.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 11/27/2022]
Abstract
Hydrophilic bile salts, ursodeoxycholate and hyodeoxycholate, have choleretic effects. ABCB4, a member of the ABC transporter family, is essential for the secretion of phospholipids from hepatocytes into bile. In this study, we assessed the effects of taurine- or glycine-conjugated cholate, ursodeoxycholate and hyodeoxycholate on the ABCB4-mediated phosphatidylcholine (PC) efflux using Abcb4 knockout mice and HEK293 cells stably expressing ABCB4. To evaluate the effects of bile salts on bile formation in Abcb4+/+ or Abcb4-/- mice, the bile was collected during intravenous infusion of saline or bile salts. The biliary PC secretion in Abcb4+/+ mice was significantly increased by the infusions of all tested bile salts, especially taurohyodeoxycholate. On the other hand, Abcb4-/- mice exhibited extremely low secretion of PC into bile, which was not altered by bile salt infusions. We also showed that the PC efflux from ABCB4-expressing HEK293 cells was stimulated by taurohyodeoxycholate much more strongly than the other tested bile salts. However, taurohyodeoxycholate did not restore the activities of ABCB4 mutants. Furthermore, light scattering measurements demonstrated a remarkable ability of taurohyodeoxycholate to form mixed micelles with PC. Therefore, the enhancing effect of taurohyodeoxycholate on the ABCB4-mediated PC efflux may be due to the strong mixed micelle formation ability.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan.
| | - Ryo Hatano
- Department of Medical Physiology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan
| | - Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga 520-2192, Japan
| |
Collapse
|
12
|
Morita SY, Ikeda Y, Tsuji T, Terada T. Molecular Mechanisms for Protection of Hepatocytes against Bile Salt Cytotoxicity. Chem Pharm Bull (Tokyo) 2019; 67:333-340. [DOI: 10.1248/cpb.c18-01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tokuji Tsuji
- Department of Pharmacy, Shiga University of Medical Science Hospital
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital
| |
Collapse
|
13
|
Exposure of human neurons to silver nanoparticles induces similar pattern of ABC transporters gene expression as differentiation: Study on proliferating and post-mitotic LUHMES cells. Mech Ageing Dev 2018; 171:7-14. [DOI: 10.1016/j.mad.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/26/2018] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
|
14
|
Wang Y, Yu X, Zhao QZ, Zheng S, Qing WJ, Miao CD, Sanjay J. Thyroid dysfunction, either hyper or hypothyroidism, promotes gallstone formation by different mechanisms. J Zhejiang Univ Sci B 2017; 17:515-25. [PMID: 27381728 DOI: 10.1631/jzus.b1500210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis.
Collapse
Affiliation(s)
- Yong Wang
- Department of Thyroid Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xing Yu
- Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Qun-Zi Zhao
- Department of Thyroid Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Shu Zheng
- Cancer Institute, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wen-Jie Qing
- Department of Clinical Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Chun-di Miao
- Department of Clinical Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Jaiswal Sanjay
- Department of Clinical Medicine, School of Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
15
|
Ikeda Y, Morita SY, Terada T. Cholesterol attenuates cytoprotective effects of phosphatidylcholine against bile salts. Sci Rep 2017; 7:306. [PMID: 28331225 PMCID: PMC5428433 DOI: 10.1038/s41598-017-00476-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/27/2017] [Indexed: 01/03/2023] Open
Abstract
Bile salts have potent detergent properties and damaging effects on cell membranes, leading to liver injury. However, the molecular mechanisms for the protection of hepatocytes against bile salts are not fully understood. In this study, we demonstrated that the cytotoxicity of nine human major bile salts to HepG2 cells and primary human hepatocytes was prevented by phosphatidylcholine (PC). In contrast, cholesterol had no direct cytotoxic effects but suppressed the cytoprotective effects of PC. PC reduced the cell-association of bile salt, which was reversed by cholesterol. Light scattering measurements and gel filtration chromatography revealed that cholesterol within bile salt/PC dispersions decreased mixed micelles but increased vesicles, bile salt simple micelles and monomers. These results suggest that cholesterol attenuates the cytoprotective effects of PC against bile salts by facilitating the formation of bile salt simple micelles and monomers. Therefore, biliary PC and cholesterol may play different roles in the pathogenesis of bile salt-induced liver injury.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| | - Shin-Ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan.
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu City, Shiga, 520-2192, Japan
| |
Collapse
|
16
|
Tebbi A, Levillayer F, Jouvion G, Fiette L, Soubigou G, Varet H, Boudjadja N, Cairo S, Hashimoto K, Suzuki AM, Carninci P, Carissimo A, di Bernardo D, Wei Y. Deficiency of multidrug resistance 2 contributes to cell transformation through oxidative stress. Carcinogenesis 2016; 37:39-48. [PMID: 26542370 PMCID: PMC4700935 DOI: 10.1093/carcin/bgv156] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023] Open
Abstract
Multidrug resistance 2 (Mdr2), also called adenosine triphosphate-binding cassette B4 (ABCB4), is the transporter of phosphatidylcholine (PC) at the canalicular membrane of mouse hepatocytes, which plays an essential role for bile formation. Mutations in human homologue MDR3 are associated with several liver diseases. Knockout of Mdr2 results in hepatic inflammation, liver fibrosis and hepatocellular carcinoma (HCC). Whereas the pathogenesis in Mdr2 (-/-) mice has been largely attributed to the toxicity of bile acids due to the absence of PC in the bile, the question of whether Mdr2 deficiency per se perturbs biological functions in the cell has been poorly addressed. As Mdr2 is expressed in many cell types, we used mouse embryonic fibroblasts (MEF) derived from Mdr2 (-/-) embryos to show that deficiency of Mdr2 increases reactive oxygen species accumulation, lipid peroxidation and DNA damage. We found that Mdr2 (-/-) MEFs undergo spontaneous transformation and that Mdr2 (-/-) mice are more susceptible to chemical carcinogen-induced intestinal tumorigenesis. Microarray analysis in Mdr2-/- MEFs and cap analysis of gene expression in Mdr2 (-/-) HCCs revealed extensively deregulated genes involved in oxidation reduction, fatty acid metabolism and lipid biosynthesis. Our findings imply a close link between Mdr2 (-/-) -associated tumorigenesis and perturbation of these biological processes and suggest potential extrahepatic functions of Mdr2/MDR3.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/deficiency
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- Adenomatous Polyposis Coli/metabolism
- Adenomatous Polyposis Coli/pathology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA Damage
- Female
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Intestinal Neoplasms/metabolism
- Intestinal Neoplasms/pathology
- Lipid Peroxidation
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Nude
- Oxidative Stress/physiology
- Reactive Oxygen Species/metabolism
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Ali Tebbi
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Florence Levillayer
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | - Guillaume Soubigou
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
| | - Hugo Varet
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
| | - Nesrine Boudjadja
- Laboratoire de Pathogenèse des Virus de l’hépatite B
- Unité d’Histopathologie humaine et modèles animaux
- Centre for Bioinformatics, Biostatistics and Integrative Biology, Plate-forme 2, Institut Pasteur, 28 rue du Dr. Roux 75015, Paris
- XenTech, Evry, France
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | | | - Kosuke Hashimoto
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Ana Maria Suzuki
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan and
| | - Annamaria Carissimo
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, 80131 Naples, Italy
| | - Yu Wei
- *To whom correspondence should be addressed. Tel: +33 145688866; Fax: +33 140613841;
| |
Collapse
|
17
|
Yanguas SC, Cogliati B, Willebrords J, Maes M, Colle I, van den Bossche B, de Oliveira CPMS, Andraus W, Alves VAF, Leclercq I, Vinken M. Experimental models of liver fibrosis. Arch Toxicol 2015; 90:1025-1048. [PMID: 26047667 DOI: 10.1007/s00204-015-1543-4] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/28/2015] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.
Collapse
Affiliation(s)
- Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabelle Colle
- Department of Hepato-Gastroenterology, Algemeen Stedelijk Ziekenhuis, Aalst, Belgium
| | - Bert van den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis, Aalst, Belgium
| | | | - Wellington Andraus
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Isabelle Leclercq
- Laboratoire d'Hépato-Gastro-Entérologie, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Zhao Y, Ishigami M, Nagao K, Hanada K, Kono N, Arai H, Matsuo M, Kioka N, Ueda K. ABCB4 exports phosphatidylcholine in a sphingomyelin-dependent manner. J Lipid Res 2015; 56:644-652. [PMID: 25601960 DOI: 10.1194/jlr.m056622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABCB4, which is specifically expressed on the canalicular membrane of hepatocytes, exports phosphatidylcholine (PC) into bile. Because SM depletion increases cellular PC content and stimulates PC and cholesterol efflux by ABCA1, a key transporter involved in generation of HDL, we predicted that SM depletion also stimulates PC efflux through ABCB4. To test this prediction, we compared the lipid efflux activity of ABCB4 and ABCA1 under SM depletion induced by two different types of inhibitors for SM synthesis, myriocin and (1R,3S)-N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)dodecanamide, in human embryonic kidney 293 and baby hamster kidney cells. Unexpectedly, SM depletion exerted opposite effects on ABCB4 and ABCA1, suppressing PC efflux through ABCB4 while stimulating efflux through ABCA1. Both ABCB4 and ABCA1 were recovered from Triton-X-100-soluble membranes, but ABCB4 was mainly recovered from CHAPS-insoluble SM-rich membranes, whereas ABCA1 was recovered from CHAPS-soluble membranes. These results suggest that a SM-rich membrane environment is required for ABCB4 to function. ABCB4 must have evolved to exert its maximum activity in the SM-rich membrane environment of the canalicular membrane, where it transports PC as the physiological substrate.
Collapse
Affiliation(s)
- Yu Zhao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Masato Ishigami
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kohjiro Nagao
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | - Kentaro Hanada
- Department of Biochemistry & Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Nozomu Kono
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Michinori Matsuo
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Noriyuki Kioka
- Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan
| | - Kazumitsu Ueda
- Institute for integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8502, Japan; Laboratory of Cellular Biochemistry, Division of Applied Life Sciences, Kyoto University Graduate School of Agriculture, Kyoto 606-8502, Japan.
| |
Collapse
|
19
|
Morita SY, Terada T. Molecular mechanisms for biliary phospholipid and drug efflux mediated by ABCB4 and bile salts. BIOMED RESEARCH INTERNATIONAL 2014; 2014:954781. [PMID: 25133187 PMCID: PMC4123595 DOI: 10.1155/2014/954781] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/14/2014] [Indexed: 01/14/2023]
Abstract
On the canalicular membranes of hepatocytes, several ABC transporters are responsible for the secretion of bile lipids. Among them, ABCB4, also called MDR3, is essential for the secretion of phospholipids from hepatocytes into bile. The biliary phospholipids are associated with bile salts and cholesterol in mixed micelles, thereby reducing the detergent activity and cytotoxicity of bile salts and preventing cholesterol crystallization. Mutations in the ABCB4 gene result in progressive familial intrahepatic cholestasis type 3, intrahepatic cholestasis of pregnancy, low-phospholipid-associated cholelithiasis, primary biliary cirrhosis, and cholangiocarcinoma. In vivo and cell culture studies have demonstrated that the secretion of biliary phospholipids depends on both ABCB4 expression and bile salts. In the presence of bile salts, ABCB4 located in nonraft membranes mediates the efflux of phospholipids, preferentially phosphatidylcholine. Despite high homology with ABCB1, ABCB4 expression cannot confer multidrug resistance. This review summarizes our current understanding of ABCB4 functions and physiological relevance, and discusses the molecular mechanism for the ABCB4-mediated efflux of phospholipids.
Collapse
Affiliation(s)
- Shin-ya Morita
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192, Japan
| | - Tomohiro Terada
- Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
20
|
Fleming A, Diekmann H, Goldsmith P. Functional characterisation of the maturation of the blood-brain barrier in larval zebrafish. PLoS One 2013; 8:e77548. [PMID: 24147021 PMCID: PMC3797749 DOI: 10.1371/journal.pone.0077548] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/05/2013] [Indexed: 01/05/2023] Open
Abstract
Zebrafish are becoming increasingly popular as an organism in which to model human disease and to study the effects of small molecules on complex physiological and pathological processes. Since larvae are no more than a few millimetres in length, and can live in volumes as small as 100 microliters, they are particularly amenable to high-throughput and high content compound screening in 96 well plate format. There is a growing literature providing evidence that many compounds show similar pharmacological effects in zebrafish as they do in mammals, and in particular humans. However, a major question regarding their utility for small molecule screening for neurological conditions is whether a molecule will reach its target site within the central nervous system. Studies have shown that Claudin-5 and ZO-1, tight-junction proteins which are essential for blood-brain barrier (BBB) integrity in mammals, can be detected in some cerebral vessels in zebrafish from 3 days post-fertilisation (d.p.f.) onwards and this timing coincides with the retention of dyes, immunoreactive tracers and fluorescent markers within some but not all cerebral vessels. Whilst these findings demonstrate that features of a BBB are first present at 3 d.p.f., it is not clear how quickly the zebrafish BBB matures or how closely the barrier resembles that of mammals. Here, we have combined anatomical analysis by transmission electron microscopy, functional investigation using fluorescent markers and compound uptake using liquid chromatography/tandem mass spectrometry to demonstrate that maturation of the zebrafish BBB occurs between 3 d.p.f. and 10 d.p.f. and that this barrier shares both structural and functional similarities with that of mammals.
Collapse
Affiliation(s)
- Angeleen Fleming
- DanioLabs Ltd., Cambridge Research Park, Cambridge, United Kingdom
| | - Heike Diekmann
- DanioLabs Ltd., Cambridge Research Park, Cambridge, United Kingdom
| | - Paul Goldsmith
- DanioLabs Ltd., Cambridge Research Park, Cambridge, United Kingdom
| |
Collapse
|