1
|
Gu C, Philipsen MH, Ewing AG. Omega-3 and -6 Fatty Acids Alter the Membrane Lipid Composition and Vesicle Size to Regulate Exocytosis and Storage of Catecholamines. ACS Chem Neurosci 2024; 15:816-826. [PMID: 38344810 PMCID: PMC10884999 DOI: 10.1021/acschemneuro.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
The two essential fatty acids, alpha-linolenic acid and linoleic acid, and the higher unsaturated fatty acids synthesized from them are critical for the development and maintenance of normal brain functions. Deficiencies of these fatty acids have been shown to cause damage to the neuronal development, cognition, and locomotor function. We combined electrochemistry and imaging techniques to examine the effects of the two essential fatty acids on catecholamine release dynamics and the vesicle content as well as on the cell membrane phospholipid composition to understand how they impact exocytosis and by extension neurotransmission at the single-cell level. Incubation of either of the two fatty acids reduces the size of secretory vesicles and enables the incorporation of more double bonds into the cell membrane structure, resulting in higher membrane flexibility. This subsequently affects proteins regulating the dynamics of the exocytotic fusion pore and thereby affects exocytosis. Our data suggest a possible pathway whereby the two essential fatty acids affect the membrane structure to impact exocytosis and provide a potential treatment for diseases and impairments related to catecholamine signaling.
Collapse
Affiliation(s)
- Chaoyi Gu
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Mai H. Philipsen
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular
Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| |
Collapse
|
2
|
Mellinger AL, Muddiman DC, Gamcsik MP. Highlighting Functional Mass Spectrometry Imaging Methods in Bioanalysis. J Proteome Res 2022; 21:1800-1807. [PMID: 35749637 DOI: 10.1021/acs.jproteome.2c00220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most mass spectrometry imaging (MSI) methods provide a molecular map of tissue content but little information on tissue function. Mapping tissue function is possible using several well-known examples of "functional imaging" such as positron emission tomography and functional magnetic resonance imaging that can provide the spatial distribution of time-dependent biological processes. These functional imaging methods represent the net output of molecular networks influenced by local tissue environments that are difficult to predict from molecular/cellular content alone. However, for decades, MSI methods have also been demonstrated to provide functional imaging data on a variety of biological processes. In fact, MSI exceeds some of the classic functional imaging methods, demonstrating the ability to provide functional data from the nanoscale (subcellular) to whole tissue or organ level. This Perspective highlights several examples of how different MSI ionization and detection technologies can provide unprecedented detailed spatial maps of time-dependent biological processes, namely, nucleic acid synthesis, lipid metabolism, bioenergetics, and protein metabolism. By classifying various MSI methods under the umbrella of "functional MSI", we hope to draw attention to both the unique capabilities and accessibility with the aim of expanding this underappreciated field to include new approaches and applications.
Collapse
Affiliation(s)
- Allyson L Mellinger
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Michael P Gamcsik
- UNC/NCSU Joint Department of Biomedical Engineering, Raleigh, North Carolina 27695, United States
| |
Collapse
|
3
|
Lork AA, Vo KLL, Phan NTN. Chemical Imaging and Analysis of Single Nerve Cells by Secondary Ion Mass Spectrometry Imaging and Cellular Electrochemistry. Front Synaptic Neurosci 2022; 14:854957. [PMID: 35651734 PMCID: PMC9149580 DOI: 10.3389/fnsyn.2022.854957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
A nerve cell is a unit of neuronal communication in the nervous system and is a heterogeneous molecular structure, which is highly mediated to accommodate cellular functions. Understanding the complex regulatory mechanisms of neural communication at the single cell level requires analytical techniques with high sensitivity, specificity, and spatial resolution. Challenging technologies for chemical imaging and analysis of nerve cells will be described in this review. Secondary ion mass spectrometry (SIMS) allows for non-targeted and targeted molecular imaging of nerve cells and synapses at subcellular resolution. Cellular electrochemistry is well-suited for quantifying the amount of reactive chemicals released from living nerve cells. These techniques will also be discussed regarding multimodal imaging approaches that have recently been shown to be advantageous for the understanding of structural and functional relationships in the nervous system. This review aims to provide an insight into the strengths, limitations, and potentials of these technologies for synaptic and neuronal analyses.
Collapse
Affiliation(s)
| | | | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Shang X, Dai L, He J, Yang X, Wang Y, Li B, Zhang J, Pan H, Gulnaz I. A high-value-added application of the stems of Rheum palmatum L. as a healthy food: the nutritional value, chemical composition, and anti-inflammatory and antioxidant activities. Food Funct 2022; 13:4901-4913. [PMID: 35388820 DOI: 10.1039/d1fo04214a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Rhubarb has edible stems or stalks. In this paper, we investigated the nutritional value, chemical composition, and bioactivities of Rheum palmatum stems (SRP) and analyzed the mode of action. SRP exhibited biosafety and had nutritional value, with abundant essential amino acids and minerals. Based on network pharmacology and western blot tests, we found that it showed anti-inflammatory activity via the PI3K-Akt-mediated NF-κB pathway. Out of 20 compounds identified using UPLC-ESI-Q-TOF/MS analysis, cirsiliol and hydrangenol were active compounds and they inhibited NO production in RAW264.7 cells induced by LPS. The alleviation of an inflammatory response is combined with a decrease in oxidative stress, and SRP showed antioxidant activity via attenuating antioxidant enzymes, scavenging free radicals, improving the mitochondrial membrane potential, and decreasing the reactive oxygen species level. These results indicated that SRP, with abundant flavonoids and a good nutritional composition, could be used as a dietary supplement for food applications.
Collapse
Affiliation(s)
- Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Jian He
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Yu Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Bing Li
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Hu Pan
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China.
| | - Ilgekbayeva Gulnaz
- Department of Biological Safety, Kazakh National Agrarian Research University, Almaty 050010, Kazakhstan
| |
Collapse
|
5
|
PUFA Treatment Affects C2C12 Myocyte Differentiation, Myogenesis Related Genes and Energy Metabolism. Genes (Basel) 2021; 12:genes12020192. [PMID: 33525599 PMCID: PMC7910949 DOI: 10.3390/genes12020192] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are the main components of cell membrane affecting its fluidity, signaling processes and play a vital role in muscle cell development. The effects of docosahexaenoic acid (DHA) on myogenesis are well known, while the effects of arachidonic acid (AA) are largely unclear. The purpose of this study is to evaluate the effect of two PUFAs (DHA and AA) on cell fate during myogenic processes, Wnt signaling and energy metabolism by using the C2C12 cells. The cells were treated with different concentrations of AA or DHA for 48 h during the differentiation period. PUFA treatment increased mRNA level of myogenic factor 5 (Myf5), which is involved in early stage of myoblast proliferation. Additionally, PUFA treatment prevented myoblast differentiation, indicated by decreased myotube fusion index and differentiation index in parallel with reduced mRNA levels of myogenin (MyoG). After PUFA withdrawal, some changes in cell morphology and myosin heavy chain mRNA levels were still observed. Expression of genes associated with Wnt signaling pathway, and energy metabolism changed in PUFA treatment in a dose and time dependent manner. Our data suggests that PUFAs affect the transition of C2C12 cells from proliferation to differentiation phase by prolonging proliferation and preventing differentiation.
Collapse
|
6
|
Tuck M, Blanc L, Touti R, Patterson NH, Van Nuffel S, Villette S, Taveau JC, Römpp A, Brunelle A, Lecomte S, Desbenoit N. Multimodal Imaging Based on Vibrational Spectroscopies and Mass Spectrometry Imaging Applied to Biological Tissue: A Multiscale and Multiomics Review. Anal Chem 2020; 93:445-477. [PMID: 33253546 DOI: 10.1021/acs.analchem.0c04595] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Tuck
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Landry Blanc
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Rita Touti
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nathan Heath Patterson
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-8575, United States
| | - Sebastiaan Van Nuffel
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Sandrine Villette
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Jean-Christophe Taveau
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, Germany
| | - Alain Brunelle
- Laboratoire d'Archéologie Moléculaire et Structurale, LAMS UMR 8220, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Sophie Lecomte
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Nicolas Desbenoit
- Institut de Chimie & Biologie des Membranes & des Nano-objets, CBMN UMR 5248, CNRS, Université de Bordeaux, 1 Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| |
Collapse
|
7
|
Sämfors S, Fletcher JS. Lipid Diversity in Cells and Tissue Using Imaging SIMS. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:249-271. [PMID: 32212820 DOI: 10.1146/annurev-anchem-091619-103512] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Lipids are an important class of biomolecules with many roles within cells and tissue. As targets for study, they present several challenges. They are difficult to label, as many labels lack the specificity to the many different lipid species or the labels maybe larger than the lipids themselves, thus severely perturbing the natural chemical environment. Mass spectrometry provides exceptional specificity and is often used to examine lipid extracts from different samples. However, spatial information is lost during extraction. Of the different imaging mass spectrometry methods available, secondary ion mass spectrometry (SIMS) is unique in its ability to analyze very small features, with probe sizes <50 nm available. It also offers high surface sensitivity and 3D imaging capability on a subcellular scale. This article reviews the current capabilities and some remaining challenges associated with imaging the diverse lipids present in cell and tissue samples. We show how the technique has moved beyond show-and-tell, proof-of-principle analysis and is now being used to address real biological challenges. These include imaging the microenvironment of cancer tumors, probing the pathophysiology of traumatic brain injury, or tracking the lipid composition through bacterial membranes.
Collapse
Affiliation(s)
- Sanna Sämfors
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden;
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - John S Fletcher
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden;
| |
Collapse
|
8
|
Stupin M, Kibel A, Stupin A, Selthofer-Relatić K, Matić A, Mihalj M, Mihaljević Z, Jukić I, Drenjančević I. The Physiological Effect of n-3 Polyunsaturated Fatty Acids (n-3 PUFAs) Intake and Exercise on Hemorheology, Microvascular Function, and Physical Performance in Health and Cardiovascular Diseases; Is There an Interaction of Exercise and Dietary n-3 PUFA Intake? Front Physiol 2019; 10:1129. [PMID: 31543828 PMCID: PMC6728652 DOI: 10.3389/fphys.2019.01129] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Physical activity has a beneficial effect on systemic hemodynamics, physical strength, and cardiac function in cardiovascular (CV) patients. Potential beneficial effects of dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs), such as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid on hemorheology, vascular function, inflammation and potential to improve physical performance as well as other CV parameters are currently investigated. Recent meta-analysis suggests no effect of n-3 PUFA supplementation on CV function and outcomes of CV diseases. On the other hand, some studies support beneficial effects of n-3 PUFAs dietary intake on CV and muscular system, as well as on immune responses in healthy and in CV patients. Furthermore, the interaction of exercise and dietary n-3 PUFA intake is understudied. Supplementation of n-3 PUFAs has been shown to have antithrombotic effects (by decreasing blood viscosity, decreasing coagulation factor and PAI-1 levels and platelet aggregation/reactivity, enhancing fibrinolysis, but without effects on erythrocyte deformability). They decrease inflammation by decreasing IL-6, MCP-1, TNFα and hsCRP levels, expression of endothelial cell adhesion molecules and significantly affect blood composition of fatty acids. Treatment with n-3 PUFAs enhances brachial artery blood flow and conductance during exercise and enhances microvascular post-occlusive hyperemic response in healthy humans, however, the effects are unknown in cardiovascular patients. Supplementation of n-3 PUFAs may improve anaerobic endurance and may modulate oxygen consumption during intense exercise, may increase metabolic capacity, enhance endurance capacity delaying the onset of fatigue, and improving muscle hypertrophy and neuromuscular function in humans and animal models. In addition, n-3 PUFAs have anti-inflammatory and anti-nociceptive effects and may attenuate delayed-onset muscle soreness and muscle stiffness, and preserve joint mobility. On the other hand, effects of n-3 PUFAs were variably observed in men and women and they vary depending on dietary protocol, type of supplementation and type of sports activity undertaken, both in healthy and cardiovascular patients. In this review we will discuss the physiological effects of n-3 PUFA intake and exercise on hemorheology, microvascular function, immunomodulation and inflammation and physical performance in healthy persons and in cardiovascular diseases; elucidating if there is an interaction of exercise and diet.
Collapse
Affiliation(s)
- Marko Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Aleksandar Kibel
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia
| | - Ana Stupin
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Kristina Selthofer-Relatić
- Department of Cardiovascular Diseases, Osijek University Hospital, Osijek, Croatia.,Department of Internal Medicine, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Matić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Martina Mihalj
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Department of Dermatology, Osijek University Hospital, Osijek, Croatia
| | - Zrinka Mihaljević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukić
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.,Croatian National Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
9
|
Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J. Quantification of Lipids: Model, Reality, and Compromise. Biomolecules 2018; 8:E174. [PMID: 30558107 PMCID: PMC6316828 DOI: 10.3390/biom8040174] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 12/30/2022] Open
Abstract
Lipids are key molecules in various biological processes, thus their quantification is a crucial point in a lot of studies and should be taken into account in lipidomics development. This family is complex and presents a very large diversity of structures, so analyzing and quantifying all this diversity is a real challenge. In this review, the different techniques to analyze lipids will be presented: from nuclear magnetic resonance (NMR) to mass spectrometry (with and without chromatography) including universal detectors. First of all, the state of the art of quantification, with the definitions of terms and protocol standardization, will be presented with quantitative lipidomics in mind, and then technical considerations and limitations of analytical chemistry's tools, such as NMR, mass spectrometry and universal detectors, will be discussed, particularly in terms of absolute quantification.
Collapse
Affiliation(s)
- Spiro Khoury
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
- French LipidomYstes Network, 31000 Toulouse, France.
| | - Cécile Canlet
- Toxalim, Research Centre in Food Toxicology, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, F-31027 Toulouse, France.
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, F-31027 Toulouse, France.
| | - Marlène Z Lacroix
- INTHERES, Université de Toulouse, INRA, ENVT, 31432 Toulouse, France.
| | - Olivier Berdeaux
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, 9E Boulevard Jeanne d'Arc, F-21000 Dijon, France.
- French LipidomYstes Network, 31000 Toulouse, France.
| | - Juliette Jouhet
- French LipidomYstes Network, 31000 Toulouse, France.
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, INRA, CEA, 38000 Grenoble, France.
| | - Justine Bertrand-Michel
- French LipidomYstes Network, 31000 Toulouse, France.
- MetaToul-Lipidomic Core Facility, MetaboHUB, I2MC U1048, Inserm, 31432 Toulouse, France.
| |
Collapse
|