1
|
Moon KM, Lee MK, Park SY, Seo J, Kim AR, Lee B. Docosatrienoic Acid Inhibits Melanogenesis Partly through Suppressing the Intracellular MITF/Tyrosinase Axis. Pharmaceuticals (Basel) 2024; 17:1198. [PMID: 39338360 PMCID: PMC11435182 DOI: 10.3390/ph17091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Melanogenesis, essential for skin photoprotection and pigmentation, can lead to disorders like melasma and hyperpigmentation, which are challenging to treat and affect quality of life. Docosatrienoic acid (DTA), a polyunsaturated omega-3 fatty acid, has been identified as a potential regulator of skin aging. This study investigates DTA's effects on melanogenesis and its underlying molecular mechanisms using in silico and in vitro analyses. SwissSimilarity analysis revealed that DTA shares close structural similarities with known anti-melanogenic lipids, suggesting it may inhibit melanogenesis in similar manners. Our results demonstrated that DTA reduces melanin content and intracellular tyrosinase activity in B16F10 cells, significantly downregulating the mRNA expression of tyrosinase, TRP-1, and TRP-2 by inhibiting MITF translocation to the nucleus. While DTA exhibited mild inhibitory effects on mushroom tyrosinase activity and antioxidant properties at higher concentrations, direct inhibition of tyrosinase is likely not the primary mechanism, as the observed anti-melanogenic effects occurred at much lower concentrations compared to those required for direct tyrosinase inhibition. Together, DTA-mediated modulation of MITF and tyrosinase mRNA expression offers a novel approach to treating hyperpigmentation. DTA's potential extends into the cosmetic industry, enhancing product stability, functionality, and aesthetics. Further research is needed to explore DTA's broader applications in skincare and cosmetic formulations.
Collapse
Affiliation(s)
- Kyoung Mi Moon
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Min-Kyeoun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 48513, Republic of Korea
| | - Su-Yeon Park
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Jaeseong Seo
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Ah-reum Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
| | - Bonggi Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (K.M.M.); (M.-K.L.); (S.-Y.P.); (J.S.); (A.-r.K.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
2
|
Arast Y, Sabbaghi M, Kamranfar F, Heidari F, Fazli Nejad SM, Hosseinabadi T, Pourahmad J. Selective cytotoxicity of standardised n-hexane extract of black soldier flies' larvae on cancerous skin cells mitochondria isolated from rat model of melanoma. Cutan Ocul Toxicol 2024:1-8. [PMID: 39115252 DOI: 10.1080/15569527.2024.2389193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
INTRODUCTION Melanoma is known as a highly lethal cancer. In melanoma cells, apoptosis signalling which relies heavily on the acute activity of mitochondria and reactive oxygen species (ROS) formation is suppressed. Our previous studies on natural compounds on melanoma suggested that mitochondria are a potential target for the melanoma treatment by selective cytotoxic effect of them. The black soldier fly is an important environmental protectant insect that based on recent studies induces apoptosis in liver and colorectal carcinoma cells through the activation of caspase 3, 8, and 9 and ultimately inhibits the growth of cancer cells. PURPOSE This study was designed to evaluate the selective apoptotic effect of the n-hexane BSFL extract (BSFLE) on skin mitochondria. MATERIALS AND METHODS The mitochondria isolated from melanoma cells were treated with various concentrations (1500, 3000, and 6000 µg/ml) of n-hexane BSFLE Then MTT viability assay, ROS determination, Mitochondrial Membrane Potential (MMP), mitochondrial swelling, cytochrome c release determination, and % apoptosis were performed. RESULTS MTT assay showed that different concentrations of n-hexane BSFLE significantly (P < 0.05) decreased the SDH activity in cancerous skin mitochondria with the IC50. The ROS production and mitochondrial swelling results also showed that all concentrations of BSFL extracts significantly increased. MMP decline and the release of cytochrome c in cancer groups mitochondria. BSFLE increased apoptosis on melanoma cells. DISCUSSION AND CONCLUSION It is suggested that n-hexane BSFLE compounds selectively induce a cascade of proapoptotic events that are probably defective in cancer cells. Most of these compounds target the mitochondrial transient pore caused by disruption of the mitochondrial respiratory chain. These events lead to disruption of the temporary permeability of mitochondria, swelling of mitochondria and finally the formation of apoptosome in the cytosol.
Collapse
Affiliation(s)
- Yalda Arast
- Research Center of Environmental Pollutants, Qom University of Medical Sciences, Qom, Iran
| | - Mahya Sabbaghi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Farzane Kamranfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Fatemeh Heidari
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Tahereh Hosseinabadi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Tehran, Iran
| |
Collapse
|
3
|
Snyman M, Walsdorf RE, Wix SN, Gill JG. The metabolism of melanin synthesis-From melanocytes to melanoma. Pigment Cell Melanoma Res 2024; 37:438-452. [PMID: 38445351 PMCID: PMC11178461 DOI: 10.1111/pcmr.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Melanin synthesis involves the successful coordination of metabolic pathways across multiple intracellular compartments including the melanosome, mitochondria, ER/Golgi, and cytoplasm. While pigment production offers a communal protection from UV damage, the process also requires anabolic and redox demands that must be carefully managed by melanocytes. In this report we provide an updated review on melanin metabolism, including recent data leveraging new techniques, and technologies in the field of metabolism. We also discuss the many aspects of melanin synthesis that intersect with metabolic pathways known to impact melanoma phenotypes and behavior. By reviewing the metabolism of melanin synthesis, we hope to highlight outstanding questions and opportunities for future research that could improve patient outcomes in pigmentary and oncologic disease settings.
Collapse
Affiliation(s)
- Marelize Snyman
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Rachel E. Walsdorf
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Sophia N. Wix
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Jennifer G. Gill
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| |
Collapse
|
4
|
Hong SW, Wang YF, Chen YJ, Zhang KY, Chen PY, Hang HX, Yin HL, Xu P, Tan C. Integrative pharmacology reveals the mechanisms of Erzhi pills, A traditional Chinese formulation, stimulating melanogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117617. [PMID: 38142876 DOI: 10.1016/j.jep.2023.117617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erzhi pills (EZP), a traditional Chinese medicine formula prescribed for the treatment of vitiligo, has shown promising efficacy. However, the oral bioactive components and mechanisms underlying the promotion of melanogenesis by EZP remain unclear. AIM OF THE STUDY This study aimed to investigate the pharmacological basis and mechanism of EZP in promoting melanogenesis. MATERIALS AND METHODS UHPLC-TOF-MS analysis was used to identify absorbed phytochemicals in serum after oral administration of EZP. Network pharmacology methods were used to predict potential targets and pathways involved in the melanogenic activity of EZP, resulting in the construction of a "compound-target-pathway" network. Zebrafish and B16F10 cells were used to evaluate the effects of EZP on tyrosinase activity and melanin content. Western blot and ELISA analyses were used to validate the effects of EZP on melanogenesis-related proteins, including MITF, TYR, CREB, p-CREB, and cAMP. RESULTS UHPLC-TOF-MS analysis identified 36 compounds derived from EZP in serum samples. Network pharmacology predictions revealed 89 target proteins associated with the identified compounds and closely related to vitiligo. GO and KEGG analyses indicated the involvement of the cAMP/PKA signaling pathway in the promotion of melanogenesis by EZP. Experimental results showed that EZP increased tyrosinase activity and melanin content in zebrafish and B16F10 cells without inducing toxicity. Western blot and ELISA results suggested that the melanogenic effect of EZP may be related to the activation of the cAMP/PKA signaling pathway. These results confirm the feasibility of combining serum pharmacological and network pharmacological approaches. CONCLUSIONS EZP have the potential to increase tyrosinase activity and melanin content in zebrafish and cells possibly through activation of the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Sheng-Wei Hong
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China; The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yu-Feng Wang
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China; The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yu-Jiao Chen
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China; The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Kai-Yu Zhang
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Pei-Yao Chen
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hua-Xi Hang
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hui-Lin Yin
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Ping Xu
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| | - Cheng Tan
- Department of Dermatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210001, China.
| |
Collapse
|
5
|
Kim S, Na GH, Jung HM, Han SH, Han J, Koo YK. Enzyme-treated caviar extract ameliorates melanogenesis in UVB-induced SKH-1 hairless mice. Biochem Biophys Res Commun 2023; 673:81-86. [PMID: 37364389 DOI: 10.1016/j.bbrc.2023.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
This study investigated anti-melanogenesis effects of enzyme-treated caviar extract (CV) in murine melanoma B16F10 cells and SKH-1 hairless mice. To induce melanin production in vitro and in vivo studies, B16F10 cells were treated with 3-Isobutyl-1-methylxanthine (IBMX), and SKH-1 hairless mice were irradiated with UVB, respectively. The expression of melnogenesis-related factors and signaling molecules were analyzed by ELISA and western blotting. 50, 100 and 200 μg/mL of CV significantly decreased the melanin contents and the activities of tyrosinase, nitric oxide, glutathione, and cAMP, melanogenesis factor, in B16F10 cells treated IBMX. In addition, CV significantly suppressed the expression of melanogenesis proteins such as pPKA, pCREB, MITF, TRP-1and TRP-2. Similarly, results of oral administration of CV (20, 50 and 100 mg/kg) for 8 weeks in UVB-Induced SKH-1 hairless mice, the expression of melanogenesis-related factor tyrosinase, nitric oxide, and cAMP and protein expression of pPKA, pCREBa, MITF, TRP-1and TRP-2 was significantly reduced. In particular, 100 mg/kg of CV exhibited an excellent effect similar to control group. Therefore, we suggest the possibility of developing CV as a food supplement having skin whitening effects by ameliorating melanogenesis.
Collapse
Affiliation(s)
- SukJin Kim
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea
| | - Gwi Hwan Na
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea
| | - Hyun Mook Jung
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea
| | - Sang Hun Han
- Almas Caviar, Hwaseoung-si, 18553, Republic of Korea
| | - Jehee Han
- Almas Caviar, Hwaseoung-si, 18553, Republic of Korea
| | - Yean Kyoung Koo
- Department of R&I Center, COSMAXBIO, Seongnam, 13486, Republic of Korea.
| |
Collapse
|
6
|
Li A, He H, Chen Y, Liao F, Tang J, Li L, Fan Y, Li L, Xiong L. Effects of donkey milk on UVB-induced skin barrier damage and melanin pigmentation: A network pharmacology and experimental validation study. Front Nutr 2023; 10:1121498. [PMID: 36969816 PMCID: PMC10033878 DOI: 10.3389/fnut.2023.1121498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionDairy products have long been regarded as a controversial nutrient for the skin. However, a clear demonstration of donkey milk (DM) on skincare is required.MethodsIn this study, spectrum and chemical component analyses were applied to DM. Then, the effects of DM on UVB-induced skin barrier damage and melanin pigmentation were first evaluated in vitro and in vivo. Cell survival, animal models, and expression of filaggrin (FLG) were determined to confirm the effect of DM on UVB-induced skin barrier damage. Melanogenesis and tyrosinase (TYR) activity were assessed after UVB irradiation to clarify the effect of DM on whitening activities. Further, a network pharmacology method was applied to study the interaction between DM ingredients and UVB-induced skin injury. Meanwhile, an analysis of the melanogenesis molecular target network was developed and validated to predict the melanogenesis regulators in DM.ResultsDM was rich in cholesterols, fatty acids, vitamins and amino acids. The results of evaluation of whitening activities in vitro and in vivo indicated that DM had a potent inhibitory effect on melanin synthesis. The results of effects of DM on UVB‑induced skin barrier damage indicated that DM inhibited UVB-induced injury and restored skin barrier function via up-regulation expression of FLG (filaggrin). The pharmacological network of DM showed that DM regulated steroid biosynthesis and fatty acid metabolism in keratinocytes and 64 melanin targets which the main contributing role of DM might target melanogenesis, cell adhesion molecules (CAMs), and Tumor necrosis factor (TNF) pathway.DiscussionThese results highlight the potential use of DM as a promising agent for whitening and anti-photoaging applications.
Collapse
Affiliation(s)
- Anqi Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hailun He
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanjing Chen
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Liao
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Shandong, China
| | - Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China
| | - Li Li
- Laboratory of Pathology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yumei Fan
- National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co. Ltd., Shandong, China
| | - Li Li
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Li Li,
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, China
- Lidan Xiong,
| |
Collapse
|
7
|
Sangkaew O, Prombutara P, Roytrakul S, Yompakdee C. Metatranscriptomics Reveals Sequential Expression of Genes Involved in the Production of Melanogenesis Inhibitors by the Defined Microbial Species in Fermented Unpolished Black Rice. Microbiol Spectr 2023; 11:e0313922. [PMID: 36861996 PMCID: PMC10100879 DOI: 10.1128/spectrum.03139-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Fermented products require metabolic enzymes from the microbial community for desired final products. Using a metatranscriptomic approach, the role of microorganisms in fermented products on producing compounds with a melanogenesis inhibition activity has not yet been reported. Previously, unpolished black rice (UBR) fermented with the E11 starter containing Saccharomyces cerevisiae, Saccharomycopsis fibuligera, Rhizopus oryzae, and Pediococcus pentosaceus (FUBR) showed potent melanogenesis inhibition activity. This study aimed to investigate the function of these defined microbial species in producing melanogenesis inhibitors in the FUBR using a metatranscriptomic approach. The melanogenesis inhibition activity increased in a fermentation time-dependent manner. Genes related to melanogenesis inhibitors synthesis such as carbohydrate metabolism, amino acids synthesis, fatty acids/unsaturated fatty acids synthesis, and carbohydrate transporters were analyzed. Most genes from R. oryzae and P. pentosaceus were upregulated in the early stage of the fermentation process, while those of S. cerevisiae and S. fibuligera were upregulated in the late stage. FUBR production using different combinations of the four microbial species shows that all species were required to produce the highest activity. The FUBR containing at least R. oryzae and/or P. pentosaceus exhibited a certain level of activity. These findings were in agreement with the metatranscriptomic results. Overall, the results suggested that all four species sequentially and/or coordinately synthesized metabolites during the fermentation that led to a FUBR with maximum melanogenesis inhibition activity. This study not only sheds light on crucial functions of certain microbial community on producing the melanogenesis inhibitors, but also paves the way to initiate quality improvement of melanogenesis inhibition activity in the FUBR. IMPORTANCE Fermentation of food is a metabolic process through the action of enzymes from certain microorganisms. Although roles of the microbial community in the fermented food were investigated using metatranscriptomic approach in terms of flavors, but no study has been reported so far on the function of the microorganisms on producing compounds with a melanogenesis inhibition activity. Therefore, this study explained the roles of the defined microorganisms from the selected starter in the fermented unpolished black rice (FUBR) that can produce melanogenesis inhibitor(s) using metatranscriptomic analysis. Genes from different species were upregulated at different fermentation time. All four microbial species in the FUBR sequentially and/or coordinately synthesized metabolites during fermentation that led to a FUBR with maximal melanogenesis inhibition activity. This finding contributes to a deeper understanding of the roles of certain microbial community during fermentation and led to the knowledge-based improvement for the fermented rice with potent melanogenesis inhibition activity.
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Science & Bioinformatics Center, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
8
|
Shojazadeh T, Zolghadr L, JafarKhani S, Gharaghani S, Farasat A, Piri H, Gheibi N. Biomolecular interactions and binding dynamics of inhibitor arachidonic acid, with tyrosinase enzyme. J Biomol Struct Dyn 2023; 41:1378-1387. [PMID: 34974821 DOI: 10.1080/07391102.2021.2020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hyperpigmentation is a disorder caused by increased melanin deposition and changes in skin pigmentation. Inhibition of tyrosinase activity contributes to the control of food browning and skin pigmentation diseases. The effects of arachidonic acid (AA) on tyrosinase activity were examined using different spectroscopy methods including UV-VIS spectrophotometry, fluorescence spectroscopy, circular dichroism (CD) differential scanning calorimetry, and molecular dynamics (MD) simulations. Based on the kinetic results, arachidonic acid showed mixed-type of inhibition with Ki = 4.7 µM. Fluorescence and CD studies showed changes of secondary and tertiary structures of enzyme and a reduction of α-helix* amino acids after its incubation with different concentrations of AA, which is also confirmed by DSSP analysis. In addition, differential scanning calorimetry (DSC) studies showed a decrease in thermodynamic stability of enzyme from Tm = 338.65k for sole enzyme after incubation with AA in comparison with complex enzyme with Tm= 334.26k, ΔH =7.52 kJ/mol, and ΔS = 0.15 kJ/mol k. Based on the theoretical methods, it was found that the interaction between enzyme and AA follows an electrostatic manner with ΔG = -8.314 kJ/mol and ΔH = -12.9 kJ/mol. The MD results showed the lowest flexibility in the complex amino acids and minimal fluctuations in AA interaction with tyrosinase in Residue 240 to 260 and 66 to 80. Thus, AA inhibitory and structural and thermodynamic instability of tyrosinase supported advantages of this fatty acid for prevention of medical hyperpigmentation. Therefore, it is a good candidate for cosmetic applications. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tahereh Shojazadeh
- Department of Clinical Biochemistry and Genetic, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Leila Zolghadr
- Department of Chemistry, Imam Khomeini International University Qazvin, Qazvin, Iran
| | - Saeed JafarKhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.,Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Alireza Farasat
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Piri
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Biochemistry and Genetics, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
9
|
Ruksiriwanich W, Linsaenkart P, Khantham C, Muangsanguan A, Sringarm K, Jantrawut P, Prom-u-thai C, Jamjod S, Yamuangmorn S, Arjin C, Rachtanapun P, Jantanasakulwong K, Phimolsiripol Y, Barba FJ, Sommano SR, Chutoprapat R, Boonpisuttinant K. Regulatory Effects of Thai Rice By-Product Extracts from Oryza sativa L. cv. Bue Bang 3 CMU and Bue Bang 4 CMU on Melanin Production, Nitric Oxide Secretion, and Steroid 5α-Reductase Inhibition. PLANTS (BASEL, SWITZERLAND) 2023; 12:653. [PMID: 36771737 PMCID: PMC9921347 DOI: 10.3390/plants12030653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Alopecia and gray hair are common hair abnormalities affecting physical appearance and causing psychological problems. Chemical treatments partially restore hair disorders but have distressing side effects. Bioactive plant compounds constitute promising sources of potential medicinal substances instead of chemical agents, producing high side effects. In this study, we focused on the waste of local rice cultivars: Bue Bang 3 CMU (BB3CMU) and Bue Bang 4 CMU (BB4CMU) from the north of Thailand. The rice bran oil (RBO), defatted rice bran extract (DFRB), and rice husk (H) were determined for in vitro hair revitalization in melanin production, nitric oxide (NO) secretion, and steroid 5α-reductase inhibition. The results indicated that BB4CMU-RBO with high contents of iron, zinc, and free fatty acids showed a comparable induction of melanin production on melanocytes (130.18 ± 9.13% of control) to the standard drug theophylline with no significant difference (p > 0.05). This promising melanin induction could be related to activating the NO secretion pathway, with the NO secretion level at 1.43 ± 0.05 µM. In addition, BB4CMU-RBO illustrated a significant inhibitory effect on both steroid 5α-reductase genes (SRD5A) type 1 and type 2, which relates to its primary source of tocopherols. Hence, rice bran oil from the Thai rice variety BB4CMU could be applied as a promising hair revitalizing candidate, from natural resources, to help promote hair growth and re-pigmentation effects.
Collapse
Affiliation(s)
- Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pichchapa Linsaenkart
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chiranan Khantham
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Anurak Muangsanguan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Sansanee Jamjod
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10300, Thailand
| | - Korawinwich Boonpisuttinant
- Innovative Natural Products from Thai Wisdoms (INPTW), Faculty of Integrative Medicine, Rajamangala University of Technology Thanyaburi, Pathumthani 12130, Thailand
| |
Collapse
|
10
|
Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, Wang S, Tang Z. CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis 2023; 14:20. [PMID: 36635270 PMCID: PMC9837196 DOI: 10.1038/s41419-022-05540-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/14/2023]
Abstract
The carcinogenic role of FASN by regulating lipid metabolism reprogramming has been well-established in multiple tumors. However, whether mechanisms during intrahepatic cholangiocarcinoma (ICC) progression, such as circRNAs, regulate FASN expression remains unknown. Here we demonstrate a lipid metabolism-related circRNA, circMBOAT2 (hsa_circ_0007334 in circBase), frequently upregulated in ICC tissues, and positively correlated with ICC malignant features. CircMBOAT2 knockdown inhibits the growth and metastasis of ICC cells. Mechanistically, circMBOAT2 combines with PTBP1 and protects PTBP1 from ubiquitin/proteasome-dependent degradation, impairing the function of PTBP1 to transfer FASN mRNA from the nucleus to the cytoplasm. Moreover, circMBOAT2 and FASN have the same effect on fatty acid profile, unsaturated fatty acids instead of saturated fatty acids are primarily regulated and associated with malignant behaviors of ICC cells. The levels of lipid peroxidation and ROS were significantly higher when FASN was knocked down and recovered when circMBOAT2 was overexpressed. Our results identified that circMBOAT2 was upregulated in ICC and promoted progression by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export, which altered lipid metabolic profile and regulated redox homeostasis in ICC, suggesting that circMBOAT2 may serve as an available therapeutic target for ICC with active lipid metabolism.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huanjun Tong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jialu Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chenwei Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuqing Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yu Si
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shouhua Wang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Zhaohui Tang
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Department of Blood Transfusion, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
11
|
Sunarwidhi AL, Hernawan A, Frediansyah A, Widyastuti S, Martyasari NWR, Abidin AS, Padmi H, Handayani E, Utami NWP, Maulana FA, Ichfa MSM, Prasedya ES. Multivariate Analysis Revealed Ultrasonic-Assisted Extraction Improves Anti-Melanoma Activity of Non-Flavonoid Compounds in Indonesian Brown Algae Ethanol Extract. Molecules 2022; 27:7509. [PMID: 36364336 PMCID: PMC9655947 DOI: 10.3390/molecules27217509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 07/29/2023] Open
Abstract
Indonesia has high biodiversity of algae that are under-utilised due to limitations in the processing techniques. Here, we observed the effect of two different extraction methods (cold maceration and ultrasonic-assisted extraction (UAE)) on multiple variables of Indonesian brown algae ethanol extracts (Sargassum polycystum, Sargassum cristaefolium, Sargassum aquifolium and Turbinaria ornata). The variables observed included metabolites screening by untargeted metabolomics liquid chromatography-high-resolution mass spectrometry (LC-HRMS), observation of total phenolic content (TPC), total flavonoid content (TFC), anti-oxidant and B16-F10 melanoma cells cytotoxicity. UAE extracts had higher extraction yield and TPC, but no TFC difference was observed. UAE extract had more lipophilic compounds, such as fatty acids (Palmitic acid, Oleamide, Palmitoleic acid, Eicosapentaenoic acid, α-Linolenic acid, Arachidonic acid), lipid-derived mediators (11,12-Epoxyeicosatrienoic acid ((±)11(12)-EET)), steroid derivatives (Ergosterol peroxide), lipophilic metabolite (Fucoxanthin), and lipid-soluble vitamins (all-trans-retinol). Principle component analysis (PCA) revealed that TPC, not TFC, in the UAE extracts was correlated with the anti-oxidant activities and cytotoxicity of the extracts towards B16-F10 melanoma cells. This means other non-flavonoid phenolic and lipophilic compounds may have contributed to its bioactivity. These results suggest that out of the two methods investigated, UAE could be a chosen method to extract natural anti-melanogenic agents from brown algae.
Collapse
Affiliation(s)
| | - Ari Hernawan
- Department of Informatics Engineering, Faculty of Engineering, University of Mataram, Mataram 83115, Indonesia
| | - Andri Frediansyah
- PRTPP, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Sri Widyastuti
- Faculty of Food Technology and Agroindustry, University of Mataram, Mataram 83115, Indonesia
| | - Ni Wayan Riyani Martyasari
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| | - Angga Susmana Abidin
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| | - Hasriaton Padmi
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| | - Ervina Handayani
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83115, Indonesia
| | - Ni Wayan Putri Utami
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83115, Indonesia
| | - Farreh Alan Maulana
- Department of Pharmacy, Faculty of Medicine, University of Mataram, Mataram 83115, Indonesia
| | | | - Eka Sunarwidhi Prasedya
- Bioscience and Biotechnology Research Centre, Faculty of Mathematics and Natural Sciences, University of Mataram, Mataram 83115, Indonesia
| |
Collapse
|
12
|
Chen Q, Wang Z, Shao D, Shi S. Effects of heat stress on the intestinal microorganisms in poultry and its nutritional regulations: a review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2106344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Qingyi Chen
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Huanan Agricultural University, Guangzhou, China
| | - Zhenxin Wang
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Dan Shao
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agricultural Science, Yangzhou, China
- Center of Effective Evaluation of Feed and Feed Additive (Poultry Institute) Ministry of Agriculture, Yangzhou, China
| |
Collapse
|
13
|
Foroutan-Ghaznavi M, Mazloomi SM, Montazeri V, Pirouzpanah S. Dietary patterns in association with the expression of pro-metastatic genes in primary breast cancer. Eur J Nutr 2022; 61:3267-3284. [PMID: 35484415 DOI: 10.1007/s00394-022-02884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Metastasis is a major leading cause of mortality in female breast cancer (BrCa). Cellular motility is a pathological process of metastasis remarked by the overexpression of cortactin (CTTN), Ras homolog family member-A (RhoA), and Rho-associated kinase (ROCK) genes. Their balance is responsible for upholding the integrity of healthy epithelial cell junctions. This study aimed to explore the associations between a posteriori dietary patterns and the expression levels of pro-metastatic genes in primary BrCa. METHODS In this consecutive case series, 215 eligible women, newly diagnosed with histologically confirmed non-metastatic BrCa (stage I-IIIA), were recruited from Hospitals in Tabriz, Northwestern Iran (2015-2017). The tumoral expression levels of genes were quantified using real-time reverse transcription-polymerase chain reaction. Dietary data assessment was carried out using a validated food frequency questionnaire. RESULTS Three dietary patterns were identified using principal component analysis (KMO = 0.699). Adherence to the "vegan" pattern (vegetables, fruits, legumes, nuts, seeds, and whole grains) was inversely associated with the expression levels of RhoA (ORAdj.T3vs.T1 = 0.24, 95%CI 0.07-0.79) and ROCK (ORAdj.T3vs.T1 = 0.26, 95%CI 0.08-0.87). In addition, the highest adherence to the "prudent" pattern (spices, seafood, dairy, and vegetable oils) decreased the odds of overexpressions at RhoA (ORAdj.T3vs.T1 = 0.26, 95%CI 0.08-0.84) and ROCK genes (ORAdj.T3vs.T1 = 0.29, 95%CI 0.09-0.95). The highest adherence to "Western" pattern (meat, processed meat, hydrogenated fat, fast food, refined cereals, sweets, and soft drinks) was a risk factor associated with the overexpression of RhoA (ORAdj.T3vs.T1 = 3.15, 95%CI 1.12-8.85). CONCLUSION Adherence to healthy dietary patterns was significantly associated with the downregulation of pro-metastatic genes. Findings provided new implications to advance the nutrigenomic knowledge to prevent the odds of over-regulations in pro-metastatic genes of the primary BrCa.
Collapse
Affiliation(s)
- Mitra Foroutan-Ghaznavi
- Department of Clinical Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, 7134814336, Shiraz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran.,Department of Clinical Nutrition, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, 7194815711, Shiraz, Iran
| | - Seyed-Mohammad Mazloomi
- Nutrition Research Center, Shiraz University of Medical Sciences, 7193635899, Shiraz, Iran.,Department of Food Hygiene and Quality Control, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, 7134814336, Shiraz, Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, 5166414766, Tabriz, Iran.,Department of Surgery, Nour-Nejat Hospital, 5138665793, Tabriz, Iran
| | - Saeed Pirouzpanah
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5166614756, Tabriz, Iran. .,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, 5166414766, Tabriz, Iran.
| |
Collapse
|
14
|
Adachi Y. Effects of Fatty Acids on Proliferation of Cultured Wild-type and FABP5-KO Thymic Epithelial Cells. J UOEH 2022; 44:239-248. [PMID: 36089341 DOI: 10.7888/juoeh.44.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lipids including fatty acids (FAs), which are water-insoluble molecules, are not only a cellular energy source but also signaling molecules that induce and modulate the expression of various cellular functions. Fatty acid-binding proteins (FABP) bind FAs in the cytoplasm, and are thought to determine the cellular localization of FAs. In a previous observation, FABP5 was expressed in thymic epithelial cells (TEC) in the thymus and was influenced by FAs. Fatty acids have mostly inhibitory effects on various cell types, including cancer cells, but their effects on TEC have not been well investigated. In this study, we investigated the effects of long-chain FAs (LCFAs) and the involvement of FABP5 in cell proliferation using a serum-free primary culture system. The results showed that saturated fatty acids did not affect proliferation, but n-3 long-chain polyunsaturated FA (LCPUFA) reduced, n-6 LCPUFA increased, and retinoic acid strongly reduced the percentage of proliferating wild-type TEC. The proliferation of FABP5-KO TEC was more significantly affected by LCPUFA, suggesting that FABP5 is an important modulator of FA-mediated TEC proliferation. These observations may provide a basis for exploring the properties of TEC.
Collapse
Affiliation(s)
- Yasuhiro Adachi
- Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, Japan
| |
Collapse
|
15
|
WANG B, AN X, QU L, WANG F. Review on oral plant extracts in Skin Whitening. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.83922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bo WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Xiaohong AN
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China
| | - Liping QU
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| | - Feifei WANG
- Shanghai Jiyan Bio-pharmaceutical Co., China; Yunnan Botanee Bio-technology Group Co., China; Botaneen Research Institute, China
| |
Collapse
|
16
|
Wang Y, Duan T, Hong M, Zhou Y, Huang H, Xiao X, Zheng J, Zhou H, Lu Z. Quantitative proteomic analysis uncovers inhibition of melanin synthesis by silk fibroin via MITF/tyrosinase axis in B16 melanoma cells. Life Sci 2021; 284:119930. [PMID: 34480938 DOI: 10.1016/j.lfs.2021.119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
AIMS Silk fibroin (SF), a natural product from silkworms, has been used to promote anti-inflammation, induce wound healing, and reduce melanin production. However, the underlying regulatory mechanism of SF on melanin production remains unknown. The aim of this study was to investigate the distinct regulatory mechanism of SF in B16 melanoma cells by applying quantitative proteomic approach. MATERIALS AND METHODS B16 melanoma cells were treated with PBS, KA or SF for 48 h, respectively. Cell viability, melanin content, and tyrosinase activity were examined. A label-free quantitative proteomic approach was utilized to investigate the regulatory mechanism of SF. The differentially expressed proteins and their related biological processes were subsequently identified by bioinformatics methods. Furthermore, the identified differentially expressed proteins were validated by western blot. KEY FINDINGS Both SF and KA were able to suppress the melanin synthesis of B16 melanoma cells without appreciable toxicity; yet, SF had a distinct effect on mushroom tyrosinase activity in vitro. Moreover, quantitative proteomic approach identified 141 proteins differentially expressed only in SF/Con group. Bioinformatic analysis of these proteins revealed that oxidation-reduction process, RNA processing, fatty acid degradation, as well as melanin biosynthetic process were enriched with SF treatment. The proteins associated with melanin biosynthetic process, including microphthalmia-associated transcription factor (MITF) and tyrosinase, were down-regulated in SF group, which was confirmed by western blot. SIGNIFICANCE SF inhibited melanin synthesis in B16 melanoma cells via down-regulation of MITF and tyrosinase expression, which provides a rationale for future utilization of SF.
Collapse
Affiliation(s)
- Yuqiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China; Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianbi Duan
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Minhua Hong
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Yanting Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Huang
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jing Zheng
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Hu Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China.
| | - Zhi Lu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China.
| |
Collapse
|
17
|
Zhang Q, Jin L, Jin Q, Wei Q, Sun M, Yue Q, Liu H, Li F, Li H, Ren X, Jin G. Inhibitory Effect of Dihydroartemisinin on the Proliferation and Migration of Melanoma Cells and Experimental Lung Metastasis From Melanoma in Mice. Front Pharmacol 2021; 12:727275. [PMID: 34539408 PMCID: PMC8443781 DOI: 10.3389/fphar.2021.727275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 12/05/2022] Open
Abstract
Melanoma is aggressive and can metastasize in the early stage of tumor. It has been proved that dihydroartemisinin (DHA) positively affects the treatment of tumors and has no apparent toxic and side effects. Our previous research has shown that DHA can suppress the formation of melanoma. However, it remains poorly established how DHA impacts the invasion and metastasis of melanoma. In this study, B16F10 and A375 cell lines and metastatic tumor models will be used to investigate the effects of DHA. The present results demonstrated that DHA inhibited the proliferative capacity in A375 and B16F10 cells. As expected, the migration capacity of A375 and B16F10 cells was also reduced after DHA administration. DHA alleviated the severity and histopathological changes of melanoma in mice. DHA induced expansion of CD8+CTL in the tumor microenvironment. By contrast, DHA inhibited Treg cells infiltration into the tumor microenvironment. DHA enhanced apoptosis of melanoma by regulating FasL expression and Granzyme B secretion in CD8+CTLs. Moreover, DHA impacts STAT3-induced EMT and MMPS in tumor tissue. Furthermore, Metabolomics analysis indicated that PGD2 and EPA significantly increased after DHA administration. In conclusion, DHA inhibited the proliferation, migration and metastasis of melanoma in vitro and in vivo. These results have important implications for the potential use of DHA in the treatment of melanoma in humans.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Linbo Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Quanxin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qiang Wei
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Mingyuan Sun
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qi Yue
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Huan Liu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Fangfang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Honghua Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Xiangshan Ren
- Department of Pathology and Physiology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
18
|
Punicic Acid Triggers Ferroptotic Cell Death in Carcinoma Cells. Nutrients 2021; 13:nu13082751. [PMID: 34444911 PMCID: PMC8399984 DOI: 10.3390/nu13082751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
Plant-derived conjugated linolenic acids (CLnA) have been widely studied for their preventive and therapeutic properties against diverse diseases such as cancer. In particular, punicic acid (PunA), a conjugated linolenic acid isomer (C18:3 c9t11c13) present at up to 83% in pomegranate seed oil, has been shown to exert anti-cancer effects, although the mechanism behind its cytotoxicity remains unclear. Ferroptosis, a cell death triggered by an overwhelming accumulation of lipid peroxides, has recently arisen as a potential mechanism underlying CLnA cytotoxicity. In the present study, we show that PunA is highly cytotoxic to HCT-116 colorectal and FaDu hypopharyngeal carcinoma cells grown either in monolayers or as three-dimensional spheroids. Moreover, our data indicate that PunA triggers ferroptosis in carcinoma cells. It induces significant lipid peroxidation and its effects are prevented by the addition of ferroptosis inhibitors. A combination with docosahexaenoic acid (DHA), a known polyunsaturated fatty acid with anticancer properties, synergistically increases PunA cytotoxicity. Our findings highlight the potential of using PunA as a ferroptosis-sensitizing phytochemical for the prevention and treatment of cancer.
Collapse
|
19
|
Liput KP, Lepczyński A, Ogłuszka M, Nawrocka A, Poławska E, Grzesiak A, Ślaska B, Pareek CS, Czarnik U, Pierzchała M. Effects of Dietary n-3 and n-6 Polyunsaturated Fatty Acids in Inflammation and Cancerogenesis. Int J Mol Sci 2021; 22:6965. [PMID: 34203461 PMCID: PMC8268933 DOI: 10.3390/ijms22136965] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
The dietary recommendation encourages reducing saturated fatty acids (SFA) in diet and replacing them with polyunsaturated fatty acids (PUFAs) n-3 (omega-3) and n-6 (omega-6) to decrease the risk of metabolic disturbances. Consequently, excessive n-6 PUFAs content and high n-6/n-3 ratio are found in Western-type diet. The importance of a dietary n-6/n-3 ratio to prevent chronic diseases is linked with anti-inflammatory functions of linolenic acid (ALA, 18:3n-3) and longer-chain n-3 PUFAs. Thus, this review provides an overview of the role of oxylipins derived from n-3 PUFAs and oxylipins formed from n-6 PUFAs on inflammation. Evidence of PUFAs' role in carcinogenesis was also discussed. In vitro studies, animal cancer models and epidemiological studies demonstrate that these two PUFA groups have different effects on the cell growth, proliferation and progression of neoplastic lesions.
Collapse
Affiliation(s)
- Kamila P. Liput
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, ul. K. Janickiego 29, 71-270 Szczecin, Poland; (A.L.); (A.G.)
| | - Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| | - Agata Grzesiak
- Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, ul. K. Janickiego 29, 71-270 Szczecin, Poland; (A.L.); (A.G.)
| | - Brygida Ślaska
- Institute of Biological Bases of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Chandra S. Pareek
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, ul. J. Gagarina 7, 87-100 Toruń, Poland;
- Division of Functional Genomics in Biological and Biomedical Research, Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, ul. Wilenska 4, 87-100 Torun, Poland
| | - Urszula Czarnik
- Department of Pig Breeding, Faculty of Animal Bio-Engineering, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 5, 10-719 Olsztyn, Poland;
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland; (K.P.L.); (M.O.); (A.N.); (E.P.)
| |
Collapse
|
20
|
Brito C, Tomás A, Silva S, Bronze MR, Serra AT, Pojo M. The Impact of Olive Oil Compounds on the Metabolic Reprogramming of Cutaneous Melanoma Cell Models. Molecules 2021; 26:E289. [PMID: 33430068 PMCID: PMC7827395 DOI: 10.3390/molecules26020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/30/2022] Open
Abstract
Cutaneous melanoma is the deadliest type of skin cancer, characterized by a high molecular and metabolic heterogeneity which contributes to therapy resistance. Despite advances in treatment, more efficient therapies are needed. Olive oil compounds have been described as having anti-cancer properties. Here, we clarified the cytotoxic potential of oleic acid, homovanillyl alcohol, and hydroxytyrosol on melanoma cells. Metabolic viability was determined 48 h post treatment of A375 and MNT1 cells. Metabolic gene expression was assessed by qRT-PCR and Mitogen-Activated Protein Kinase (MAPK) activation by Western blot. Hydroxytyrosol treatment (100 and 200 µM) significantly reduced A375 cell viability (p = 0.0249; p < 0.0001) which, based on the expression analysis performed, is more compatible with a predominant glycolytic profile and c-Jun N-terminal kinase (JNK) activation. By contrast, hydroxytyrosol had no effect on MNT1 cell viability, which demonstrates an enhanced oxidative metabolism and extracellular signal-regulated kinase (ERK) activation. This compound triggered cell detoxification and the use of alternative energy sources in A375 cells, inhibiting JNK and ERK pathways. Despite oleic acid and homovanillyl alcohol demonstrating no effect on melanoma cell viability, they influenced the MNT1 glycolytic rate and A375 detoxification mechanisms, respectively. Both compounds suppressed ERK activation in MNT1 cells. The distinct cell responses to olive oil compounds depend on the metabolic and molecular mechanisms preferentially activated. Hydroxytyrosol may have a cytotoxic potential in melanoma cells with predominant glycolytic metabolism and JNK activation.
Collapse
Affiliation(s)
- Cheila Brito
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., 1099-023 Lisboa, Portugal; (C.B.); (A.T.)
| | - Ana Tomás
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., 1099-023 Lisboa, Portugal; (C.B.); (A.T.)
| | - Sandra Silva
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal; (S.S.); (M.R.B.); (A.T.S.)
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal; (S.S.); (M.R.B.); (A.T.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- iMED, Faculdade de Farmácia da Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal; (S.S.); (M.R.B.); (A.T.S.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Marta Pojo
- Unidade de Investigação em Patobiologia Molecular (UIPM) do Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., 1099-023 Lisboa, Portugal; (C.B.); (A.T.)
| |
Collapse
|
21
|
Identification of a novel enzyme from E. pacifica that acts as an eicosapentaenoic 8R-LOX and docosahexaenoic 10R-LOX. Sci Rep 2020; 10:20592. [PMID: 33244101 PMCID: PMC7693274 DOI: 10.1038/s41598-020-77386-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023] Open
Abstract
North Pacific krill (Euphausia pacifica) contain 8R-hydroxy-eicosapentaenoic acid (8R-HEPE), 8R-hydroxy-eicosatetraenoic acid (8R-HETE) and 10R-hydroxy-docosahexaenoic acid (10R-HDHA). These findings indicate that E. pacifica must possess an R type lipoxygenase, although no such enzyme has been identified in krill. We analyzed E. pacifica cDNA sequence using next generation sequencing and identified two lipoxygenase genes (PK-LOX1 and 2). PK-LOX1 and PK-LOX2 encode proteins of 691 and 686 amino acids, respectively. Recombinant PK-LOX1 was generated in Sf9 cells using a baculovirus expression system. PK-LOX1 metabolizes eicosapentaenoic acid (EPA) to 8R-HEPE, arachidonic acid (ARA) to 8R-HETE and docosahexaenoic acid (DHA) to 10R-HDHA. Moreover, PK-LOX1 had higher activity for EPA than ARA and DHA. In addition, PK-LOX1 also metabolizes 17S-HDHA to 10R,17S-dihydroxy-docosahexaenoic acid (10R,17S-DiHDHA). PK-LOX1 is a novel lipoxygenase that acts as an 8R-lipoxygenase for EPA and 10R-lipoxygenase for DHA and 17S-HDHA. Our findings show PK-LOX1 facilitates the enzymatic production of hydroxy fatty acids, which are of value to the healthcare sector.
Collapse
|
22
|
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Ther 2020; 219:107707. [PMID: 33075361 DOI: 10.1016/j.pharmthera.2020.107707] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Melanosomes are specialized membrane-bound organelles that synthesize and organize melanin, ultimately providing color to the skin, hair, and eyes. Disorders in melanogenesis and melanosome transport are linked to pigmentary diseases, such as Hermansky-Pudlak syndrome, Chediak-Higashi syndrome, and Griscelli syndrome. Clinical cases of these pigmentary diseases shed light on the molecular mechanisms that control melanosome-related pathways. However, only an improved understanding of melanogenesis and melanosome transport will further the development of diagnostic and therapeutic approaches. Herein, we review the current literature surrounding melanosomes with particular emphasis on melanosome membrane transport and cytoskeleton-mediated melanosome transport. We also provide perspectives on melanosome regulatory mechanisms which include hormonal action, inflammation, autophagy, and organelle interactions.
Collapse
Affiliation(s)
- Xiaoyu Tian
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ziyong Cui
- Harvard College, Cambridge, MA 02138, United States of America
| | - Song Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Rutao Cui
- Skin Disease Research Institute, The 2nd Hospital, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
23
|
Oliveira S, Costa J, Faria I, Guerreiro SG, Fernandes R. Vitamin A Enhances Macrophages Activity Against B16-F10 Malignant Melanocytes: A New Player for Cancer Immunotherapy? MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E604. [PMID: 31540438 PMCID: PMC6780654 DOI: 10.3390/medicina55090604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
Background and objectives: The incidence of cutaneous melanoma has been increasing. Melanoma is an aggressive form of skin cancer irresponsive to radiation and chemotherapy, rendering this cancer a disease with poor prognosis: In order to surpass some of the limitations addressed to melanoma treatment, alternatives like vitamins have been investigated. In the present study, we address this relationship and investigate the possible role of vitamin A. Materials and Methods: We perform a co-culture assay using a macrophage cell model and RAW 264.7 from mouse, and also a murine melanoma cell line B16-F10. Macrophages were stimulated with both Escherichia coli lipopolysaccharides (LPS) as control, and also with LPS plus vitamin A. Results: Using B16-F10 and RAW 264.7 cell lines, we were able to demonstrate that low concentrations of vitamin A increase cytotoxic activity of macrophages, whereas higher concentrations have the opposite effect. Conclusion: These findings can constitute a new point of view related to immunostimulation by nutrients, which may be considered one major preventive strategy by enhancing the natural defense system of the body.
Collapse
Affiliation(s)
- Sofia Oliveira
- School of Health, Porto Polytechnic (ESS, P. Porto), 4200 Porto, Portugal.
| | - José Costa
- School of Health, Porto Polytechnic (ESS, P. Porto), 4200 Porto, Portugal.
| | - Isabel Faria
- School of Health, Porto Polytechnic (ESS, P. Porto), 4200 Porto, Portugal.
| | - Susana G Guerreiro
- Institute for Research and Innovation in Health (i3S), Porto University, 4200 Porto, Portugal.
- Faculty of Medicine, University of Porto (FMUP), 4200 Porto, Portugal.
- Faculty of Nutrition and Food Science, University of Porto (FCNAUP), 4200 Porto, Portugal.
| | - Rúben Fernandes
- School of Health, Porto Polytechnic (ESS, P. Porto), 4200 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), Porto University, 4200 Porto, Portugal.
| |
Collapse
|