1
|
Ruiz de Gauna M, Biancaniello F, González-Romero F, Rodrigues PM, Lapitz A, Gómez-Santos B, Olaizola P, Di Matteo S, Aurrekoetxea I, Labiano I, Nieva-Zuluaga A, Benito-Vicente A, Perugorria MJ, Apodaka-Biguri M, Paiva NA, Sáenz de Urturi D, Buqué X, Delgado I, Martín C, Azkargorta M, Elortza F, Calvisi DF, Andersen JB, Alvaro D, Cardinale V, Bujanda L, Banales JM, Aspichueta P. Cholangiocarcinoma progression depends on the uptake and metabolization of extracellular lipids. Hepatology 2022; 76:1617-1633. [PMID: 35030285 PMCID: PMC9790564 DOI: 10.1002/hep.32344] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/17/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) includes a heterogeneous group of biliary cancers with a dismal prognosis. We investigated if lipid metabolism is disrupted in CCA and its role in tumor proliferation. APPROACH AND RESULTS The in vitro and in vivo tumorigenic capacity of five human CCA cell lines was analyzed. Proteome, lipid content, and metabolic fluxes were evaluated in CCA cells and compared with normal human cholangiocytes (NHC). The Akt1/NOTCH1 intracellular cytoplasmic domain (Nicd1)-driven CCA mouse model was also evaluated. The proteome of CCA cells was enriched in pathways involved in lipid and lipoprotein metabolism. The EGI1 CCA cell line presented the highest tumorigenic capacity. Metabolic studies in high (EGI1) versus low (HUCCT1) proliferative CCA cells in vitro showed that both EGI1 and HUCCT1 incorporated more fatty acids (FA) than NHC, leading to increased triglyceride storage, also observed in Akt1/Nicd1-driven CCA mouse model. The highly proliferative EGI1 CCA cells showed greater uptake of very-low-density and HDLs than NHC and HUCCT1 CCA cells and increased cholesteryl ester content. The FA oxidation (FAO) and related proteome enrichment were specifically up-regulated in EGI1, and consequently, pharmacological blockade of FAO induced more pronounced inhibition of their tumorigenic capacity compared with HUCCT1. The expression of acyl-CoA dehydrogenase ACADM, the first enzyme involved in FAO, was increased in human CCA tissues and correlated with the proliferation marker PCNA. CONCLUSIONS Highly proliferative human CCA cells rely on lipid and lipoprotein uptake to fuel FA catabolism, suggesting that inhibition of FAO and/or lipid uptake could represent a therapeutic strategy for this CCA subclass.
Collapse
Affiliation(s)
- Mikel Ruiz de Gauna
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Francesca Biancaniello
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,Department of Translational and Precision Medicine"Sapienza" University of RomeRomeItaly
| | - Francisco González-Romero
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Ainhoa Lapitz
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Beatriz Gómez-Santos
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Sabina Di Matteo
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,Department of Translational and Precision Medicine"Sapienza" University of RomeRomeItaly
| | - Igor Aurrekoetxea
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain.,Biocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Ane Nieva-Zuluaga
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Asier Benito-Vicente
- Department of Molecular BiophysicsBiofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)LeioaSpain.,Department of Biochemistry and Molecular BiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - María J Perugorria
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain
| | - Maider Apodaka-Biguri
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Nuno A Paiva
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain
| | - Diego Sáenz de Urturi
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Xabier Buqué
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Igotz Delgado
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - César Martín
- Department of Molecular BiophysicsBiofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)LeioaSpain.,Department of Biochemistry and Molecular BiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
| | - Mikel Azkargorta
- Proteomics PlatformCIC bioGUNEBRTA (Basque Research and Technology Alliance)ProteoRed-ISCIIICIBERehdBizkaia Science and Technology ParkDerioSpain
| | - Felix Elortza
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,Proteomics PlatformCIC bioGUNEBRTA (Basque Research and Technology Alliance)ProteoRed-ISCIIICIBERehdBizkaia Science and Technology ParkDerioSpain
| | - Diego F Calvisi
- Institute of PathologyUniversity of RegensburgRegensburgGermany
| | - Jesper B Andersen
- Biotech Research & Innovation Centre (BRIC)Department of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Domenico Alvaro
- Department of Translational and Precision Medicine"Sapienza" University of RomeRomeItaly
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnology"Sapienza" University of RomeRomeItaly
| | - Luis Bujanda
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain
| | - Jesús M Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research InstituteDonostia University HospitalUniversity of the Basque Country (UPV/EHU)San SebastianSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,IKERBASQUEBasque Foundation for ScienceBilbaoSpain.,Department of Biochemistry and GeneticsSchool of SciencesUniversity of NavarraPamplonaSpain
| | - Patricia Aspichueta
- Faculty of Medicine and NursingDepartment of PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain.,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehdCarlos III Health Institute)MadridSpain.,Biocruces Bizkaia Health Research InstituteCruces University HospitalBarakaldoSpain
| |
Collapse
|
2
|
Javaid A, Wang F, Horst EA, Diaz-Rubio ME, Wang LF, Baumgard LH, McFadden JW. Effects of acute intravenous lipopolysaccharide administration on the plasma lipidome and metabolome in lactating Holstein cows experiencing hyperlipidemia. Metabolomics 2022; 18:75. [PMID: 36125563 DOI: 10.1007/s11306-022-01928-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 08/01/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The effects of lipopolysaccharides (i.e., endotoxin; LPS) on metabolism are poorly defined in lactating dairy cattle experiencing hyperlipidemia. OBJECTIVES Our objective was to explore the effects of acute intravenous LPS administration on metabolism in late-lactation Holstein cows experiencing hyperlipidemia induced by intravenous triglyceride infusion and feed restriction. METHODS Ten non-pregnant lactating Holstein cows (273 ± 35 d in milk) were administered a single bolus of saline (3 mL of saline; n [Formula: see text] 5) or LPS (0.375 [Formula: see text]g of LPS/kg of body weight; n [Formula: see text] 5). Simultaneously, cows were intravenously infused a triglyceride emulsion and feed restricted for 16 h to induce hyperlipidemia in an attempt to model the periparturient period. Blood was sampled at routine intervals. Changes in circulating total fatty acid concentrations and inflammatory parameters were measured. Plasma samples were analyzed using untargeted lipidomics and metabolomics. RESULTS Endotoxin increased circulating serum amyloid A, LPS-binding protein, and cortisol concentrations. Endotoxin administration decreased plasma lysophosphatidylcholine (LPC) concentrations and increased select plasma ceramide concentrations. These outcomes suggest modulation of the immune response and insulin action. Lipopolysaccharide decreased the ratio of phosphatidylcholine to phosphatidylethanomanine, which potentially indicate a decrease in the hepatic activation of phosphatidylethanolamine N-methyltransferase and triglyceride export. Endotoxin administration also increased plasma concentrations of pyruvic and lactic acids, and decreased plasma citric acid concentrations, which implicate the upregulation of glycolysis and downregulation of the citric acid cycle (i.e., the Warburg effect), potentially in leukocytes. CONCLUSION Acute intravenous LPS administration decreased circulating LPC concentrations, modified ceramide and glycerophospholipid concentrations, and influenced intermediary metabolism in dairy cows experiencing hyperlipidemia.
Collapse
Affiliation(s)
- Awais Javaid
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Feiran Wang
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
- China Agricultural University, Beijing, 100193, China
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - M Elena Diaz-Rubio
- Cornell Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Lin F Wang
- Henan Agricultural University, Zhengzhou, 450002, China
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Joseph W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
3
|
Arisqueta L, Navarro-Imaz H, Labiano I, Rueda Y, Fresnedo O. High-fat diet overfeeding promotes nondetrimental liver steatosis in female mice. Am J Physiol Gastrointest Liver Physiol 2018; 315:G772-G780. [PMID: 30095299 DOI: 10.1152/ajpgi.00022.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-fat diet (HFD) feeding or leptin-deficient mice are extensively used as models resembling features of human nonalcoholic fatty liver disease (NAFLD). The concurrence of experimental factors as fat content and source or total caloric intake leads to prominent differences in the development of the hepatic steatosis and related disturbances. In this work, we characterized the hepatic lipid accumulation induced by HFD in wild-type (WT) and ob/ ob mice with the purpose of differentiating adaptations to HFD from those specific of increased overfeeding due to leptin deficiency-associated hyperphagia. Given that most published works have been done in male models, we used female mice with the aim of increasing the body of evidence regarding NAFLD in female subjects. HFD promoted liver lipid accumulation only in the hyperphagic strain. Nevertheless, a decrease of lipid droplet-associated cholesteryl ester (CE) in both WT and obese animals was observed. These changes were accompanied by an improvement in the profile of lipoproteins that transport cholesterol and liver function markers in plasma from ob/ ob mice and a lower hepatic index. Using primary hepatocytes from female mice, overaccumulation of CE induced by 0.4 mM oleic acid reversed in the presence of a specific Takeda G protein-coupled bile acid receptor agonist. Nevertheless, hepatocytes from male mice were not responsive. This study suggests that enterohepatic circulation of bile acids might be one of the factors that can affect sex dimorphism in NAFLD development, which underlines the importance of including female models in the NAFLD research field. NEW & NOTEWORTHY This work provides new insight into the use of high-fat diet as a model to induce nonalcoholic fatty liver disease in wild-type and ob/ ob female mice. We show that high-fat diet induces steatosis only in ob/ ob mice while, surprisingly, several health indicators improve. Noteworthy, experiments with primary hepatocytes from male and female mice show that they express Takeda G protein-coupled bile acid receptor and that it and bile acid enterohepatic circulation might be accountable for sex dimorphism in nonalcoholic fatty liver disease development.
Collapse
Affiliation(s)
- Lino Arisqueta
- Facultad de Ciencias Naturales y Ambientales, Universidad Internacional SEK , Quito , Ecuador
| | - Hiart Navarro-Imaz
- Lipids and Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Health Research Institute, Biodonostia, Spain
| | - Yuri Rueda
- Lipids and Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Olatz Fresnedo
- Lipids and Liver Research Group, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| |
Collapse
|
4
|
Schleicher J, Dahmen U, Guthke R, Schuster S. Zonation of hepatic fat accumulation: insights from mathematical modelling of nutrient gradients and fatty acid uptake. J R Soc Interface 2018; 14:rsif.2017.0443. [PMID: 28835543 DOI: 10.1098/rsif.2017.0443] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
Intrinsic of non-alcoholic fatty liver diseases is an aberrant accumulation of triglycerides (steatosis), which occurs inhomogeneously within lobules. To improve our understanding of the mechanisms involved in this zonation patterning, we developed a mathematical multicompartment model of hepatic fatty acid metabolism accompanied by blood flow simulations. A model analysis determines the influence of the uptake process of fatty acids, the porto-central gradient of plasma fatty acid concentration, and the oxygen supply via blood on the zonation of triglyceride accumulation. From this theoretical perspective, the plasma oxygen gradient, but not the fatty acid gradient, leads the way to a zonated triglyceride accumulation by its decisive role in oxidative processes. In addition, the uptake mechanism of fatty acids seems to be fundamental for a pericentral dominance of steatosis. However, the mechanism of cellular fatty acid uptake from the blood is still under debate. Our theoretical approach supports the transporter-mediated uptake mechanism and reveals that the maximal velocity of fatty acid uptake affects the switching between a periportal and a pericentral triglyceride accumulation. Further research on hepatic fatty acid uptake is needed to push forward our understanding of aberrant triglyceride accumulation in diet-induced steatosis.
Collapse
Affiliation(s)
- Jana Schleicher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany .,Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany
| | - Reinhard Guthke
- Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
5
|
Martínez-Sánchez N, Seoane-Collazo P, Contreras C, Varela L, Villarroya J, Rial-Pensado E, Buqué X, Aurrekoetxea I, Delgado TC, Vázquez-Martínez R, González-García I, Roa J, Whittle AJ, Gomez-Santos B, Velagapudi V, Tung YCL, Morgan DA, Voshol PJ, Martínez de Morentin PB, López-González T, Liñares-Pose L, Gonzalez F, Chatterjee K, Sobrino T, Medina-Gómez G, Davis RJ, Casals N, Orešič M, Coll AP, Vidal-Puig A, Mittag J, Tena-Sempere M, Malagón MM, Diéguez C, Martínez-Chantar ML, Aspichueta P, Rahmouni K, Nogueiras R, Sabio G, Villarroya F, López M. Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metab 2017; 26:212-229.e12. [PMID: 28683288 PMCID: PMC5501726 DOI: 10.1016/j.cmet.2017.06.014] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/17/2017] [Accepted: 06/15/2017] [Indexed: 02/02/2023]
Abstract
Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum (ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPKα1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.
Collapse
Affiliation(s)
- Noelia Martínez-Sánchez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Patricia Seoane-Collazo
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Cristina Contreras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Luis Varela
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Joan Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB), Barcelona 08028, Spain; Hospital de la Santa Creu i Sant Pau, Barcelona 08026, Spain
| | - Eva Rial-Pensado
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Xabier Buqué
- Department of Physiology, University of the Basque Country UPV/EHU, Biocruces Research Institute, Barakaldo 48903, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, University of the Basque Country UPV/EHU, Biocruces Research Institute, Barakaldo 48903, Spain
| | - Teresa C Delgado
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Derio, Bizkaia 48160, Spain
| | - Rafael Vázquez-Martínez
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Ismael González-García
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Juan Roa
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Andrew J Whittle
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Beatriz Gomez-Santos
- Department of Physiology, University of the Basque Country UPV/EHU, Biocruces Research Institute, Barakaldo 48903, Spain
| | - Vidya Velagapudi
- VTT Technical Research Centre of Finland, Tietotie 2, Espoo FIN-02044, Finland; Metabolomics Unit, Institute for Molecular Medicine, University of Helsinki, Helsinki FI-00290, Finland
| | - Y C Loraine Tung
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Peter J Voshol
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Pablo B Martínez de Morentin
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Tania López-González
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Laura Liñares-Pose
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Francisco Gonzalez
- Department of Surgery, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Krishna Chatterjee
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Department of Neurology, Hospital Clínico Universitario, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Gema Medina-Gómez
- University Rey Juan Carlos, Department of Basic Sciences of Health, Area of Biochemistry and Molecular Biology, Avda. de Atenas s/n, Alcorcon, Madrid 28922, Spain
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Howard Hughes Medical Institute, Worcester, MA 01605, USA
| | - Núria Casals
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallés, Barcelona 08195, Spain
| | - Matej Orešič
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Anthony P Coll
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Antonio Vidal-Puig
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge CB2 0QQ, UK
| | - Jens Mittag
- University of Lübeck, Internal Medicine I, Center of Brain, Behavior, and Metabolism (CBBM), Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba 14004, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, Turku FIN-20520, Finland
| | - María M Malagón
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Carlos Diéguez
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - María Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Derio, Bizkaia 48160, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country UPV/EHU, Biocruces Research Institute, Barakaldo 48903, Spain
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA 52242, USA; Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Rubén Nogueiras
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain
| | - Guadalupe Sabio
- Myocardial Pathophysiology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Francesc Villarroya
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain; Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina, Universitat de Barcelona (IBUB), Barcelona 08028, Spain
| | - Miguel López
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela 15706, Spain.
| |
Collapse
|
6
|
Hepatic p63 regulates steatosis via IKKβ/ER stress. Nat Commun 2017; 8:15111. [PMID: 28480888 PMCID: PMC5424198 DOI: 10.1038/ncomms15111] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/01/2017] [Indexed: 12/28/2022] Open
Abstract
p53 family members control several metabolic and cellular functions. The p53 ortholog p63 modulates cellular adaptations to stress and has a major role in cell maintenance and proliferation. Here we show that p63 regulates hepatic lipid metabolism. Mice with liver-specific p53 deletion develop steatosis and show increased levels of p63. Down-regulation of p63 attenuates liver steatosis in p53 knockout mice and in diet-induced obese mice, whereas the activation of p63 induces lipid accumulation. Hepatic overexpression of N-terminal transactivation domain TAp63 induces liver steatosis through IKKβ activation and the induction of ER stress, the inhibition of which rescues the liver functions. Expression of TAp63, IKKβ and XBP1s is also increased in livers of obese patients with NAFLD. In cultured human hepatocytes, TAp63 inhibition protects against oleic acid-induced lipid accumulation, whereas TAp63 overexpression promotes lipid storage, an effect reversible by IKKβ silencing. Our findings indicate an unexpected role of the p63/IKKβ/ER stress pathway in lipid metabolism and liver disease.
Collapse
|
7
|
Aspichueta P, Pérez-Agote B, Pérez S, Ochoa B, Fresnedo O. Impaired response of VLDL lipid and apoB secretion to endotoxin in the fasted rat liver. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial infection elicits hypertriglyceridemia attributed to increased hepatic production of very low-density lipoprotein (VLDL) particles and decreased peripheral metabolism. The mechanisms underlying VLDL overproduction in sepsis are as yet unclear, but seem to be fed/fasted state-dependent. To learn more about this, we investigated hepatocytes isolated from fasted rats, made endotoxic by 1 mg/kg lipopolysaccharide (LPS) injection, for their ability to secrete the VLDL protein and lipid components. The results were then related to lipogenesis markers and expression of genes critical to VLDL biogenesis. Endotoxic rats showed increased levels of serum VLDL-apoB (10-fold), -triglyceride (2-fold), and -cholesterol (2-fold), whereby circulating VLDL were lipid-poor particles. Similarly, VLDL-apoB secretion by isolated endotoxic hepatocytes was ~85% above control, whereas marginal changes in the output of VLDL-lipid classes occurred. This was accompanied by a substantial rise in apoB and a moderate rise in MTP mRNA levels, but with basal de novo formation and efficiency of secretion of triglycerides, cholesterol and cholesteryl esters. These results indicate that during periods of food restriction, endotoxin does not enhance lipid provision to accomplish normal lipidation of overproduced apoB molecules, though this does occur to a sufficient extent to pass the proteasome checkpoint and secretion of lipid-poor, type 2 VLDL takes place.
Collapse
Affiliation(s)
- Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Pérez-Agote
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Silvia Pérez
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Begoña Ochoa
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain,
| | - Olatz Fresnedo
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| |
Collapse
|
8
|
Navarro-Imaz H, Rueda Y, Fresnedo O. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:988-996. [DOI: 10.1016/j.bbalip.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 01/06/2023]
|
9
|
Arretxe E, Armengol S, Mula S, Chico Y, Ochoa B, Martínez MJ. Profiling of promoter occupancy by the SND1 transcriptional coactivator identifies downstream glycerolipid metabolic genes involved in TNFα response in human hepatoma cells. Nucleic Acids Res 2015; 43:10673-88. [PMID: 26323317 PMCID: PMC4678849 DOI: 10.1093/nar/gkv858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/17/2015] [Indexed: 01/07/2023] Open
Abstract
The NF-κB-inducible Staphylococcal nuclease and tudor domain-containing 1 gene (SND1) encodes a coactivator involved in inflammatory responses and tumorigenesis. While SND1 is known to interact with certain transcription factors and activate client gene expression, no comprehensive mapping of SND1 target genes has been reported. Here, we have approached this question by performing ChIP-chip assays on human hepatoma HepG2 cells and analyzing SND1 binding modulation by proinflammatory TNFα. We show that SND1 binds 645 gene promoters in control cells and 281 additional genes in TNFα-treated cells. Transcription factor binding site analysis of bound probes identified motifs for established partners and for novel transcription factors including HSF, ATF, STAT3, MEIS1/AHOXA9, E2F and p300/CREB. Major target genes were involved in gene expression and RNA metabolism regulation, as well as development and cellular metabolism. We confirmed SND1 binding to 21 previously unrecognized genes, including a set of glycerolipid genes. Knocking-down experiments revealed that SND1 deficiency compromises the glycerolipid gene reprogramming and lipid phenotypic responses to TNFα. Overall, our findings uncover an unexpected large set of potential SND1 target genes and partners and reveal SND1 to be a determinant downstream effector of TNFα that contributes to support glycerophospholipid homeostasis in human hepatocellular carcinoma during inflammation.
Collapse
Affiliation(s)
- Enara Arretxe
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Sandra Armengol
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Sarai Mula
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Yolanda Chico
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - Begoña Ochoa
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| | - María José Martínez
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
10
|
Deciphering non-alcoholic fatty liver disease through metabolomics. Biochem Soc Trans 2015; 42:1447-52. [PMID: 25233430 DOI: 10.1042/bst20140138] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver disorders in industrialized countries. NAFLD develops in the absence of alcohol abuse and encompasses a wide spectrum of disorders ranging from benign fatty liver to non-alcoholic steatohepatitis (NASH). NASH often leads to fibrosis, cirrhosis and, finally, hepatocellular carcinoma (HCC). Therefore the earlier NAFLD is diagnosed, the better the patient's outlook. A tightly connected basic and applied research is essential to find the molecular mechanisms that accompany illness and to translate them into the clinic. From the simple starting point for triacylglycerol (TG) accumulation in the liver to the more complex implications of phospholipids in membrane biophysics, the influence of lipids may be the clue to understand NAFLD pathophysiology. Nowadays, it is achievable to diagnose non-invasively the initial symptoms to stop, revert or even prevent disease development. In this context, merging metabolomics with other techniques and the interpretation of the huge information obtained resembles the 'Rosetta stone' to decipher the pathological metabolic fluxes that must be targeted to find a cure. In the present review, we have tackled the application of metabolomics to find out the metabolic fluxes that underlie membrane integrity in NAFLD.
Collapse
|
11
|
Hepatocyte-Specific Depletion of UBXD8 Induces Periportal Steatosis in Mice Fed a High-Fat Diet. PLoS One 2015; 10:e0127114. [PMID: 25970332 PMCID: PMC4430229 DOI: 10.1371/journal.pone.0127114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 04/10/2015] [Indexed: 12/19/2022] Open
Abstract
We showed previously that UBXD8 plays a key role in proteasomal degradation of lipidated ApoB in hepatocarcinoma cell lines. In the present study, we aimed to investigate the functions of UBXD8 in liver in vivo. For this purpose, hepatocyte-specific UBXD8 knockout (UBXD8-LKO) mice were generated. They were fed with a normal or high-fat diet, and the phenotypes were compared with those of littermate control mice. Hepatocytes obtained from UBXD8-LKO and control mice were analyzed in culture. After 26 wk of a high-fat diet, UBXD8-LKO mice exhibited macrovesicular steatosis in the periportal area and microvesicular steatosis in the perivenular area, whereas control mice exhibited steatosis only in the perivenular area. Furthermore, UBXD8-LKO mice on a high-fat diet had significantly lower concentrations of serum triglyceride and VLDL than control mice. A Triton WR-1339 injection study revealed that VLDL secretion from hepatocytes was reduced in UBXD8-LKO mice. The decrease of ApoB secretion upon UBXD8 depletion was recapitulated in cultured primary hepatocytes. Accumulation of lipidated ApoB in lipid droplets was observed only in UBXD8-null hepatocytes. The results showed that depletion of UBXD8 in hepatocytes suppresses VLDL secretion, and could lead to periportal steatosis when mice are fed a high-fat diet. This is the first demonstration that an abnormality in the intracellular ApoB degradation mechanism can cause steatosis, and provides a useful model for periportal steatosis, which occurs in several human diseases.
Collapse
|
12
|
Schleicher J, Tokarski C, Marbach E, Matz-Soja M, Zellmer S, Gebhardt R, Schuster S. Zonation of hepatic fatty acid metabolism - The diversity of its regulation and the benefit of modeling. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:641-56. [PMID: 25677822 DOI: 10.1016/j.bbalip.2015.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023]
Abstract
A pronounced heterogeneity between hepatocytes in subcellular structure and enzyme activities was discovered more than 50years ago and initiated the idea of metabolic zonation. In the last decades zonation patterns of liver metabolism were extensively investigated for carbohydrate, nitrogen and lipid metabolism. The present review focuses on zonation patterns of the latter. We review recent findings regarding the zonation of fatty acid uptake and oxidation, ketogenesis, triglyceride synthesis and secretion, de novo lipogenesis, as well as bile acid and cholesterol metabolism. In doing so, we expose knowledge gaps and discuss contradictory experimental results, for example on the zonation pattern of fatty acid oxidation and de novo lipogenesis. Thus, possible rewarding directions of further research are identified. Furthermore, recent findings about the regulation of metabolic zonation are summarized, especially regarding the role of hormones, nerve innervation, morphogens, gender differences and the influence of the circadian clock. In the last part of the review, a short collection of models considering hepatic lipid metabolism is provided. We conclude that modeling, despite its proven benefit for understanding of hepatic carbohydrate and ammonia metabolisms, has so far been largely disregarded in the study of lipid metabolism; therefore some possible fields of modeling interest are presented.
Collapse
Affiliation(s)
- J Schleicher
- Department of Bioinformatics, University of Jena, Jena, Germany.
| | - C Tokarski
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - E Marbach
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - M Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - S Zellmer
- Department of Chemicals and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - R Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - S Schuster
- Department of Bioinformatics, University of Jena, Jena, Germany
| |
Collapse
|
13
|
Green CJ, Pramfalk C, Morten KJ, Hodson L. From whole body to cellular models of hepatic triglyceride metabolism: man has got to know his limitations. Am J Physiol Endocrinol Metab 2015; 308:E1-20. [PMID: 25352434 PMCID: PMC4281685 DOI: 10.1152/ajpendo.00192.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The liver is a main metabolic organ in the human body and carries out a vital role in lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, encompassing a spectrum of conditions from simple fatty liver (hepatic steatosis) through to cirrhosis. Although obesity is a known risk factor for hepatic steatosis, it remains unclear what factor(s) is/are responsible for the primary event leading to retention of intrahepatocellular fat. Studying hepatic processes and the etiology and progression of disease in vivo in humans is challenging, not least as NAFLD may take years to develop. We present here a review of experimental models and approaches that have been used to assess liver triglyceride metabolism and discuss their usefulness in helping to understand the aetiology and development of NAFLD.
Collapse
Affiliation(s)
- Charlotte J Green
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Camilla Pramfalk
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| | - Karl J Morten
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford United Kingdom; and
| |
Collapse
|
14
|
Armengol S, Arretxe E, Enzunza L, Mula S, Ochoa B, Chico Y, Martínez MJ. The promoter of cell growth- and RNA protection-associated SND1 gene is activated by endoplasmic reticulum stress in human hepatoma cells. BMC BIOCHEMISTRY 2014; 15:25. [PMID: 25494629 PMCID: PMC4266219 DOI: 10.1186/s12858-014-0025-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 12/15/2022]
Abstract
Background Staphyloccocal nuclease domain-containing protein 1 (SND1) is involved in the regulation of gene expression and RNA protection. While numerous studies have established that SND1 protein expression is modulated by cellular stresses associated with tumor growth, hypoxia, inflammation, heat-shock and oxidative conditions, little is known about the factors responsible for SND1 expression. Here, we have approached this question by analyzing the transcriptional response of human SND1 gene to pharmacological endoplasmic reticulum (ER) stress in liver cancer cells. Results We provide first evidence that SND1 promoter activity is increased in human liver cancer cells upon exposure to thapsigargin or tunicamycin or by ectopic expression of ATF6, a crucial transcription factor in the unfolded protein response triggered by ER stress. Deletion analysis of the 5’-flanking region of SND1 promoter identified maximal activation in fragment (-934, +221), which contains most of the predicted ER stress response elements in proximal promoter. Quantitative real-time PCR revealed a near 3 fold increase in SND1 mRNA expression by either of the stress-inducers; whereas SND1 protein was maximally upregulated (3.4-fold) in cells exposed to tunicamycin, a protein glycosylation inhibitor. Conclusion Promoter activity of the cell growth- and RNA-protection associated SND1 gene is up-regulated by ER stress in human hepatoma cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - María José Martínez
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, Leioa, 48940, Spain.
| |
Collapse
|
15
|
Martínez-Uña M, Varela-Rey M, Cano A, Fernández-Ares L, Beraza N, Aurrekoetxea I, Martínez-Arranz I, García-Rodríguez JL, Buqué X, Mestre D, Luka Z, Wagner C, Alonso C, Finnell RH, Lu SC, Martínez-Chantar ML, Aspichueta P, Mato JM. Excess S-adenosylmethionine reroutes phosphatidylethanolamine towards phosphatidylcholine and triglyceride synthesis. Hepatology 2013; 58:1296-305. [PMID: 23505042 PMCID: PMC3720726 DOI: 10.1002/hep.26399] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/10/2013] [Indexed: 01/10/2023]
Abstract
UNLABELLED Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are the primary genes involved in hepatic S-adenosylmethionine (SAMe) synthesis and degradation, respectively. Mat1a ablation in mice induces a decrease in hepatic SAMe, activation of lipogenesis, inhibition of triglyceride (TG) release, and steatosis. Gnmt-deficient mice, despite showing a large increase in hepatic SAMe, also develop steatosis. We hypothesized that as an adaptive response to hepatic SAMe accumulation, phosphatidylcholine (PC) synthesis by way of the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is stimulated in Gnmt(-/-) mice. We also propose that the excess PC thus generated is catabolized, leading to TG synthesis and steatosis by way of diglyceride (DG) generation. We observed that Gnmt(-/-) mice present with normal hepatic lipogenesis and increased TG release. We also observed that the flux from PE to PC is stimulated in the liver of Gnmt(-/-) mice and that this results in a reduction in PE content and a marked increase in DG and TG. Conversely, reduction of hepatic SAMe following the administration of a methionine-deficient diet reverted the flux from PE to PC of Gnmt(-/-) mice to that of wildtype animals and normalized DG and TG content preventing the development of steatosis. Gnmt(-/-) mice with an additional deletion of perilipin2, the predominant lipid droplet protein, maintain high SAMe levels, with a concurrent increased flux from PE to PC, but do not develop liver steatosis. CONCLUSION These findings indicate that excess SAMe reroutes PE towards PC and TG synthesis and lipid sequestration.
Collapse
Affiliation(s)
- Maite Martínez-Uña
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Bilbao, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Ciberehd, Parque Tecnológico de Bizkaia, Bizkaia, Spain
| | | | - Larraitz Fernández-Ares
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Bilbao, Spain
| | - Naiara Beraza
- CIC bioGUNE, Ciberehd, Parque Tecnológico de Bizkaia, Bizkaia, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Bilbao, Spain
| | | | | | - Xabier Buqué
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Bilbao, Spain
| | - Daniela Mestre
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Bilbao, Spain
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennesse
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennesse
| | | | - Richard H Finnell
- Department of Nutritional Sciences, Dell Pediatric Institute, The University of Texas at Austin, Austin, Texas
| | - Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, The Southern California Research Center for Alcoholic and Pancreatic Diseases & Cirrhosis, Keck School of Medicine USC, Los Angeles, California
| | | | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country UPV/EHU, Medical School, Bilbao, Spain
| | - José M Mato
- CIC bioGUNE, Ciberehd, Parque Tecnológico de Bizkaia, Bizkaia, Spain
| |
Collapse
|
16
|
Involvement of lipid droplets in hepatic responses to lipopolysaccharide treatment in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1357-67. [DOI: 10.1016/j.bbalip.2013.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/05/2013] [Accepted: 04/30/2013] [Indexed: 01/07/2023]
|
17
|
Gifford CA, Holland BP, Mills RL, Maxwell CL, Farney JK, Terrill SJ, Step DL, Richards CJ, Burciaga Robles LO, Krehbiel CR. Growth and Development Symposium: Impacts of inflammation on cattle growth and carcass merit. J Anim Sci 2012; 90:1438-51. [PMID: 22573836 DOI: 10.2527/jas.2011-4846] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Inflammation caused by bovine respiratory disease (BRD) continues to be one of the greatest challenges facing beef cattle producers and feedlot managers. Inflammation decreases DMI, ADG, and G:F in feedlot calves, decreasing growth rate and increasing days on feed, which results in economic losses during the feeding period. During the past decade, marketing of feedlot animals has changed from selling cattle on a live basis to a grid-based marketing system. When cattle are marketed on a live basis, the economic effects of BRD stop at increased health cost and decreased feedlot performance, carcass weight, and death loss. However, when cattle are marketed in a grid-based system, inflammation has the potential to also affect carcass cutability and quality. The effects of inflammation on feedlot cattle in regards to performance are well understood; however, specific effects on cattle growth and ultimately carcass merit are not as well described. Recent studies in feedlot cattle have indicated that the incidence of BRD decreases both HCW and marbling; however, mechanisms are not understood. Research in other species has demonstrated that during the acute phase response, pro-inflammatory cytokines promote skeletal muscle catabolism to supply AA and energy substrates for immune tissues. Further, during this early immune response, the liver changes its metabolic priorities to the production of acute phase proteins for use in host defense. Together these dramatic shifts in systemic metabolism may explain the detrimental effects on performance and carcass traits commonly associated with BRD in feedlot calves. Moreover, recent studies relative to human health have revealed complex multilevel interactions between the metabolic and immune systems, and highlighted inflammation as being a significant contributor to major metabolic diseases. The objective of this paper is to review data to help explain the economical and physiological effects of inflammation on cattle growth and carcass merit.
Collapse
Affiliation(s)
- C A Gifford
- Department of Animal Sciences, Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater 74078, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Buqué X, Cano A, Miquilena-Colina ME, García-Monzón C, Ochoa B, Aspichueta P. High insulin levels are required for FAT/CD36 plasma membrane translocation and enhanced fatty acid uptake in obese Zucker rat hepatocytes. Am J Physiol Endocrinol Metab 2012; 303:E504-14. [PMID: 22693206 DOI: 10.1152/ajpendo.00653.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In myocytes and adipocytes, insulin increases fatty acid translocase (FAT)/CD36 translocation to the plasma membrane (PM), enhancing fatty acid (FA) uptake. Evidence links increased hepatic FAT/CD36 protein amount and gene expression with hyperinsulinemia in animal models and patients with fatty liver, but whether insulin regulates FAT/CD36 expression, amount, distribution, and function in hepatocytes is currently unknown. To investigate this, FAT/CD36 protein content in isolated hepatocytes, subfractions of organelles, and density-gradient isolated membrane subfractions was analyzed in obese and lean Zucker rats by Western blotting in liver sections by immunohistochemistry and in hepatocytes by immunocytochemistry. The uptake of oleate and oleate incorporation into lipids were assessed in hepatocytes at short time points (30-600 s). We found that FAT/CD36 protein amount at the PM was higher in hepatocytes from obese rats than from lean controls. In obese rat hepatocytes, decreased cytoplasmatic content of FAT/CD36 and redistribution from low- to middle- to middle- to high-density subfractions of microsomes were found. Hallmarks of obese Zucker rat hepatocytes were increased amount of FAT/CD36 protein at the PM and enhanced FA uptake and incorporation into triglycerides, which were maintained only when exposed to hyperinsulinemic conditions (80 mU/l). In conclusion, high insulin levels are required for FAT/CD36 translocation to the PM in obese rat hepatocytes to enhance FA uptake and triglyceride synthesis. These results suggest that the hyperinsulinemia found in animal models and patients with insulin resistance and fatty liver might contribute to liver fat accumulation by inducing FAT/CD36 functional presence at the PM of hepatocytes.
Collapse
Affiliation(s)
- Xabier Buqué
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Cano A, Buqué X, Martínez-Uña M, Aurrekoetxea I, Menor A, García-Rodriguez JL, Lu SC, Martínez-Chantar ML, Mato JM, Ochoa B, Aspichueta P. Methionine adenosyltransferase 1A gene deletion disrupts hepatic very low-density lipoprotein assembly in mice. Hepatology 2011; 54:1975-86. [PMID: 21837751 PMCID: PMC3222787 DOI: 10.1002/hep.24607] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Very low-density lipoprotein (VLDL) secretion provides a mechanism to export triglycerides (TG) from the liver to peripheral tissues, maintaining lipid homeostasis. In nonalcoholic fatty liver disease (NAFLD), VLDL secretion disturbances are unclear. Methionine adenosyltransferase (MAT) is responsible for S-adenosylmethionine (SAMe) synthesis and MAT I and III are the products of the MAT1A gene. Deficient MAT I and III activities and SAMe content in the liver have been associated with NAFLD, but whether MAT1A is required for normal VLDL assembly remains unknown. We investigated the role of MAT1A on VLDL assembly in two metabolic contexts: in 3-month-old MAT1A-knockout mice (3-KO), with no signs of liver injury, and in 8-month-old MAT1A-knockout mice (8-KO), harboring nonalcoholic steatohepatitis. In 3-KO mouse liver, there is a potent effect of MAT1A deletion on lipid handling, decreasing mobilization of TG stores, TG secretion in VLDL and phosphatidylcholine synthesis via phosphatidylethanolamine N-methyltransferase. MAT1A deletion also increased VLDL-apolipoprotein B secretion, leading to small, lipid-poor VLDL particles. Administration of SAMe to 3-KO mice for 7 days recovered crucial altered processes in VLDL assembly and features of the secreted lipoproteins. The unfolded protein response was activated in 8-KO mouse liver, in which TG accumulated and the phosphatidylcholine-to-phosphatidylethanolamine ratio was reduced in the endoplasmic reticulum, whereas secretion of TG and apolipoprotein B in VLDL was increased and the VLDL physical characteristics resembled that in 3-KO mice. MAT1A deletion also altered plasma lipid homeostasis, with an increase in lipid transport in low-density lipoprotein subclasses and decrease in high-density lipoprotein subclasses. CONCLUSION MAT1A is required for normal VLDL assembly and plasma lipid homeostasis in mice. Impaired VLDL synthesis, mainly due to SAMe deficiency, contributes to NAFLD development in MAT1A-KO mice.
Collapse
Affiliation(s)
- Ainara Cano
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Xabier Buqué
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Maite Martínez-Uña
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Ariane Menor
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Juan L García-Rodriguez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Spain
| | - Shelly C Lu
- Division of Gastroenterology and Liver Diseases, University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - M. Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Spain
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Spain
| | - Begoña Ochoa
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain,Corresponding author: Patricia Aspichueta, Department of Physiology, University of the Basque Country Medical School, Sarriena s/n, 48940 Leioa, Spain. Phone: +34 946012896; Fax: +34 946015662;
| |
Collapse
|
20
|
Bartolomé N, Aspichueta P, Martínez MJ, Vázquez-Chantada M, Martínez-Chantar ML, Ochoa B, Chico Y. Biphasic adaptative responses in VLDL metabolism and lipoprotein homeostasis during Gram-negative endotoxemia. Innate Immun 2010; 18:89-99. [PMID: 21113081 DOI: 10.1177/1753425910390722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dyslipidemia and hepatic overproduction of very low density lipoprotein (VLDL) are hallmarks of the septic response, yet the underlying mechanisms are not fully defined. We evaluated the lipoprotein subclasses profile and hepatic VLDL assembly machinery over 24 h in fasted LPS-treated rats. The response of serum non-esterified fatty acids (NEFA) and glucose to endotoxin was biphasic, with increased levels of NEFA and hypoglycemia in the first 12 h-phase, and low NEFA and high glucose in the second 12 h-phase. Hypertriglyceridemia was more marked in the first 12 h (6.8-fold), when triglyceride abundance increased in all lipoprotein subclasses, and preferentially in large VLDL. The abundance of medium-sized VLDL and the increase in the number of VLDL particles was higher in the second phase (10-fold vs 5-fold in the first phase); however, apoB gene transcript abundance increased only in the second phase. Analysis of putative pre-translational mechanisms revealed that neither increased Apob transcription rate nor increased transcript binding to mRNA stabilizing HuR (Hu antigen R) protein paralleled the increase in apoB transcripts. In conclusion, endotoxin challenge induces increases in plasma NEFA and large, triglyceride-rich VLDL. After approximately 12 h, the triglyceride-rich VLDLs are replaced by medium-sized, triglyceride-poor VLDL particles. Hepatic apoB mRNA abundance also increases during the second period, suggesting a role for apoB protein expression in the acute reaction against sepsis.
Collapse
Affiliation(s)
- Nerea Bartolomé
- Department of Physiology, Faculty of Medicine and Dentistry, University of Basque Country, Leioa, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Sparks JD, Cianci J, Jokinen J, Chen LS, Sparks CE. Interleukin-6 mediates hepatic hypersecretion of apolipoprotein B. Am J Physiol Gastrointest Liver Physiol 2010; 299:G980-9. [PMID: 20651008 PMCID: PMC2957334 DOI: 10.1152/ajpgi.00080.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity and type 2 diabetes are associated with insulin resistance (IR), increased circulating proinflammatory cytokines, and hypertriglyceridemia, the latter being caused by overproduction of hepatic very low density lipoprotein (VLDL). One cytokine strongly linked with development of hepatic IR is interleukin-6 (IL-6). Our objective was to evaluate IL-6 effects on hepatic apolipoprotein B (apoB) and VLDL secretion and to examine possible linkages between cytokine signaling and insulin-suppressive effects on lipoprotein secretion. Of the cytokines examined, only IL-6 stimulated secretion of apoB-containing lipoproteins in a dose-dependent manner. Both B100 and B48 secretion were significantly increased in VLDL and in lipoproteins with a density >1.019 g/ml. The ability of insulin to suppress hepatic apoB secretion was maintained in hepatocytes treated with IL-6. Pulse-chase studies indicated that enhanced apoB synthesis was the primary mechanism for increased lipoprotein secretion, which corresponded with higher abundance of apoB mRNA. Because IL-6 did not alter the decay rate of apoB mRNA transcripts, results support that increased apoB mRNA levels are the result of enhanced apob gene transcription. Increased apoB-lipoprotein secretion was also detected with oncostatin M (OSM), supporting involvement of the signal-transducing protein, gp130. Increased suppressor of cytokine signaling (SOCS) 3 expression negated IL-6 and OSM effects and significantly reduced cellular apoB mRNA abundance. We conclude that IL-6 favors secretion of apoB-containing lipoproteins by increasing availability of apoB through changes in apob gene transcription. These changes may contribute to hypersecretion of VLDL associated with obesity, particularly under conditions where SOCS3 is not overexpressed to an extent capable of overcoming IL-6-stimulated apob gene transcription.
Collapse
Affiliation(s)
- Janet D. Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Joanne Cianci
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Jenny Jokinen
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Li Sheng Chen
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Charles E. Sparks
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
22
|
Buqué X, Martínez MJ, Cano A, Miquilena-Colina ME, García-Monzón C, Aspichueta P, Ochoa B. A subset of dysregulated metabolic and survival genes is associated with severity of hepatic steatosis in obese Zucker rats. J Lipid Res 2009; 51:500-13. [PMID: 19783528 DOI: 10.1194/jlr.m001966] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to characterize the primary abnormalities associated with fat accumulation and vulnerability to hepatocellular injury of obesity-related fatty liver. We performed functional analyses and comparative transcriptomics of isolated primary hepatocytes from livers of obese insulin-resistant Zucker rats (comprising mild to severe hepatic steatosis) and age-matched lean littermates, searching for novel genes linked to chronic hepatic steatosis. Of the tested genome, 1.6% was identified as steatosis linked. Overexpressed genes were mainly dedicated to primary metabolism (100%), signaling, and defense/acute phase (approximately 70%); detoxification, steroid, and sulfur metabolism (approximately 65%) as well as cell growth/proliferation and protein synthesis/transformation (approximately 70%) genes were downregulated. The overexpression of key genes involved in de novo lipogenesis, fatty acid and glycerolipid import and synthesis, as well as acetyl-CoA and cofactor provision was paralleled by enhanced hepatic lipogenesis and production of large triacylglycerol-rich VLDL. Greatest changes in gene expression were seen in those encoding the lipogenic malic enzyme (up to 7-fold increased) and cell-to-cell interacting cadherin 17 (up to 8-fold decreased). Among validated genes, fatty acid synthase, stearoyl-CoA desaturase 1, fatty acid translocase/Cd36, malic enzyme, cholesterol-7 alpha hydroxylase, cadherin 17, and peroxisome proliferator-activated receptor alpha significantly correlated with severity of hepatic steatosis. In conclusion, dysregulated expression of metabolic and survival genes accompany hepatic steatosis in obese insulin-resistant rats and may render steatotic hepatocytes more vulnerable to cell injury in progressive nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Xabier Buqué
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Bartolomé N, Arteta B, Martínez MJ, Chico Y, Ochoa B. Kupffer cell products and interleukin 1beta directly promote VLDL secretion and apoB mRNA up-regulation in rodent hepatocytes. Innate Immun 2009; 14:255-66. [PMID: 18669611 DOI: 10.1177/1753425908094718] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plasma VLDL accumulation in Gram-negative sepsis is partly ascribed to an increased hepatic VLDL production driven by pro-inflammatory cytokines. We previously showed that hepatocytes of the Kupffer cell (KC)-rich periportal area are major contributors to enhanced VLDL production in lipopolysaccharide (LPS)-injected rats. However, it remains to be established whether KC generated products directly affect the number (apoB) and composition of secreted VLDL. Using rat primary cells, we show here that hepatocytes respond to stimulation by soluble mediators released by LPS-stimulated Kupffer cells with enhanced secretion of apoB and triglycerides in phospholipid-rich VLDL particles. Unstimulated KC products also augmented the secretion of normal VLDL, doubling apoB mRNA abundance. IL-1beta treatment resulted in concentration-dependent increases of hepatocyte apoB mRNA and protein secretion, increases that were greater, but not additive, when combined with IL-6 and TNF-alpha. Lipid secretion and MTP mRNA levels were unaffected by cytokines. In summary: (i) enhanced secretion of phospholipid-rich VLDL particles is a net hepatocyte response to LPS-stimulated KC products, which gives a clue about the local role of Kupffer cells in septic dyslipidemia induction; and (ii) pro-inflammatory cytokines act redundantly to enhance apoB secretion involving translational apoB up-regulation, but other humoral components or KC mediators are necessary to accomplish increased lipid association.
Collapse
Affiliation(s)
- Nerea Bartolomé
- Department of Physiology, Faculty of Medicine, University of the Basque Country, Leioa, Spain
| | | | | | | | | |
Collapse
|
24
|
Tavares FL, Seelaender MCL. Hepatic denervation impairs the assembly and secretion of VLDL-TAG. Cell Biochem Funct 2008; 26:557-65. [PMID: 18543355 DOI: 10.1002/cbf.1476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
VLDL secretion is a regulated process that depends on the availability of lipids, apoB and MTP. Our aim was to investigate the effect of liver denervation upon the secretion of VLDL and the expression of proteins involved in this process. Denervation was achieved by applying a 85% phenol solution onto the portal tract, while control animals were treated with 9% NaCl. VLDL secretion was evaluated by the Tyloxapol method. The hepatic concentration of TAG and cholesterol, and the plasma concentration of TAG, cholesterol, VLDL-TAG, VLDL-cholesterol and HDL-cholesterol were measured, as well as mRNA expression of proteins involved in the process of VLDL assembly. Hepatic acinar distribution of MTP and apoB was evaluated by immunohistochemistry. Denervation increased plasma concentration of cholesterol (125.3 +/- 10.1 vs. 67.1 +/- 4.9 mg dL(-1)) and VLDL-cholesterol (61.6 +/- 5.6 vs. 29.4 +/- 3.3 mg dL(-1)), but HDL-cholesterol was unchanged (45.5 +/- 6.1 vs. 36.9 +/- 3.9 mg dL(-1)). Secretion of VLDL-TAG (47.5 +/- 23.8 vs. 148.5 +/- 27.4 mg dL h(-1)) and mRNA expression of CPT I and apoB were reduced (p < 0.01) in the denervated animals. MTP and apoB acinar distribution was not altered in the denervated animals, but the intensity of the reaction was reduced in relation to controls.
Collapse
Affiliation(s)
- Fábio Luís Tavares
- Molecular Biology of the Cell Group, Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, Brazil
| | | |
Collapse
|
25
|
Usynin IF, Panin LE. Mechanisms determining phenotypic heterogeneity of hepatocytes. BIOCHEMISTRY (MOSCOW) 2008; 73:367-80. [PMID: 18457566 DOI: 10.1134/s0006297908040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarizes results of biochemical and immunohistochemical studies indicating the existence of functional heterogeneity of hepatocytes depending on their localization in the hepatic acinus; this determines characteristic features of metabolism of carbohydrates, lipids, and xenobiotics. The physiological significance of hepatocyte heterogeneity is discussed. According to the proposed model of intercellular communication, the metabolic specialization of hepatocytes is determined by secretory activity of hepatic resident macrophages (Kupffer cells) localized mainly in the periportal zone of the liver acinus. Macrophages participate in secretion of a wide spectrum of intercellular mediators (cytokines, prostaglandins, growth factors) and also in metabolism of numerous blood metabolites and biologically active substances (hormones, lipoproteins, etc.). In the sinusoid and in the space of Disse (also known as perisinusoidal space) they form a concentration gradient of regulatory factors and metabolites inducing the phenotypic differences between hepatocytes.
Collapse
Affiliation(s)
- I F Usynin
- Institute of Biochemistry, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk 630117, Russia.
| | | |
Collapse
|
26
|
Bartolomé N, Rodríguez L, Martínez MJ, Ochoa B, Chico Y. Upregulation of apolipoprotein B secretion, but not lipid, by tumor necrosis factor-alpha in rat hepatocyte cultures in the absence of extracellular fatty acids. Ann N Y Acad Sci 2007; 1096:55-69. [PMID: 17405916 DOI: 10.1196/annals.1397.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) plays a pivotal role in the host response to infection. Rapidly liberated to the bloodstream, TNF-alpha triggers the production of other cytokines and the acute-phase response. Hypertriglyceridemia is a sepsis hallmark associated with high plasma levels of very low-density lipoprotein (VLDL) particles, partly ascribed to increased hepatic production. The kinetics of the hepatocyte response, the cytokine/s responsible, and the underlying mechanisms are not fully elucidated. VLDL biogenesis is a complex, time-consuming process that depends on lipid availability and microsomal triglyceride transfer protein (MTP) activity for correct apolipoprotein B (apoB) lipidation. Studies were performed to define the direct effect of TNF-alpha on VLDL secretion rate and composition in rat hepatocytes cultured in conditions resembling the fed situation. Increases of 17-24% in the number of VLDL particles secreted and of 44-88% in the cellular levels of apoB mRNA were caused by 5, 20, or 100 ng/mL TNF-alpha in 8 h. Lipoprotein secretion returned to baseline levels in 16 h, whereas TNF-alpha-treated cells continued to exhibit higher apoB transcript levels. The mass of each lipid class in secreted VLDL and of MTP mRNA in cells was not affected by any of the tested TNF-alpha doses or treatment periods. These findings indicate that over a wide range of concentrations, TNF-alpha was capable of inducing sustained upregulation of apoB mRNA expression and transient increase in secretion of its protein, but, apparently, VLDL triglyceride secretion was not a TNF-alpha target under conditions in which fatty acids were not extracellularly provided.
Collapse
Affiliation(s)
- Nerea Bartolomé
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country, Sarriena s/n, 48940-Leioa, Spain
| | | | | | | | | |
Collapse
|