1
|
Truyts A, Du Preez I, Maesela EM, Scriba MR, Baillie L, Jones AT, Land KJ, Verschoor JA, Lemmer Y. Application of Monoclonal Anti-Mycolate Antibodies in Serological Diagnosis of Tuberculosis. Trop Med Infect Dis 2024; 9:269. [PMID: 39591275 PMCID: PMC11598376 DOI: 10.3390/tropicalmed9110269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Patient loss to follow-up caused by centralised and expensive diagnostics that are reliant on sputum is a major obstacle in the fight to end tuberculosis. An affordable, non-sputum biomarker-based, point-of-care deployable test is needed to address this. Serum antibodies binding the mycobacterial cell wall lipids, mycolic acids, have shown promise as biomarkers for active tuberculosis. However, anti-lipid antibodies are of low affinity, making them difficult to detect in a lateral flow immunoassay-a technology widely deployed at the point-of-care. Previously, recombinant monoclonal anti-mycolate antibodies were developed and applied to characterise the antigenicity of mycolic acid. We now demonstrate that these anti-mycolate antibodies specifically detect hexane extracts of mycobacteria. Secondary antibody-mediated detection was applied to detect the displacement of the monoclonal mycolate antibodies by the anti-mycolic acid antibodies present in tuberculosis-positive guinea pig and human serum samples. These data establish proof-of-concept for a novel lateral flow immunoassay for tuberculosis provisionally named MALIA-mycolate antibody lateral flow immunoassay.
Collapse
Affiliation(s)
- Alma Truyts
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa; (A.T.); (I.D.P.); (E.M.M.); (M.R.S.)
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (L.B.); (A.T.J.)
| | - Ilse Du Preez
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa; (A.T.); (I.D.P.); (E.M.M.); (M.R.S.)
| | - Eldas M. Maesela
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa; (A.T.); (I.D.P.); (E.M.M.); (M.R.S.)
| | - Manfred R. Scriba
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa; (A.T.); (I.D.P.); (E.M.M.); (M.R.S.)
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (L.B.); (A.T.J.)
| | - Arwyn T. Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (L.B.); (A.T.J.)
| | - Kevin J. Land
- Global Access Diagnostics, Thurleigh, Bedford MK44 2YA, UK;
- Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
| | - Jan A. Verschoor
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Yolandy Lemmer
- Future Production: Chemicals, Council for Scientific and Industrial Research, Pretoria 0081, South Africa; (A.T.); (I.D.P.); (E.M.M.); (M.R.S.)
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
2
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
3
|
Abstract
Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.
Collapse
Affiliation(s)
- Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P. R. China.
| | | | | | | |
Collapse
|
4
|
Immunomodulation of carcinogens-induced steroids-dependent human diseases. Saudi J Biol Sci 2019; 26:244-251. [PMID: 31485161 PMCID: PMC6717089 DOI: 10.1016/j.sjbs.2017.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 01/06/2023] Open
Abstract
The experimental and clinical data about antibodies against environmental chemical carcinogens and endogenous steroids are represented. The conception of immunomodulation of carcinogens- and steroids-dependent human diseases is proposed. It is postulated that antibodies to polycyclic aromatic hydrocarbons and heterocyclic amines in cooperation with antibodies to cholesterol, sex hormones, mineralo- and glucocorticoids stimulate or inhibit cancer, malformation, cardiovascular and autoimmune diseases depending on their personal combination. It is recommended to use immunoassay of these antibodies for the human diseases prediction. The alternative approaches for prevention using the probiotics transformed by anti-carcinogen antibodies are substantiated.
Collapse
Key Words
- Abs, antibodies
- Antibody formation
- BC, breast cancer
- BCP, breast cancer patients
- Benzo[a]pyrene
- Bp, benzo[a]pyrene
- CYP, cytochrome P-450
- Cg, chemical carcinogens
- Cholesterol
- ER+, estrogen receptors positive
- ER, estrogen receptors
- ER−, estrogen receptors negative
- Es, estradiol
- Estradiol
- HW, healthy women
- LC, lung cancer
- LCP, lung cancer patients
- MW, women with malformation
- PAH, polycyclic aromatic hydrocarbons
- PE, phytoestrogens
- PR+, progesterone receptors positive
- PR, progesterone receptors
- PR−, progesterone receptors negative
- Pg, progesterone
- Prediction
- Prevention
- Progesterone
- S, steroids
- cAhR, cytoplasmic
- mAhR, membrane aril hydrocarbon receptors
Collapse
|
5
|
Bello-Perez M, Falco A, Novoa B, Perez L, Coll J. Hydroxycholesterol binds and enhances the anti-viral activities of zebrafish monomeric c-reactive protein isoforms. PLoS One 2019; 14:e0201509. [PMID: 30653529 PMCID: PMC6336239 DOI: 10.1371/journal.pone.0201509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/28/2018] [Indexed: 01/26/2023] Open
Abstract
C-reactive proteins (CRPs) are among the faster acute-phase inflammation-responses proteins encoded by one gene (hcrp) in humans and seven genes (crp1-7) in zebrafish (Danio rerio) with importance in bacterial and viral infections. In this study, we described novel preferential bindings of 25-hydroxycholesterol (25HOCh) to CRP1-7 compared with other lipids and explored the antiviral effects of both 25HOCh and CRP1-7 against spring viremia carp virus (SVCV) infection in zebrafish. Both in silico and in vitro results confirmed the antiviral effect of 25HOCh and CRP1-7 interactions, thereby showing that the crosstalk between them differed among the zebrafish isoforms. The presence of oxidized cholesterols in human atherosclerotic plaques amplifies the importance that similar interactions may occur for vascular and/or neurodegenerative diseases during viral infections. In this context, the zebrafish model offers a genetic tool to further investigate these interactions.
Collapse
Affiliation(s)
- Melissa Bello-Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
| | - Alberto Falco
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
| | - Beatriz Novoa
- Institute of Marine Research (IIM), CSIC, Vigo, Spain
| | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández (IBMC-UMH), Elche, Spain
| | - Julio Coll
- Department of Biotechnology, Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
6
|
Balogh A, Karpati E, Schneider AE, Hetey S, Szilagyi A, Juhasz K, Laszlo G, Hupuczi P, Zavodszky P, Papp Z, Matko J, Than NG. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci Rep 2019; 9:4. [PMID: 30626909 PMCID: PMC6327036 DOI: 10.1038/s41598-018-36882-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
The complex effects of estradiol on non-reproductive tissues/cells, including lymphoid tissues and immunocytes, have increasingly been explored. However, the role of sex hormone binding globulin (SHBG) in the regulation of these genomic and non-genomic actions of estradiol is controversial. Moreover, the expression of SHBG and its internalization by potential receptors, as well as the influence of SHBG on estradiol uptake and signaling in lymphocytes has remained unexplored. Here, we found that human and mouse T cells expressed SHBG intrinsically. In addition, B lymphoid cell lines as well as both primary B and T lymphocytes bound and internalized external SHBG, and the amount of plasma membrane-bound SHBG decreased in B cells of pregnant compared to non-pregnant women. As potential mediators of this process, SHBG receptor candidates expressed by lymphocytes were identified in silico, including estrogen receptor (ER) alpha. Furthermore, cell surface-bound SHBG was detected in close proximity to membrane ERs while highly colocalizing with lipid rafts. The SHBG-membrane ER interaction was found functional since SHBG promoted estradiol uptake by lymphocytes and subsequently influenced Erk1/2 phosphorylation. In conclusion, the SHBG-SHBG receptor-membrane ER complex participates in the rapid estradiol signaling in lymphocytes, and this pathway may be altered in B cells in pregnant women.
Collapse
Affiliation(s)
- Andrea Balogh
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Karpati
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Szabolcs Hetey
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Laboratory of Structural Biophysics, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gloria Laszlo
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Peter Zavodszky
- Laboratory of Structural Biophysics, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary.
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary. .,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Hoang HT, Haubitz T, Kumke MU. Photophysics of "Floppy" Dyads as Potential Biomembrane Probes. J Fluoresc 2018; 28:1225-1237. [PMID: 30145784 DOI: 10.1007/s10895-018-2286-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/20/2018] [Indexed: 01/26/2023]
Abstract
In the study a dyad (C6 probe), constructed of two dyes with highly different hydrophobicities, was investigated by steady-state and time-resolved spectroscopic techniques in chloroform, methanol, and in phospholipid vesicles, respectively. The dyad was built on two dyes: the lipophilic benzo[a]pyrene (BaP) and the hydrophilic sulforhodamine B (SRB). The dyes were linked via a short, but flexible alkyl chain (six C-atoms). Based on their spectroscopic properties, BaP and SRB showed a very efficient non-radiative resonance energy transfer in solution. Incorporation into a lipid bilayer limited the relative flexibility (degree of freedom) between donor and acceptor and was used for the investigation of fundamental photophysical aspects (especially of FRET) as well as to elucidate the potential of the dyad to probe the interface of vesicles (or cells). The location of the two dyes in vesicles and their respective accessibility for interactions with dye-specific antibodies was investigated. Based on the alteration of the anisotropy, on the rotational correlation time as well as on the diffusion coefficient the incorporation of the C6 probe into the vesicles was evaluated. Especially the limitation in the relative movements of the two dyes was considered and used to differentiate between potential parameters, that influence the energy transfer in the dyad. Transient absorption spectroscopy (TAS) and pulsed-interleave single molecule fluorescence experiments were performed to better understand the intramolecular interactions in the dyad. Finally, in a showcase for a biosensing application of the dyads, the binding of an SRB-specific antibody was investigated when the dyad was incorporated in vesicles. Graphical Abstract.
Collapse
Affiliation(s)
- Hoa T Hoang
- University of Potsdam, Institute of Chemistry (Physical Chemistry), Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.,Humboldt University of Berlin, School of Analytical Sciences Adlershof (SALSA), Unter den Linden 6, 10099, Berlin, Germany
| | - Toni Haubitz
- University of Potsdam, Institute of Chemistry (Physical Chemistry), Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Michael U Kumke
- University of Potsdam, Institute of Chemistry (Physical Chemistry), Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| |
Collapse
|
8
|
Tóth EA, Oszvald Á, Péter M, Balogh G, Osteikoetxea-Molnár A, Bozó T, Szabó-Meleg E, Nyitrai M, Derényi I, Kellermayer M, Yamaji T, Hanada K, Vígh L, Matkó J. Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28645851 DOI: 10.1016/j.bbalip.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation. Screening B cell lines with various differentiation stages revealed that NT-growth linearly correlates with membrane ganglioside levels, while it shows maximum as a function of cholesterol level. NT-growth of B lymphocytes is promoted by raftophilic phosphatidylcholine and sphingomyelin species, various glycosphingolipids, and docosahexaenoic acid-containing inner leaflet lipids, through supporting membrane curvature, as demonstrated by comparative lipidomic analysis of mature versus immature B cell membranes. Targeted modification of membrane cholesterol and sphingolipid levels altered NT-forming capacity confirming these findings, and also highlighted that the actual lipid raft number may control NT-growth via defining the number of membrane-F-actin coupling sites. Atomic force microscopic mechano-manipulation experiments further proved that mechanical properties (elasticity or bending stiffness) of B cell NTs also depend on the actual membrane lipid composition. Data presented here highlight importance of the lipid side in controlling intercellular, nanotubular, regulatory communications in the immune system.
Collapse
Affiliation(s)
- Eszter A Tóth
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Ádám Oszvald
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Imre Derényi
- Department of Biological Physics, Eötvös Lorand University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - János Matkó
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary.
| |
Collapse
|
9
|
Kovács T, Batta G, Zákány F, Szöllősi J, Nagy P. The dipole potential correlates with lipid raft markers in the plasma membrane of living cells. J Lipid Res 2017; 58:1681-1691. [PMID: 28607008 DOI: 10.1194/jlr.m077339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/06/2017] [Indexed: 11/20/2022] Open
Abstract
The dipole potential generating an electric field much stronger than any other type of membrane potential influences a wide array of phenomena, ranging from passive permeation to voltage-dependent conformational changes of membrane proteins. It is generated by the ordered orientation of lipid carbonyl and membrane-attached water dipole moments. Theoretical considerations and indirect experimental evidence obtained in model membranes suggest that the dipole potential is larger in liquid-ordered domains believed to correspond to lipid rafts in cell membranes. Using three different dipole potential-sensitive fluorophores and four different labeling approaches of raft and nonraft domains, we showed that the dipole potential is indeed stronger in lipid rafts than in the rest of the membrane. The magnitude of this difference is similar to that observed between the dipole potential in control and sphingolipid-enriched cells characteristic of Gaucher's disease. The results established that the heterogeneity of the dipole potential in living cell membranes is correlated with lipid rafts and imply that alterations in the lipid composition of the cell membrane in human diseases can lead to substantial changes in the dipole potential.
Collapse
Affiliation(s)
- Tamás Kovács
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gyula Batta
- Faculty of Medicine, and Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Florina Zákány
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
10
|
Jiang YW, Guo HY, Chen Z, Yu ZW, Wang Z, Wu FG. In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6739-6745. [PMID: 27276053 DOI: 10.1021/acs.langmuir.6b00193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also sheds new light on the interaction between biomacromolecules and lipid membranes.
Collapse
Affiliation(s)
- Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Hao-Yue Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhi-Wu Yu
- Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University , Nanjing 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, P. R. China
| |
Collapse
|
11
|
Osteikoetxea X, Balogh A, Szabó-Taylor K, Németh A, Szabó TG, Pálóczi K, Sódar B, Kittel Á, György B, Pállinger É, Matkó J, Buzás EI. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One 2015; 10:e0121184. [PMID: 25798862 PMCID: PMC4370721 DOI: 10.1371/journal.pone.0121184] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/28/2015] [Indexed: 12/15/2022] Open
Abstract
In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody) and ganglioside GM1 (cholera toxin subunit B). We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition), may prove useful for quality control of extracellular vesicle related basic and clinical studies.
Collapse
Affiliation(s)
- Xabier Osteikoetxea
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Balogh
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Katalin Szabó-Taylor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Andrea Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Tamás Géza Szabó
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Krisztina Pálóczi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Barbara Sódar
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Bence György
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - János Matkó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Edit Irén Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
12
|
Li W, Wang R, Zhang S, Li X. DAMP, an acidotropic pH indicator, can be used as a tool to visualize non-esterified cholesterol in cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47:73-9. [PMID: 25583734 DOI: 10.1093/abbs/gmu123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cholesterol-rich regions are attractive targets for studying metabolic disorders that involve accumulation of cholesterol. Despite efforts to develop probes for labelling cholesterol-rich regions in cells, few of these reagents have a low molecular weight. Previous studies have shown that the acidotropic pH indicator, N-{3-[(2,4-dinitrophenyl)amino]propyl}-N-(3-aminopropyl)methylamine dihydrochloride (DAMP), reacts with cholesterol-rich organelles, such as endocrine secretary granules from endocrine cells. In this study, we demonstrated that DAMP could react with free cholesterol in a dose-dependent manner, and DAMP was able to detect cholesterol-rich subcellular organelles. DAMP was sufficiently potent to detect free cholesterol-enriched organs, but was unable to detect atherosclerotic plaques primarily composed of esterified cholesterol. Taken together, these results demonstrate that DAMP facilitates the study of cholesterol-enriched lipid rafts and disorders which involve cholesterol accumulation.
Collapse
Affiliation(s)
- Weimin Li
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Rong Wang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shaojuan Zhang
- Department of PET-CT, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
13
|
Gärtner S, Carvalho JJ, Emmerling F, Garbe LA, Schneider RJ. Polyclonal Murine and Rabbit Antibodies for the Bile Acid Isolithocholic Acid. J Immunoassay Immunochem 2014; 36:233-52. [DOI: 10.1080/15321819.2014.924419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Abu Lila AS, Uehara Y, Ishida T, Kiwada H. Application of Polyglycerol Coating to Plasmid DNA Lipoplex for the Evasion of the Accelerated Blood Clearance Phenomenon in Nucleic Acid Delivery. J Pharm Sci 2014; 103:557-66. [DOI: 10.1002/jps.23823] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 11/09/2022]
|
15
|
Klymchenko AS, Kreder R. Fluorescent probes for lipid rafts: from model membranes to living cells. ACTA ACUST UNITED AC 2013; 21:97-113. [PMID: 24361047 DOI: 10.1016/j.chembiol.2013.11.009] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 01/10/2023]
Abstract
Membrane microdomains (rafts) remain one of the controversial issues in biophysics. Fluorescent molecular probes, which make these lipid nanostructures visible through optical techniques, are one of the tools currently used to study lipid rafts. The most common are lipophilic fluorescent probes that partition specifically into liquid ordered or liquid disordered phase. Their partition depends on the lipid composition of a given phase, which complicates their use in cellular membranes. A second class of probes is based on environment-sensitive dyes, which partition into both phases, but stain them by different fluorescence color, intensity, or lifetime. These probes can directly address the properties of each separate phase, but their cellular applications are still limited. The present review focuses on summarizing the current state in the field of developing and applying fluorescent molecular probes to study lipid rafts. We highlight an urgent need to develop new probes, specifically adapted for cell plasma membranes and compatible with modern fluorescence microscopy techniques to push the understanding of membrane microdomains forward.
Collapse
Affiliation(s)
- Andrey S Klymchenko
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France.
| | - Rémy Kreder
- Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Route du Rhin, 67401 ILLKIRCH, France
| |
Collapse
|
16
|
de Medina P, Paillasse MR, Segala G, Al Saati T, Boyes J, Delsol G, Allal C, Marsili S, Silvente-Poirot S, Poirot M. Technical note: Hapten synthesis, antibody production and development of an enzyme-linked immunosorbent assay for detection of the natural steroidal alkaloid Dendrogenin A. Biochimie 2012; 95:482-8. [PMID: 22709869 DOI: 10.1016/j.biochi.2012.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
We have recently discovered the existence of 5α-Hydroxy-6β-[2-(1H-imidazol-4-yl)ethylamino]cholestan-3β-ol, called Dendrogenin A (DDA), as the first endogenous steroidal alkaloid ever described in mammals. We found that the DDA content of tumors and cancer cell lines was low or absent compared with normal cells showing that a deregulation in DDA biosynthesis was associated with cancer and therefore suggesting that DDA could represent a metabolomic cancer biomarker. This prompted us to produce antibodies that selectively recognize DDA. For this purpose, the hapten 5α-hydroxy-6β-[2-(1H-imidazol-4-yl)ethylamino]cholestan-3β-o-hemisuccinate with a carboxylic spacer arm attached to the 3β-hydroxyl group of DDA was synthesized. The hapten was coupled to bovine serum albumin and keyhole limpet hemocyanin for antibody production to develop an enzyme-linked immunosorbent assay (ELISA). The protein conjugates were injected into BALB/c mice to raise antibodies. The monoclonal antibodies that were secreted from the hybridoma cell lines established were assessed with indirect ELISA by competitive assays using dilutions of a DDA standard. The antibodies from the selected hybridomas had an IC(50) value ranging from 0.8 to 425 ng/ml. Three antibodies showed no cross-reactivity with structurally related compounds including histamine, cholesterol, ring B oxysterols and a regio-isomer of DDA. In this study, high-affinity and selective antibodies against DDA were produced for the first time, and a competitive indirect ELISA was developed.
Collapse
Affiliation(s)
- Philippe de Medina
- Cancer Research Center of Toulouse, UMR 1037 INSERM-University Toulouse III, Toulouse, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Generation and characterization of a novel recombinant antibody against 15-ketocholestane isolated by phage-display. Int J Mol Sci 2012; 13:4937-4948. [PMID: 22606021 PMCID: PMC3344257 DOI: 10.3390/ijms13044937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/27/2012] [Accepted: 04/11/2012] [Indexed: 12/21/2022] Open
Abstract
The employment of monoclonal antibodies (Mabs) to identify disease-associated biomarkers in clinical samples represents the underlying principle for many diagnostic tests. To date, these have been principally developed for protein targets with few reported applications for lipids due to their hydrophobicity and poor immunogenicity. Oxysterols represent a family of lipids implicated in diverse human diseases where Mab-based detection assays could have a profound effect on their utility as clinical biomarkers. These are usually identified in patients' samples by mass- spectrometry based approaches. Here, we describe an antibody phage-library based screening methodology for generating a recombinant monoclonal antibody (RAb) targeting the oxysterol-15-ketocholestane (15-KA), a lipid implicated in multiple sclerosis and Autoimmune Encephalomyelitis (EAE). The antibody is highly specific for 15-KA and shows little or no binding activity for other closely related oxysterols. We employ RAb2E9 to address the controversy over whether 15-KA is a true biomarker for MS/EAE and show that 15-KA is undetectable in serum taken from mice with EAE using antibody based detection methodologies; a finding confirmed by mass-spectrometry analysis. This study demonstrates the technical feasibility of using phage display to isolate highly specific antibodies against poorly immunogenic, small molecule lipids.
Collapse
|
18
|
The AC8 IgG3 monoclonal anti-cholesterol antibody modulates uptake and presentation of antigens for T cell activation. Immunol Lett 2012; 143:106-15. [DOI: 10.1016/j.imlet.2012.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 01/07/2023]
|
19
|
Abstract
Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization.
Collapse
|
20
|
Beukes M, Lemmer Y, Deysel M, Al Dulayymi JR, Baird MS, Koza G, Iglesias MM, Rowles RR, Theunissen C, Grooten J, Toschi G, Roberts VV, Pilcher L, Van Wyngaardt S, Mathebula N, Balogun M, Stoltz AC, Verschoor JA. Structure-function relationships of the antigenicity of mycolic acids in tuberculosis patients. Chem Phys Lipids 2010; 163:800-8. [PMID: 20875402 PMCID: PMC3025329 DOI: 10.1016/j.chemphyslip.2010.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/17/2022]
Abstract
Cell wall mycolic acids (MA) from Mycobacterium tuberculosis (M.tb) are CD1b presented antigens that can be used to detect antibodies as surrogate markers of active TB, even in HIV coinfected patients. The use of the complex mixtures of natural MA is complicated by an apparent antibody cross-reactivity with cholesterol. Here firstly we report three recombinant monoclonal scFv antibody fragments in the chicken germ-line antibody repertoire, which demonstrate the possibilities for cross-reactivity: the first recognized both cholesterol and mycolic acids, the second mycolic acids but not cholesterol, and the third cholesterol but not mycolic acids. Secondly, MA structure is experimentally interrogated to try to understand the cross-reactivity. Unique synthetic mycolic acids representative of the three main functional classes show varying antigenicity against human TB patient sera, depending on the functional groups present and on their stereochemistry. Oxygenated (methoxy- and keto-) mycolic acid was found to be more antigenic than alpha-mycolic acids. Synthetic methoxy-mycolic acids were the most antigenic, one containing a trans-cyclopropane apparently being somewhat more antigenic than the natural mixture. Trans-cyclopropane-containing keto- and hydroxy-mycolic acids were also found to be the most antigenic among each of these classes. However, none of the individual synthetic mycolic acids significantly and reproducibly distinguished the pooled serum of TB positive patients from that of TB negative patients better than the natural mixture of MA. This argues against the potential to improve the specificity of serodiagnosis of TB with a defined single synthetic mycolic acid antigen from this set, although sensitivity may be facilitated by using a synthetic methoxy-mycolic acid.
Collapse
Affiliation(s)
- Mervyn Beukes
- Department of Biochemistry, University of Pretoria, South Africa
| | - Yolandy Lemmer
- Department of Biochemistry, University of Pretoria, South Africa
| | - Madrey Deysel
- Department of Biochemistry, University of Pretoria, South Africa
| | | | - Mark S. Baird
- School of Chemistry, University of Wales, Bangor, United Kingdom
| | - Gani Koza
- School of Chemistry, University of Wales, Bangor, United Kingdom
| | | | | | | | - Johan Grooten
- Department of Molecular Biomedical Research, Molecular Immunology Unit, Gent University, Belgium
| | - Gianna Toschi
- Department of Biochemistry, University of Pretoria, South Africa
| | | | - Lynne Pilcher
- Department of Chemistry, University of Pretoria, South Africa
| | | | - Nsovo Mathebula
- Department of Chemistry, University of Pretoria, South Africa
| | | | - Anton C. Stoltz
- Department of Infectious Diseases, University of Pretoria, South Africa
| | - Jan A. Verschoor
- Department of Biochemistry, University of Pretoria, South Africa
- Corresponding author. Tel.: +27 124202477; fax: +27 123625302.
| |
Collapse
|
21
|
Rafts and the battleships of defense: The multifaceted microdomains for positive and negative signals in immune cells. Immunol Lett 2010; 130:2-12. [DOI: 10.1016/j.imlet.2009.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 12/13/2009] [Accepted: 12/13/2009] [Indexed: 11/20/2022]
|
22
|
Beattie JR, Schock BC. Identifying the spatial distribution of vitamin E, pulmonary surfactant and membrane lipids in cells and tissue by confocal Raman microscopy. Methods Mol Biol 2010; 579:513-35. [PMID: 19763493 DOI: 10.1007/978-1-60761-322-0_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Every organ compromises of several different cell types. When studying the effects of a chosen compound within this organ or tissue uptake, localisation, metabolism, and the effect itself can be expected to differ between cells. Using the example of Vitamin E in pulmonary tissue we introduce confocal Raman Microscopy as a superior method to localise lipid-soluble compounds within tissues and cells. We describe the analyses of vitamin E, its oxidation products, and metabolites as well as pulmonary surfactant phospholipids in fixed lung tissue sections. Examples of main structural membrane lipids (PC, cholesterol) and an example of a lipid-signalling molecule (ceramide) are also included. Confocal Raman microscopy is a non-destructive optical method of analysing chemical and physical composition of solids, liquids, gases, gels, and solutions. The method is rich in information allowing discrimination of chemically similar molecules (including geometric isomers) and sensitive monitoring of subtle physical interactions. Additionally, Raman spectroscopy is relatively insensitive to water allowing the analysis of aqueous solutions and suspensions typical in biochemistry. In contrast, Raman spectroscopy is sensitive to non-polar molecules making it ideal for lipidomics research.
Collapse
Affiliation(s)
- J Renwick Beattie
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast, UK
| | | |
Collapse
|
23
|
Ohno-Iwashita Y, Shimada Y, Hayashi M, Iwamoto M, Iwashita S, Inomata M. Cholesterol-binding toxins and anti-cholesterol antibodies as structural probes for cholesterol localization. Subcell Biochem 2010; 51:597-621. [PMID: 20213560 DOI: 10.1007/978-90-481-8622-8_22] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cholesterol is one of the major constituents of mammalian cell membranes. It plays an indispensable role in regulating the structure and function of cell membranes and affects the pathology of various diseases. In recent decades much attention has been paid to the existence of membrane microdomains, generally termed lipid "rafts", and cholesterol, along with sphingolipids, is thought to play a critical role in raft structural organization and function. Cholesterol-binding probes are likely to provide useful tools for analyzing the distribution and dynamics of membrane cholesterol, as a structural element of raft microdomains, and elsewhere within the cell. Among the probes, non-toxic derivatives of perfringolysin O, a cholesterol-binding cytolysin, bind cholesterol in a concentration-dependent fashion with a strict threshold. They selectively recognize cholesterol in cholesterol-enriched membranes, and have been used in many studies to detect microdomains in plasma and intracellular membranes. Anti-cholesterol antibodies that recognize cholesterol in domain structures have been developed in recent years. In this chapter, we describe the characteristics of these cholesterol-binding proteins and their applications to studies on membrane cholesterol localization.
Collapse
Affiliation(s)
- Yoshiko Ohno-Iwashita
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1 Chuodai Iino, Iwaki City, Fukushima, 970-8551, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Beck Z, Balogh A, Kis A, Izsépi E, Cervenak L, László G, Bíró A, Liliom K, Mocsár G, Vámosi G, Füst G, Matko J. New cholesterol-specific antibodies remodel HIV-1 target cells' surface and inhibit their in vitro virus production. J Lipid Res 2009; 51:286-96. [PMID: 19654424 DOI: 10.1194/jlr.m000372] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The importance of membrane rafts in HIV-1 infection is still in the focus of interest. Here, we report that new monoclonal anticholesterol IgG antibodies (ACHAs), recognizing clustered membrane cholesterol (e.g., in lipid rafts), rearrange the lateral molecular organization of HIV-1 receptors and coreceptors in the plasma membrane of HIV-1 permissive human T-cells and macrophages. This remodeling is accompanied with a substantial inhibition of their infection and HIV-1 production in vitro. ACHAs promote the association of CXCR4 with both CD4 and lipid rafts, consistent with the decreased lateral mobility of CXCR4, while Fab fragments of ACHAs do not show these effects. ACHAs do not directly mask the extracellular domains of either CD4 or CXCR4 nor do they affect CXCR4 internalization. No significant inhibition of HIV production is seen when the virus is preincubated with the antibodies prior to infection. Thus, we propose that the observed inhibition is mainly due to the membrane remodeling induced by cholesterol-specific antibodies on the target cells. This, in turn, may prevent the proper spatio-temporal juxtaposition of HIV-1 glycoproteins with CD4 and chemokine receptors, thus negatively interfering with virus attachment/entry.
Collapse
Affiliation(s)
- Zoltán Beck
- Institute of Medical Microbiology, University of Debrecen, H-4012, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kiss E, Nagy P, Balogh A, Szöllosi J, Matkó J. Cytometry of raft and caveola membrane microdomains: from flow and imaging techniques to high throughput screening assays. Cytometry A 2008; 73:599-614. [PMID: 18473380 DOI: 10.1002/cyto.a.20572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The evolutionarily developed microdomain structure of biological membranes has gained more and more attention in the past decade. The caveolin-free "membrane rafts," the caveolin-expressing rafts (caveolae), as well as other membrane microdomains seem to play an essential role in controlling and coordinating cell-surface molecular recognition, internalization/endocytosis of the bound molecules or pathogenic organisms and in regulation of transmembrane signal transduction processes. Therefore, in many research fields (e.g. neurobiology and immunology), there is an ongoing need to understand the nature of these microdomains and to quantitatively characterize their lipid and protein composition under various physiological and pathological conditions. Flow and image cytometry offer many sophisticated and routine tools to study these questions. In this review, we give an overview of the past efforts to detect and characterize these membrane microdomains by the use of classical cytometric technologies, and finally we will discuss the results and perspectives of a new line of raft cytometry, the "high throughput screening assays of membrane microdomains," based on "lipidomic" and "proteomic" approaches.
Collapse
Affiliation(s)
- Endre Kiss
- Immunology Research Group of the Hungarian Academy of Sciences at Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
26
|
Gombos I, Steinbach G, Pomozi I, Balogh A, Vámosi G, Gansen A, László G, Garab G, Matkó J. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells. Cytometry A 2008; 73:220-9. [PMID: 18163467 DOI: 10.1002/cyto.a.20516] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lipid rafts are cholesterol- and glycosphingolipid-rich plasma membrane microdomains, which control signal transduction, cellular contacts, pathogen recognition, and internalization processes. Their stability/lifetime, heterogeneity remained still controversial, mostly due to the high diversity of raft markers and cellular models. The correspondence of the rafts of living cells to liquid ordered (Lo) domains of model membranes and the effect of modulating rafts on the structural dynamics of their bulk membrane environment are also yet unresolved questions. Spatial overlap of various lipid and protein raft markers on live cells was studied by confocal laser scanning microscopy, while fluorescence polarization of DiIC18(3) and Bodipy-phosphatidylcholine was imaged with differential polarization CLSM (DP-CLSM). Mobility of the diI probe under different conditions was assessed by fluorescence correlation spectroscopic (FCS). GM1 gangliosides highly colocalized with GPI-linked protein markers of rafts and a new anti-cholesterol antibody (AC8) in various immune cells. On the same cells, albeit not fully excluded from rafts, diI colocalized much less with raft markers of both lipid and protein nature, suggesting the Lo membrane regions are not equivalents to lipid rafts. The DP-CLSM technique was capable of imaging probe orientation and heterogeneity of polarization in the plasma membrane of live cells, reflecting differences in lipid order/packing. This property--in accordance with diI mobility assessed by FCS--was sensitive to modulation of rafts either through their lipids or proteins. Our complex imaging analysis demonstrated that two lipid probes--G(M1) and a new anti-cholesterol antibody--equivocally label the membrane rafts on a variety of cell types, while some raft-associated proteins (MHC-II, CD48, CD59, or CD90) do not colocalize with each other. This indicates the compositional heterogeneity of rafts. Usefulness of the DP-CLSM technique in imaging immune cell surface, in terms of lipid order/packing heterogeneities, was also shown together with its sensitivity to monitor biological modulation of lipid rafts.
Collapse
Affiliation(s)
- Imre Gombos
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Benadie Y, Deysel M, Siko DGR, Roberts VV, Van Wyngaardt S, Thanyani ST, Sekanka G, Ten Bokum AM, Collett LA, Grooten J, Baird MS, Verschoor JA. Cholesteroid nature of free mycolic acids from M. tuberculosis. Chem Phys Lipids 2008; 152:95-103. [DOI: 10.1016/j.chemphyslip.2008.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 12/23/2007] [Accepted: 01/28/2008] [Indexed: 10/22/2022]
|
28
|
Abstract
PURPOSE OF REVIEW Lipid membrane microdomains are involved in major types of disease, ranging from vascular and metabolic diseases to neurodegeneration, autoimmunity, infectious and inflammatory diseases, and cancer. This review provides an update of membrane microdomain abnormalities. RECENT FINDINGS Lipid membrane microdomains are dynamic assemblies of sphingolipids, cholesterol and proteins that dissociate and associate rapidly and form functional clusters. Membrane microdomain clustering is the key to how membrane microdomains can form lipid-protein platforms in cell membranes, functioning in membrane trafficking, cell polarization and signalling. Clustering of membrane microdomains can be modified, for example by dietary lipids and pharmacological agents. SUMMARY Metabolic overload through a cholesterol-rich and fat-rich diet can trigger metabolic learning, which is associated with membrane microdomain persistence, persistent signalling and disturbed vesicular traffic. Detailed characterization of lipid membrane microdomains and dynamics at the molecular level is necessary and will help to identify new dietary and pharmacological therapeutic targets for the treatment and prevention of lipid membrane microdomain related diseases.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany.
| | | |
Collapse
|